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Training‑related changes in neural 
beta oscillations associated 
with implicit and explicit motor 
sequence learning
Susanne Dyck 1,2* & Christian Klaes 1,2,3*

Many motor actions we perform have a sequential nature while learning a motor sequence involves 
both implicit and explicit processes. In this work, we developed a task design where participants 
concurrently learn an implicit and an explicit motor sequence across five training sessions, with EEG 
recordings at sessions 1 and 5. This intra-subject approach allowed us to study training-induced 
behavioral and neural changes specific to the explicit and implicit components. Based on previous 
reports of beta power modulations in sensorimotor networks related to sequence learning, we focused 
our analysis on beta oscillations at motor-cortical sites. On a behavioral level, substantial performance 
gains were evident early in learning in the explicit condition, plus slower performance gains across 
training sessions in both explicit and implicit sequence learning. Consistent with the behavioral trends, 
we observed a training-related increase in beta power in both sequence learning conditions, while 
the explicit condition displayed stronger beta power suppression during early learning. The initially 
stronger beta suppression and subsequent increase in beta power specific to the explicit component, 
correlated with enhanced behavioral performance, possibly reflecting higher cortical excitability. Our 
study suggests an involvement of motor-cortical beta oscillations in the explicit component of motor 
sequence learning.

Many actions we perform throughout the day have a sequential nature. Examples span from the morning routine 
of preparing a coffee to performing a dance choreography. Motor sequence learning, a form of visuomotor learn-
ing, is the process in which repeatedly used sequences of actions are optimized in terms of efficiency. Through 
motor practice, a series of movement elements are integrated into a single, skilled behavior1. Given the ubiquity 
of motor sequences, motor sequence learning is a tremendously important ability.

When learning a motor sequence implicit and explicit processes play a role: On the one hand, you need to 
acquire the individual elements of the sequence in their temporal order. This acquisition and conscious recol-
lection of the sequence elements in their temporal order constitutes the explicit process2,3. On the other hand, 
you need to bind the elements into one skilled behavior via implicit motor sequence learning. Implicit learn-
ing is typically defined as the ability to acquire knowledge without the intention to learn, while the obtained 
knowledge is difficult to express4,5. In contrast, explicitly acquired knowledge is characterized by reportability 
and highly flexible usage6. The traditional model of skill learning proposes that motor learning initially consists 
of a cognitive phase, where declarative knowledge is acquired, to an automated phase7,8. Let’s take the example 
of learning to tie your shoes: Typically, the child follows the step-by-step instructions of its parent to guide the 
complex sequence of movements. After many repetitions of the action sequence, the movements gain fluency and 
become automated, not requiring actively attending to the task at hand anymore. Even though the transition from 
a cognitive phase to an automated phase might fit many cases of skill learning, the interplay between implicit and 
explicit learning processes is more complex. For example, motor learning can also occur implicitly without any 
awareness of the learned action sequence, which is also termed incidental learning9,10. A widely used example of 
such an implicit learning task is learning to ride a bike. Even without specific step-by-step instructions, children 
can learn to ride a bike by trial and error. In turn, even once they have mastered this motor skill, they are not able 
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to verbally instruct someone else how to perform it. While implicit motor sequence learning has been reported 
in healthy individuals9,11, even severely amnesic patients can learn motor skills despite them knowing when and 
how they learned them12. Motor sequence learning is often investigated in a setting where subjects are learning 
the order of a sequence of actions. While the actions themselves are not difficult, the emphasis is on selecting 
the right action and executing it accurately, thus requiring goal selection and action selection13. While motor 
skills such as sequence learning typically improve during practice (online), motor performance also improves 
between practice sessions (offline) through memory consolidation14,15. In this process, the representation of the 
motor sequence is stabilized, making it less susceptible to interference16, while interference refers to forgetting 
due to the storage of similar items in memory17.

A widely used paradigm to study motor sequence learning in the lab environment is the Serial Reaction 
Time Task (SRTT), developed by Nissen and Bullemer in 19879. It is a four-choice forced-response task where 
participants perform movements, i.e. button presses, based on spatially congruent visual cues. The subjects are 
instructed to react as fast as possible by pressing the button corresponding to the spatial cue. The next stimulus 
typically follows after a fixed, brief delay. The presented stimuli follow a repeating sequence, which is typically 
not disclosed to the subjects. These sequence trials are interspersed by random trials which serve as a control 
condition. The time between the cue presentation and the motor response, the reaction time (RT), decreases 
throughout the experiment. The RT reduction in the random trials is attributed to general performance improve-
ments for example due to learning the stimulus-response mapping and can be contaminated by factors such 
as fatigue and motivation13,18. Importantly, the RT reduction is higher in the sequence condition compared to 
random sequences, which is attributed to sequence-specific motor learning. The sequence-specific performance 
improvements happen even in participants who are not aware of the presence of a sequence, let alone the element 
order of the sequence, which is usually probed at the end of the training session by asking subjects to recall or 
generate the sequence9,11. Even patients suffering from Korsakoff syndrome, who have severely impaired declara-
tive memory, show a gradual decrease in RTs in the SRTT​9, albeit their ability to learn more complex sequences of 
turns in a maze was deteriorated19. Thus, learning in the SRTT is assumed to be incidental and implicit. Notably, 
learning itself can not be measured in the SRTT, it is only indirectly inferred from lasting behavioral perfor-
mance improvements20. The question of what exactly is learned in the SRTT and how the acquired knowledge 
is represented has been subject to many studies21. While initially it was suggested that an association between 
stimuli and responses is essential11, more recent work suggests that participants rather learn response-response 
associations21. Performance improvements are thought to be based on binding motor acts into unified sets of 
actions, in addition to more efficient action selection22,23.

The view of the SRTT as a purely implicit learning task has faced scrutiny13. A prominent issue in the field is 
that probing the awareness or the declarative knowledge in the SRTT is challenging, and relying on subjective 
reports as a valid method has been criticized18,24. One argument is that conscious accessibility is variable over 
time and it is not either there or not, but can be rather represented on a gradual scale25. The retention of learned 
sequences—especially of longer, more complex ones—can decay over time and is subject to interference from 
many sources such as interspersed random blocks26. There have been efforts to distinguish explicit and implicit 
contributions in the SRTT, for example by employing dual-task paradigms, where participants have to perform 
a secondary attention-demanding task in parallel to the SRTT​9. While participants could learn simple sequences 
with distracted attention, their RTs for more complex sequences deteriorated in dual-task versus single-task 
conditions10. The notion of the SRTT as a purely implicit learning task has been further challenged in an arm-
reaching version of the SRTT, where Moisello et al.26 showed that participants explicitly learned fragments of 
the implicit sequence. Besides the classical version of the SRTT​9, explicit variants that include awareness of 
the presence of a sequence have been used (for example27–30). Directly manipulating the subjects’ awareness 
through instructions can circumvent the challenges associated with measuring the awareness about sequence 
regularities18.

The interaction between implicit and explicit learning is not yet fully understood. While some studies advocate 
a competition between implicit and explicit motor memory systems31,32, an increasing body of literature points 
to the notion that explicit and implicit learning run as independent, parallel processes33–35. It is noteworthy 
though, that explicit knowledge can emerge in implicit learning conditions. Varying experimental conditions, 
such as single vs. dual-task and the amount of training have been shown to influence the emergence of declara-
tive knowledge36–38. Also, the structure of the learned sequence can have an influence, i.e. salient sequence parts 
such as simple left to right movements are more likely to be learned explicitly39.

Given the simplicity of the SRTT and the fast acquisition time, it is a well-suited paradigm to study motor 
sequence learning in the lab environment, in healthy subjects and patients, and in combination with neuro-
imaging. The SRTT paradigm has been widely used to study the neural basis of motor sequence learning in 
neuroimaging studies using PET40 and MRI29,41. However, the findings are very heterogeneous. For example, 
earlier studies reported striatal activation in implicit versions of the SRTT​41 and an activation of the Dorsolat-
eral Prefrontal Cortex (DLPFC) in explicit SRTT​42, while Schendan et al.29 found learning-related activation in 
the striatum and DLPFC in both the explicit and implicit SRTT. Even activation of the hippocampus has been 
reported in both modes of learning, although the hippocampus is typically associated with explicit learning29,43. 
Most studies employ either an implicit or an explicit version of the task, while there are only a few studies (for 
example Schendan et al.29) that investigate both implicit and explicit motor sequence learning within the same 
subject group.

In contrast to the vast body of neuroimaging studies, there are much fewer studies focusing on the role of 
neural oscillations in motor sequence learning, as measured by EEG and MEG. Oscillatory activity, or synchro-
nous activity, of a multitude of neurons at a specific rhythm has been proposed as an important mechanism 
for neuronal communication and cognitive processing44,45. The frequency of such oscillations is categorized 
into distinct frequency bands that are associated with specific cognitive states: delta (1–3 Hz), theta (4–7 Hz), 
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alpha (8–12 Hz), beta (13–30 Hz) and gamma (30–100 Hz). Beta oscillations are of particular interest in motor 
sequence learning since they are involved in motor control and sensorimotor processing: Voluntary movements 
have been shown to induce changes in the beta oscillations in the sensorimotor network46,47, typically contralat-
eral to the moving limb. Prior to and during movements, a decrease in beta power can be seen relative to the 
baseline, which is referred to as event-related desynchronization (ERD)46 or movement-related beta decrease48. 
500 ms to 1 s after the movement, an increase in beta power (event-related synchronization, ERS) occurs, called 
the post-movement beta rebound46.

Beta oscillations can be altered in motor learning49–51, i.e. beta power modulation has been implicated in 
various motor skill learning tasks49,52 and specifically in motor sequence learning50. In a MEG study using an 
implicit SRTT, Pollok et al.50 reported increased beta ERD in the implicit condition compared to the random 
condition. Since the changes in beta ERD correlated with behavioral performance, beta ERD has been proposed 
as a biomarker for implicit motor sequence learning50. Furthermore, movement-related beta modulation has 
been shown to increase with prolonged practice in an arm-reaching task in healthy subjects, while this practice-
related increase is reduced in patients suffering from Parkinson’s disease52,53. Further evidence of the role of 
beta oscillations in motor sequence learning stems from studies using non-invasive stimulation: Transcranial 
alternating current stimulation of the primary motor cortex at a frequency of 20 Hz has been shown to facilitate 
the learning of an implicit motor sequence and make it less susceptible to interference54. The change in beta 
power that is induced by motor learning has been associated with an increase in cortical excitability and with 
training-related plasticity changes in the primary motor cortex55. The practice-related beta power increase from 
early to late learning has been related to mechanisms of motor skill retention52. Additionally, Engel and Fries56 
proposed that beta oscillations are stronger when the current state is intended to be maintained. In turn, beta 
power suppression has been proposed to represent a state of motor or cognitive readiness, related to prospective 
control and anticipatory mechanisms55–57.

Changes in beta power have been also linked to the predictability of stimuli: Movements induced by predict-
able rhythmic stimuli were associated with stronger beta ERD at central regions, in contrast to non-predictable 
random stimuli58. Similarly, in an EEG study where participants reacted to predictive and non-predictive prepa-
ration cues that reliably or unreliably predicted a go cue, lower beta power has been found in the contralateral 
sensorimotor cortex only for the case of predictive cues59. Furthermore, beta oscillations at the sensorimotor 
cortex not only play a role in the motor domain, but also in explicit learning scenarios: In an EEG study where 
subjects had to make semantic decisions on objects either presented in a repeating sequence or in random order, 
increased beta power was reported during pre-response periods for objects in the sequential condition compared 
to the random condition60.

In conclusion, beta oscillations and their modulations at the motor cortex are relevant for motor sequence 
learning as probed in SRTT tasks50. Moreover, both implicit and explicit components contribute to motor 
sequence learning as parallel and interacting processes35. Nonetheless, there is, to our knowledge, no study that 
contrasts beta oscillations specific to implicit and explicit processes in motor sequence learning.

Therefore, this study aims to investigate beta oscillations in implicit versus explicit motor sequence learning 
and how they change in early versus late training. We developed a study design where participants concurrently 
learn an explicit and an implicit motor sequence, allowing us an intra-subject comparison of both learning pro-
cesses. We expected three different factors that contribute to learning and improved performance: general practice 
effects independent of sequence learning, implicit motor sequence learning, and explicit learning. While the 
first two occur in the implicit learning condition, all three play a role in the explicit condition. Although termed 
“explicit” the explicit condition of the SRTT also entails implicit learning through repeated motor practice (see 
Willingham et al.61,62). This enables us to extract behavioral improvements and changes in motor-cortical beta 
oscillations that are related to sequence learning (apparent in both explicit and implicit learning) and specific 
to the explicit component of motor sequence learning. On a behavioral level, we expected slow performance 
improvements reflecting implicit learning plus fast performance improvements early in learning reflecting explicit 
learning. This hypothesis is based on the assumption of a slow and fast component in motor learning, repre-
sented by implicit and explicit processes, respectively13,35. Moreover, we anticipated that these performance 
improvements would be complemented by parallel changes in motor-cortical beta oscillations. Based on previous 
reports of practice-related increases in beta modulation52, we expected an increase in beta power from early to 
late learning in both sequence learning conditions. Moreover, since beta power suppression represents a state 
of motor readiness and is associated with the predictability of stimuli and thus anticipation55–57,59, we expected 
a stronger beta power suppression for the explicit component. After all, participants additionally learned the 
sequence order in the explicit condition, facilitating the anticipation of the next sequence element and thus the 
next motor response.

Methods
Subjects
28 subjects (mean age: 22.9 ± 4.0 years, 10 male) participated in the study. 3 subjects were unable to complete the 
last experimental session due to illness. Consequently, the data of the remaining 25 subjects (mean age: 22.4 ± 3.7 
years, 7 male) is reported. Inclusion criteria for this study were: age between 18 and 35 years, right-handedness, 
normal or corrected-to-normal vision, and no psychological or neurological disorders. Before participation, all 
subjects gave written informed consent in accordance with the Declaration of Helsinki. They were compensated 
for their participation either in monetary form or through course credits. This study received ethical approval 
from the Research Ethics Board of the Psychology Faculty at Ruhr-University Bochum, granted under approval 
number 405.
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Experimental design
The experiment consisted of 5 training sessions, during which participants performed a motor sequence learning 
task. The sessions have been scheduled over the course of one week. The first and last sessions were performed 
in the lab, where EEG was recorded during the motor learning task. Sessions two, three, and four were online 
training sessions, where participants performed the same motor learning task in their home environment (for 
an overview, see Fig. 1a). There was one night of sleep between each training session.

Motor sequence learning task
The motor sequence learning task used in this experiment is a modified version of the SRTT​9. In the original 
SRTT​9, participants have to react to spatial stimuli as fast as possible by pressing a corresponding key. Moreover, 
some of those stimuli follow a repeating sequence, which is typically not revealed to the participant, interspersed 
with stimuli presentations in random order, serving as a control condition for sequence-independent learning. 
Instead of providing spatial cues, color stimuli have been employed to guide the motor responses in an adapted 
SRTT​63. Similarly, in our task design, we used color stimuli instead of spatial cues to trigger key presses, carried 
out on a computer keyboard: Participants were instructed that a colored square would appear on the screen, while 
each color is associated with one of the 4 fingers of their right hand (thumb excluded). For simplicity, we will refer 
to the fingers as 1, 2, 3, 4 (1 representing the index finger, 2 representing the middle finger, etc). The color-to-key 
matching was shown to the participants before the experiment started: four colored squares were depicted on 
a horizontal line such that their spatial location indicated the respective key associated with the color stimulus. 
Participants were asked to press the associated finger as fast as possible once the trial started and a color stimulus 
appeared. The color stimulus remained on screen for a total duration of 1 s, within which the participant had to 
respond via a key press. If the correct key was pressed, the trial continued without any feedback by presenting the 
next color stimulus, again for 1 s. By contrast, a wrong or missing key press triggered error feedback for 500 ms: 
The fixation cross turned red and the color-to-key matching was shown as a reminder of which color stimulus 
is associated with which key. The trial then continued with the next color stimulus presented for 1 s. One trial 
consisted of 8 stimuli, with each number 1 to 4 occurring twice. Each trial started with the presentation of a 
fixation cross for 500 ms. Therefore, the trial duration for correctly performed sequences was 8.5 s, while the 
duration increased by 0.5 s per mistake made. Between trials, there was a rest period of 4 seconds.

Our task design comprised three experimental conditions: random, implicit, and explicit. In the random con-
dition, color stimuli appeared in a pseudo-random order, serving as a control condition to assess sequence-inde-
pendent learning. In both the implicit and explicit conditions, stimuli followed one of two repeating sequences, 

Figure 1.   Overview of the experimental design (a) and the trial structure of the motor learning task (b). (a) 
EEG recordings have complemented the behavioral training at sessions 1 and 5, while sessions 2 to 4 took 
place online. (b) Following the presentation of a fixation cross, the first stimulus (S1) appeared and remained 
on screen for 1000 ms. If a correct key was pressed, the trial continued with the next stimulus (S2) which 
was presented for 1000 ms. In case of a wrong response, error feedback was shown for 500 ms before the trial 
continued with the next stimulus (S3), up until stimulus 8 (S8).
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the implicit or explicit sequence, respectively. Notably, the explicit condition was distinguished by participants 
receiving explicit instructions tailored to this condition: Participants were informed about the presence of one 
repeating sequence and that the occurrence of that sequence is cued by a specific fixation-cross color (e.g. black). 
Importantly, the sequence itself was not reported to the participants. In trials that started with a black fixation 
cross, participants were asked to perform the button presses and, at the same time, remember the number of 
the finger that they pressed (1 for the index finger, 2 for the middle finger, etc). Those trials are the explicit 
motor sequence learning condition. On the other hand, when the trial started with a white fixation-cross color, 
participants were told that the stimuli appeared in random order and that they should simply perform the but-
ton presses as fast as possible. In reality, only 50% of those seemingly random trials were indeed stimuli in a 
pseudo-random order, while the other 50% followed another repeating sequence. Those hidden sequence trials 
that were masked as random sequences constitute the implicit condition. The task design is depicted in Fig. 1b.

The explicit sequence was 21343241 while the implicit sequence was 34132124. The sequences were designed 
as second-order conditional sequences, such that each element in the sequence is predicted by two preceding ele-
ments. Moreover, each element transition (for example 21) occurs in both sequences, but each triplet of elements, 
for example, 213 and 212, is unique to the explicit or implicit sequence, respectively. The random sequences were 
chosen such that: each element 1 to 4 occurred 2 times in the whole sequence; no element occurred twice in a 
row; no triplet of elements from the explicit or implicit sequence occurred.

The first session consisted of 4 blocks, while each block consisted of 18 sequence repetitions per condition 
(54 sequence trials) in a pseudo-random order. Participants were provided breaks between blocks, during which 
they had the opportunity to rest. The duration of each break was set to a minimum of 60 s, and participants had 
the autonomy to decide when to resume the experiment. The number of trials was chosen such that the training 
session lasted approximately 1 h. After this initial session in the EEG lab, three online sessions followed. Here, 
participants performed the same motor learning task in their home environment, using their home PC or laptop. 
They were instructed to choose a quiet spot to reduce possible disturbances as much as possible. The online ses-
sions consisted of 2 blocks with the possibility of a break between blocks. Participants were asked to carry out 
the online experiment to the best of their ability and to make an effort to press the correct keys as fast as possible. 
They were told that their performance was tracked during the online experiment to ensure data quality. At the 
end of the experiment, a numerical code was depicted on the screen and participants were instructed to send 
this code via email to the experimenter. The code consisted of the participant ID, the session number, and the 
average performance. This way, we could control that participants performed the online experiment at the right 
time point with sufficient performance, even without supervising the experiment in the lab. The last training 
session, session 5, was performed in the lab again to complement this late training session with EEG recordings. 
Here, participants trained in the motor sequence learning task for 2 blocks. Afterwards, the stimulus-response 
mapping changed (2 sequence elements were exchanged) and participants performed the motor sequence learn-
ing task with the new stimulus-response mapping. While this last experimental part is not part of this report, it 
serves as the underlying rationale for our choice of color stimuli over spatial cues, which would not easily allow 
re-mapping. Moreover, it explains the reduced number of training blocks (2) in the second EEG session compared 
to the first one (4), since we wanted to adhere to a total training duration of 1.5 h in session 5.

The experiment was presented via PsychoPy64, with the online version hosted via PsychoPy’s Pavlovia (see65).

Explicit memory test
To assess the presence of conscious awareness regarding the implicit sequence, as well as to evaluate declarative 
knowledge in both the explicit and implicit condition, we administered an explicit memory test at the end of 
session 1 and session 5. The memory test consisted of a triplet recognition task, similar to the one in Schendan 
et al.29. 3 numbers were presented on screen and participants were asked to indicate how familiar those numbers 
are on a scale from 1 to 4. The value 1 represented the rating “definitely new”, 2 “probably new”, 3 “probably old/
seen”, 4 “definitely old/seen”. Participants were asked to refrain from performing the shown sequence snippet by 
finger movements (either real or imaginary movements) to not contaminate the memory ratings with procedural 
memory. One-third of the presented numbers were triplets from the explicit sequence, one-third were from 
the implicit sequence. Each possible combination of triplets from the explicit and implicit sequence occurred 
once, resulting in 8 trials per condition. The remaining third was a random combination of sequence elements 
into triplets, that did neither belong to the explicit nor implicit sequence. To get a better estimate of the explicit 
knowledge specific to each condition, we furthermore subtracted the mean recall rating of the implicit condi-
tion and the random condition from the explicit condition, and the mean recall rating of the random condition 
from the implicit condition.

EEG recordings and preprocessing
EEG has been recorded using a 64-electrode EEG system in an extended 10/20 montage (BrainAmp Standard, 
EasyCap). The reference and ground electrodes were fixed on the EEG cap at positions AFz and FCz, respectively. 
One electrode (IO) has been placed above the right eye of the participant to capture eye-movement-related 
artifacts. Impedances were kept below 5 k � . The signals were recorded with a sampling rate of 500 Hz. The 
participants were in an electromagnetically shielded room during the EEG recordings.

The preprocessing of the obtained EEG data has been done in EEGLab66. After importing the raw EEG files 
and the channel locations, the data has been re-referenced to the average of all electrodes (IO excluded). A 
high pass filter of 1 Hz and a low pass filter of 40 Hz has been applied. We manually removed noisy channels 
and data portions that were contaminated by artifacts from the original data. To remove eye blinks and other 
movement-related artifacts, the data was decomposed by an independent component analysis (ICA) and com-
ponents were classified as eye or muscle artifacts using EEGLab’s ICLabel algorithm67 plus visual inspection. 
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Finally, we extracted epochs from the continuous data using a time interval from − 1 to 9 s with the start of the 
sequence trial as a synchronization event. Only correctly executed sequences have been considered. As a result, 
the epoch included the whole sequence of 8 button presses, with the stimulus presentation times at 500 ms, 1500 
ms, 2500 ms, etc. The interval from − 1000 to − 250 ms before the start of the sequence trial has been used for 
baseline correction. The baseline correction was performed using a single trial normalization instead of the trial 
average, which has been reported to be less sensitive to noisy trials68.

Data analysis and statistics
The primary measurement of learning in our modified SRTT is the reaction time. Thus, the reaction time of each 
key press has been measured and averaged per sequence trial to obtain the mean RT per trial. Alongside, as an 
additional measurement of learning, the accuracy was calculated as the number of correct button presses out of 
8 button presses per trial. Moreover, the accuracy was used to filter out incorrect sequence trials (containing at 
least one missing or wrong key press).

Regarding the EEG data, we performed a time-frequency analysis on the motor-cortical electrodes in the 
left hemisphere (FC1, FC3, C1, C3, CP1, CP3), contralateral to the dominant hand of the subjects. A Morlet 
wavelet decomposition was applied to the sequence epochs to obtain the event-related spectral perturbation 
(ERSP) estimates. The ERSP gives us information about changes in the power spectra induced by an event69, in 
our case the start of the sequence trial. The ERSP estimate is obtained per subject per condition per block, with 
the dimensions time points of the epoch times frequencies. Once the ERSP values have been obtained from 
EEGLab66, we exported the data into Python for further processing. Subsequently, skipping the first 500 ms of 
each sequence trial, we applied windows of 1000 ms, spanning the duration of each visual stimulus, to average 
the ERSP estimates in the time domain. Thus, resulting in one ERSP value per sequence element per frequency. 
Since we are interested in beta oscillations, we regarded the frequencies from 13 to 30 Hz.

In the first step, we report the behavioral and neural data per condition in a group average, averaged per train-
ing session to see changes over the course of training. Moreover, since we are interested in behavioral correlates 
and neural oscillations specific to implicit and explicit motor sequence learning, we contrast the experimental 
conditions against each other. For that purpose, we follow a similar procedure as Pollok et al.50 used to contrast 
implicit learning and a control condition in an SRTT experiment; we subtract the reaction times of the implicit 
( RTimp ) and explicit ( RTexp ) condition from the reaction times in the random condition ( RTran ), to obtain 
�RTexp and �RTimp , respectively.

Importantly, this subtraction is done block-wise and, utilizing our intra-subject design, on the level of each 
individual subject. Since the random condition captures sequence-unspecific learning such as learning the asso-
ciation between the color stimulus and the respective key press, this contrast allows us to extract the sequence-
specific performance gains, for implicit and explicit motor sequence learning, respectively. Similarly, we can 
build the contrast between the explicit and implicit conditions:

Through that contrast, we get the reaction times that can be attributed to the explicit component �RTec 
of explicit motor sequence learning. The underlying assumption here is that explicit motor sequence learning 
compromises implicit motor sequence learning through repeated execution plus an explicit component that is 
equivalent to the declarative knowledge about the sequence elements in their temporal order.

Following the same procedure, those contrasts can also be obtained for the ERSP data; we regard the contrast 
of the implicit or explicit sequence condition against the random control condition via block-wise subtraction

and we contrast both sequence learning conditions to see ERSP changes associated with the explicit component 
in explicit motor sequence learning.

A Shapiro–Wilk test revealed the non-normality of the behavioral data (reaction times and recall ratings) 
as well as the ERSP data. To account for the non-normally distributed data, we used a generalized linear mixed 
model (GLMM)70–72 as an alternative to the repeated measures ANOVA, using the software JASP73. Linear mixed 
models have been reported to be robust enough to contrast repeated measurement conditions with varying trial 
ratios74,75 and GLMMs in particular are suitable even when the dependent variable is non-normally distributed76. 
When applicable, we used a gamma probability distribution as the underlying distribution with its default log 
link function. The test used in the GLMM analysis is the Likelihood ratio test. For further post-hoc analyses, we 
used the Wilcoxon signed-rank test as a non-parametric version of the paired sample t-test.

Furthermore, to assess whether the beta ERSP changes in the implicit and explicit condition have a behav-
ioral relevance, we calculated the Pearson correlation between the �ERSP values and behavioral performance 
outcomes, i.e. the �ERSP values of each session half (session 1 first half, session 1 second half, session 5) have 
been correlated with the RTs and accuracy, for the explicit and implicit condition. Furthermore, to investigate 
the behavioral relevance of a change in beta ERSPs over the course of training, we have built the difference 

(1)
�RTexp = RTran − RTexp

�RTimp = RTran − RTimp.

(2)�RTec = RTimp − RTexp.

(3)
�ERSPexp = ERSPexp − ERSPran,

�ERSPimp = ERSPimp − ERSPran,

(4)�ERSPec = ERSPexp − ERSPimp.
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between the �ERSP at different time points as a measure of skill improvement, similar to the approach by Pollok 
et al.50: We subtracted the �ERSP of the first half of session 1 from the �ERSP of the second half of session 1 as a 
measure of online ERSP changes within the first training session. Similarly, we subtracted the �ERSP of the first 
half of session 1 from the �ERSP of session 5 as a measure of overall changes in ERSPs. This subtraction is done 
individually for each subject and each contrast (explicit-random, implicit-random–explicit-implicit), to obtain a 
measure of early vs. late ERSP changes, specific to explicit and implicit motor sequence learning. Extreme values 
were identified as outliers and excluded based on the interquartile range (IQR), using a multiplier of 1.5 times 
the IQR to determine outliers. We used JASP73 for the GLMM analysis and Python for the data preprocessing 
and, including the packages scipy77 and pingouin78, for statistical analyses (Shapiro–Wilk test and Wilcoxon 
signed-rank test). The correlation analysis also has been performed in Python using the packages scipy77 to 
calculate Pearson’s R and seaborn79 to plot the data including a regression line using a linear regression model fit.

Results
Behavioral data
As in the original SRTT​9, our primary measurement of learning is the reaction times (RTs). Performance gains 
are reflected by a reduction in RTs. First, we focus on the first training session in detail. Figure 2a shows the RTs 
in session 1, separated by blocks 1 to 4 to show changes throughout this initial training session. It can be seen 
that the RTs in the explicit condition reduce already within this first session, while the RTs in the implicit and 
random condition only reduce slightly.

To assess the effect of time—in this case, “block”—and experimental condition on the RTs, we used a GLMM 
analysis as an alternative to the repeated measures ANOVA, with the fixed factors block and condition, the 
dependent variable RT and subjects as the random effects grouping factor. We found a significant main effect of 
the factor block ( χ2 = 30.073, p < 0.001 ) and a significant main effect for condition ( χ2 = 22.562, p < 0.001 ). 
Furthermore, there was a significant interaction effect of block × condition ( χ2 = 23.588, p < 0.001 ). Therefore, 
the RT significantly varied across blocks and conditions. The comparison of the RTs in the different conditions 
within each block using a Wilcoxon signed-rank test shows a significant difference between the explicit and 
the implicit condition already in block 1 (p = 0.004). The difference continues to be significant in blocks 2 to 4 
( p < 0.001 ). The RT difference between the explicit and random condition is not yet significant in block 1 (p = 
0.051) but in all other blocks ( p < 0.001 ). The summary of the GLMM analysis and a table showing the Wilcoxon 
signed-rank test results for all comparisons can be found in the Supplementary Material in Tables S1 and S2. 
Furthermore, an alternative depiction of the RT data within session 1, with RTs shown per sequence trial for 
each condition, can be also found in the Supplementary Material (Fig. S1).

Regarding the larger timescale of training sessions, a step-wise reduction of RTs is visible for the explicit and 
implicit condition from sessions 1 to 5 in contrast to stable RTs in the random condition (see Fig. 2b). An alter-
native visualization of the RTs across training sessions, including subjects’ individual data points as background 
data, can be found in the Supplementary Material in Fig. S2). The GLMM analysis with the factors session and 
condition revealed a significant main effect of condition ( χ2 = 38.218, p < 0.001 ) and session ( χ2 = 27.082, 
p < 0.001 ) on the dependent variable RT. Thus indicating that the experimental condition as well as the session 
had a significant impact on the RT. Additionally, the interaction between the condition and session was also 
significant ( χ2 = 22.976, p = 0.003), suggesting that the effect of the condition varied across different sessions. 
Wilcoxon signed-rank tests suggest that there is no significant difference in the RTs between the random and 
implicit condition in session 1 (p = 0.329), while the RTs in the random and the implicit condition start to show 

Figure 2.   Reaction times in the explicit (exp), implicit (imp), and random (ran) conditions within the first 
session, across blocks (a), and across all training sessions (b) (n=25 subjects). (a) shows the RT per block, 
while one block consists of a maximum of 18 sequence trials per condition. The mean RT was averaged across 
the 8 key presses constituting one sequence trial and sequence trials, while only correctly executed sequences 
are included. The data is depicted in box plots or box-and-whisker plots. The box shows the lower and upper 
quartile of the data, representing 50% of the RT scores, while the whiskers extend to show the rest of the 
distribution. Points determined as outliers based on the interquartile range are marked as a rhombus. (b) Shows 
the mean RT across the 5 experimental sessions (i.e. average of 8 key presses). Only correct sequences are 
included. While the first session consists of 4 blocks, sessions 2 to 5 consist of 2 blocks, with 18 sequence trials 
per condition per block. The bars represent the 95% confidence intervals.
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a significant difference starting from session 2 (p = 0.004), continuing up to session 5 ( p < 0.001 ). In contrast, 
there is a significant difference between the RTs in the explicit condition and the RTs in the implicit and random 
one already in session 1 ( p < 0.001 ), persisting throughout all sessions ( p < 0.001 ). The GLMM summary and 
the Wilcoxon signed-rank test for all comparisons can be found in the Supplementary Material (Tables S3, S4).

In the next step, we were interested in the performance improvements (RT gains) that are specific to implicit 
or explicit motor sequence learning. Therefore we contrasted the RTs in the sequence learning conditions against 
the random control condition (see “Data analysis and statistics” in “Methods” section) to filter out sequence-
independent learning effects that are captured in the random control condition. Moreover, we contrasted both 
sequence learning conditions against each other (see “Data analysis and statistics” in “Methods” section), based 
on the assumption that in the explicit condition, subjects learn explicitly plus implicitly. Therefore this contrast 
shows us performance gains that can be attributed to the “explicit component” or “cognitive component” of the 
explicit learning condition. The obtained � RTs averaged across training sessions are depicted in Fig. 3. The 
same figures including the mean � RT for each individual subject as background data can be found in the Sup-
plementary Material in Fig. S3.

The sequence-learning specific RT gains in the implicit condition (Fig. 3a) are slowly developing across 
training sessions, starting from approx. 0 s (similar to the RTs in the random condition), reaching approx. 0.09 
s on average in session 5. Similarly, the � RTs in the explicit condition (Fig. 3b) are increasing over the course of 
training sessions, from approx. 0.18 s on average in session 1 to approx. 0.27 s on average in session 5. Interest-
ingly, the difference between the RTs in the explicit and implicit condition (Fig. 3c) is relatively constant over 
the course of training sessions (between 0.16 and 0.18 s on average).

A second measurement of learning, besides the RTs, is the accuracy, i.e. the number of correct key presses. 
Improvements in performance in our task design can be reflected in reduced RTs and in making fewer incorrect 
responses throughout training. Figure 4 shows that the accuracy increases in the explicit, implicit, and random 
conditions throughout the 5 training sessions. An equivalent figure including the mean accuracy of each indi-
vidual subject as background data can be found in the Supplementary Material in Fig. S4.

To assess the effect of session and experimental condition on the accuracy, we performed a GLMM analy-
sis, with the fixed factors session and condition, the dependent variable accuracy, and subjects as the random 
effects grouping factor. We found a significant main effect of the factor condition ( χ2 = 29.791, p < 0.001) and a 
significant main effect for session ( χ2 = 16.608, p = 0.002). There was no significant interaction effect of condi-
tion × session ( χ2 = 8.634, p = 0.374). Comparing the accuracy in the different sessions and conditions using 
a Wilcoxon signed-rank test reveals a significant difference between the explicit and random condition across 
all 5 experimental sessions (all p < 0.001) and between the implicit and random condition (all p < 0.004). In 
training session 1, the accuracy between the explicit and implicit condition does not differ (p = 0.860), while 
there is a significant difference between the explicit and implicit condition in session 2 (p = 0.011) and session 
3 (p = 0.001). In the last 2 training sessions, however, there is again no significant difference in the explicit and 
implicit condition (p = 0.304 in session 4; p = 1.000 in session 5). The summary of the GLMM analysis and a 

Figure 3.   Reaction time (RT) contrasts between experimental conditions over the course of training sessions 
(n = 25 subjects). (a) Shows the difference between RTs in the random and implicit condition. (b) Shows the 
difference between RTs in the random and explicit condition. (c) Shows the difference between RTs in the 
implicit and explicit condition. The vertical bars represent the 95% confidence intervals.
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table showing the Wilcoxon signed-rank test results for all comparisons can be found in the Supplementary 
Material Tables S5 and S6.

EEG data
EEG has been recorded at training sessions 1 and 5. Thus, time-frequency analysis of the event-related spectral 
perturbation (ERSP) changes in both sessions show us beta power modulations in an early vs. a late training 
stage, in the random control condition, and in the implicit and explicit motor sequence learning condition. 
A time-frequency plot of the mean ERSP at motor-cortical electrodes averaged across participants and trials, 
separated in experimental conditions, for session 1 and session 5 can be seen in Fig. 5. A beta power suppression 
can be seen in all experimental conditions following the stimulus presentation. To quantify and compare the 
ERSP changes, we extracted ERSP values in the beta frequency range (13–30 Hz), per experimental condition, 
per training session and block, per subject, and for the motor-cortical electrodes FC1, FC3, C1, C3, CP1, CP3, 
based on the procedure explained in “Data analysis and statistics” in the “Methods” section.

To infer ERSP changes not only in early vs. late training (session 1 vs. session 5) but also related to online 
learning during the initial learning phase within session 1, we separated the ERSP data of session 1 into two 
halves, i.e. first half (block 1 and 2) and the second half (block 3 and 4). Since session 5 consisted of only 2 
blocks, those were also combined to have an equal number of blocks for all considered time points. The ERSPs 
in the explicit, implicit, and random condition, grouped by session 1 1st half, session 1 2nd half, and session 5 
are shown in Fig. 6a.

Overall, the ERSPs are negative throughout all conditions and sessions, reflecting beta power suppression as 
can also be seen in the time-frequency plot, Fig. 5. Initially, the beta power suppression is higher in the explicit 
condition compared to the random and implicit conditions. While the ERSPs in the random condition are slightly 
decreasing throughout session 1, the beta ERSPs are increasing in both sequence learning conditions through-
out session 1. By the end of training, in session 5, the ERSPs are less negative, reflecting a reduced beta power 
suppression, in all experimental conditions. We performed a GLMM analysis with the fixed factors condition 
(explicit, implicit, random), session half (session 1 1st half, session 1 2nd half, and session 5), and the dependent 
variable ERSP, using “subject” as a random grouping factor. We observed a significant main effect of the “session 
half ” ( χ = 16.830, p < 0.001 ), indicating that this factor had a significant impact on the ERSP measure. While 
the main effect of the factor condition was not significant ( χ = 2.033, p = 0.362 ), there was a significant interac-
tion between session half and condition ( χ = 11.242, p = 0.024 ), suggesting that the effect of condition varied 
across different levels of “session half ”. Further comparisons using the Wilcoxon signed-rank test show a signifi-
cant difference in the ERSP values between the explicit and the implicit condition (p = 0.026) and between the 
explicit and the random condition ( p < 0.001 ) in the first half of session 1. Moreover, the ERSP values between 
the implicit and random conditions in the first half of session 1 also show a significant difference ( p < 0.001 ). 
However, the difference between the ERSPs in the explicit and implicit condition is not significantly different in 
the second half of session 1 (p = .906) and session 5 (p = 1). In contrast, there is a significant difference between 
the ERSP values between the explicit and random condition ( p < 0.001 ) and between the implicit and random 
condition ( p < 0.001 ) in the second half of session 1. Similarly, our test results show a significant difference in 
ERSPs between the explicit and random condition (p = 0.003) and between the implicit and random condition 
( p < 0.001 ) in session 5. Tables showing the summary of the GLMM analysis and the Wilcoxon signed-rank test 
results can be found in the Supplementary Material (Tables S7, S8).

As with the RT data, we also extract sequence-specific ERSP changes by contrasting the sequence learning 
conditions against the control condition, i.e. by subtracting the ERSPs of the random condition from the ERSPs 
in the explicit or implicit condition, respectively (see Fig. 6b).

Figure 4.   The accuracy in the explicit (exp), implicit (imp), and random (ran) condition across all 5 
experimental sessions (n = 25 subjects). The accuracy in a sequence trial was calculated as the actual number of 
correct key presses divided by 8, which is the maximal number of correct key presses per sequence trial. Vertical 
lines represent the 95% confidence intervals.
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The contrast between the sequence learning conditions and the random condition shows us a stronger beta 
power suppression at the early learning stage (first half of session 1) in the explicit condition. However, the beta 
power suppression in both sequence learning conditions is weaker in the second half of session 1, in comparison 
to the control condition. In session 5, the beta power suppression in the sequence learning conditions is still 
slightly weaker. This can be attributed to an increase in beta power in the implicit and explicit condition, as can 
also be seen in Fig. 6a. Moreover, it can be seen that the difference in ERSPs between both sequence learning 
conditions decreases after the initial learning stage. This effect can be even better observed when we regard the 
ERSP contrast between the explicit and implicit condition (see Fig. 6c). With this contrast, we aim at extract-
ing the explicit or cognitive component that is part of explicit, but not implicit motor sequence learning. This 
contrast is only possible due to the intra-subject task design and the concurrent learning of an implicit and 
explicit sequence. The � ERSPs show that the explicit component is reflected in a stronger beta power suppres-
sion during the initial learning stage, while the difference is reduced and almost vanished in the second half of 
session 1 and in session 5.

To summarize the main findings: The accuracy gradually increases over the course of training sessions, while 
the reaction times gradually reduce, in the implicit and explicit conditions. A reduction in RT is apparent already 
very early in learning for the explicit condition. This early component is equivalent to the explicit or cognitive 
component. Reflecting the changes in behavioral performance, a similar pattern arises from the EEG data: for 
both implicit and explicit sequence learning, a training-induced increase in beta ERSPs can be seen. The promi-
nent difference between both sequence learning conditions is a stronger beta power suppression in the explicit 
condition in the initial stage of training.

Recall ratings
To control whether participants indeed acquired declarative or explicit knowledge about the repeating sequence 
in the explicit condition and not in the implicit condition, we performed a triplet recognition test at the end of 
training in session 1 and session 5. Here, participants rated triplets from the explicit, the implicit, and random 
or new sequences on a scale from 1 (definitely new) to 4 (definitely old/seen).

The obtained recall ratings can be seen in Fig. 7a: The mean recall rating in the explicit condition was 3.1 ± 
0.6 in session 1 and 3.3 ± 0.5 in session 5. The mean recall rating in the implicit condition was 2.0 ± 0.9 in ses-
sion 1 and 2.0 ± 1 in session 5, while the mean recall rating in the random condition was 1.9 ± 0.8 in session 1 
and 1.7 ± 0.8 in session 5.

Figure 5.   Time frequency plot showing the event-related spectral perturbation (ERSP) in the random, explicit, 
and implicit condition at motor-cortical electrodes, averaged over subjects (n = 25) and trials in session 1 (a) 
and in session 5 (b). Within the first 500 ms of the sequence trial, a fixation cross appeared, indicating if an 
explicit or a seemingly random (in reality: random or implicit) trial would follow. At 500 ms, 1500 ms, 2500 
ms, etc, color stimuli appeared (vertical bars, “S”) and remained on screen for 1000 ms. During this time 
interval, participants executed the key press associated with the respective stimulus. Only correctly executed 
sequences were included. The y-axis shows the frequency, while the color code indicates the ERSP values in dB, 
with respect to a baseline period (− 1000 ms to − 250 ms before the start of the trial). For quantitative further 
analyses, we used the beta frequency range (13–30 Hz) and the averaged ERSP values per 1 s window (white box 
in the left panel of (a) as an example), representing the time windows of the stimuli.
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To compare the ratings between experimental conditions for session 1 and session 5, we used Wilcoxon 
signed-rank tests. In session 1, the recall ratings in the explicit condition differ significantly from the implicit 
condition (p = 0.006) and the random condition (p = 0.001), while the ratings between the implicit and random 
condition are not significantly different (p = 0.664). On similar terms, the recall ratings in session 5 significantly 
differ between the explicit and implicit condition (p = 0.004) and between the explicit and random condition (p 
= 0.001), while there is no significant difference between the implicit and random condition (p = 0.067). Moreo-
ver, the ratings between sessions 1 and 5 did not significantly differ for the explicit (p = 0.136), the implicit (p 
= 1.000), and the random (p = 1.000) condition. Table S9 in the Supplementary Material shows the Wilcoxon 
signed-rank test results for all comparisons. Thus, participants rated triplets from the explicit sequence overall 
higher compared to the implicit sequence and new triplets, while the recall ratings remained stable in the early 
and late training sessions. However, the high variance in the ratings, especially regarding the implicit condition 
in session 5, indicates a notable divergence in the levels of explicit knowledge among the participants. To focus 
on the individual subjects’ rating scores, we can look at the contrast between the rating scores among the experi-
mental conditions. Figure 7b shows the differences in the rating between conditions, as obtained by subtracting 
the ratings of one condition, e.g. explicit, from another condition, e.g. implicit. Ideally, in accordance with the 
aim of our task design, the rating in the explicit condition should be greater than in the implicit and random 
condition. In session 1, this is the case for 19 out of 25 subjects, while 6 subjects show lower rating scores in the 
explicit condition compared to the implicit one. In session 5, the number of participants that show higher ratings 
in the explicit condition is even lower, i.e. 14 out of 25 subjects.

Figure 6.   ERSPs in the explicit, implicit, and random condition (left) and differences in the ERSPs between 
experimental conditions (right). The ERSPs are grouped by the first and second half of session 1 and session 
5 (n = 25 subjects). (a) The ERSPs for the explicit, implicit, and random conditions are given in dB, relative 
to a baseline (− 1000 to − 250 ms before the start of the sequence trial). Statistical comparisons using the 
Wilcoxon signed rank test are depicted with gray vertical lines, with * representing p ≤ 0.05 , ** p ≤ 0.01 and 
*** representing p ≤ 0.001 (Bonferroni corrected for multiple comparisons). (b) ERSP difference between 
the explicit (exp, blue) and random and between the implicit (imp, orange) and random condition. The ERSP 
differences are given in dB, relative to a baseline (− 1000 to − 250 ms before the start of the sequence trial). The 
random control condition was subtracted from the sequence conditions, such that negative � ERSPs indicate 
stronger beta power suppression, while positive values indicate less beta power suppression, compared to the 
random condition. (c) ERSP difference between the explicit and implicit condition. The ERSP differences 
are given in dB, relative to a baseline (− 1000 to − 250 ms before the start of the sequence trial). The implicit 
condition was subtracted from the explicit condition, such that negative � ERSPs indicate stronger beta power 
suppression in the explicit condition, while positive values indicate stronger beta power suppression in the 
implicit condition. Sessions are separated by a dark-gray vertical line emphasizing different recording days. The 
black vertical bars represent the 95% confidence intervals. Equivalent figures including the mean ERSP and 
mean ERSP differences for each subject as background data can be found in the Supplementary Material in 
Fig. S5.
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Correlation analysis
To assess the behavioral implications of beta power modulation in the motor sequence learning task, we con-
ducted Pearson’s correlation between the beta ERSPs and behavioral outcomes—specifically reaction times (RTs) 
and accuracy. We utilized the contrasted ERSP values (explicit-random, explicit–implicit, implicit-random) and 
correlated them with the RTs and accuracy for each condition during session 1’s first half, second half, and session 
5. Additionally, we explored correlations between behavioral performance measures and training-related changes 
in beta ERSPs, representing changes within the first training session (the difference between �ERSP in session 
1 first half and �ERSP in session 1 second half) and overall changes (the difference between �ERSP in session 
1 first half and �ERSP in session 5) (see “Data analysis and statistics” in “Methods” section). Only correlations 
with statistical significance ( p < 0.05 ) are reported. For the explicit condition, the �ERSPec (explicit–implicit) 
of the first half of session 1 shows a positive correlation with the RT in the explicit condition during this initial 
session half ( r = 0.41 , p = 0.048 , see Fig. 8a). This implies that lower beta ERSP values in the explicit condition 
compared to the implicit one correlate with faster RTs in the first half of session 1. Conversely, in session 5, a 
negative correlation between �ERSPec and the RTs of session 5 can be seen ( r = −0.55 , p = 0.005 , see Fig. 8b). 
The difference in �ERSPec between the first and second half of session 1 negatively correlated with the RT in the 
explicit condition during the first half of session one ( r = −0.54 , p = 0.006 , see Fig. 8c). Similarly, the difference 

Figure 7.   Recall ratings in the triplet recognition task for triplets in the explicit (exp), implicit (imp), and 
random (ran) conditions, as well as the differences in recall ratings among experimental conditions, separated 
in sessions 1 and 5. Ratings were ranging from 1 (definitely new) to 4 (definitely old/seen). (a) The mean rating 
per condition is shown in box plots for session 1 and session 5, respectively. The lower and upper quartile of the 
data is shown. (b) The difference in recall ratings between the explicit and implicit (exp-imp, purple), the explicit 
and random (exp-ran, blue), and the implicit and random (imp-ran, orange) is shown, for sessions 1 and 5. Each 
grey dot represents the mean rating of one subject for this particular condition and session. Outliers based on 
the interquartile range are marked as diamonds.

Figure 8.   Correlation analysis between beta ERSPs and behavioral performance measures. Each dot 
represents the data of one particular subject. The model fit of a linear regression is shown in blue, with the 95% 
confidence interval as a shaded area. At the top of each panel, the Pearson r and p values are shown. �ERSPec 
represents the ERSPexp − ERSPimp , �ERSPexp represents the ERSPexp − ERSPran and �ERSPimp represents 
the ERSPimp − ERSPran . The postscript s1h1 represents session 1 first half, s1h2 session 1 second half, and s5 
represents session 5. (a–e) in the first row show the correlation analyses between �ERSP and RTs and accuracy 
(acc) including all subjects (n = 25). (f–j) in the second row show the correlation analyses between �ERSP 
and RTs and accuracy only including subjects, that have greater recall rating scores in the explicit condition 
compared to the implicit one, at the end of session 1 (n = 19); those are marked by a grey filter symbol in the top 
right corner. Outliers have been excluded based on the inter-quartile range, using a multiplier of 1.5.
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in �ERSPec between the first half of session 1 and the last training session is negatively correlated with the RTs in 
the explicit condition in session 5 ( r = −0.43 , p = 0.039 , see Fig. 8d) and positively correlated with the accuracy 
in the explicit condition in session 5 ( r = 0.49 , p = 0.019 , see Fig. 8e). Thus, a lower �ERSPec in the first half of 
session 1 compared to the second half and compared to session 5 (resulting in positive �ERSPec values) is associ-
ated with faster initial RTs and faster RTs and higher accuracy rates at the end of training, respectively. For the 
implicit condition, there is no significant correlation between �ERSPimp (implicit-random) and the behavioral 
measures. Interestingly, we observed that the difference in recall ratings between the explicit and implicit condi-
tion (explicit–implicit) is positively correlated with the accuracy in the explicit condition in session 5 ( r = 0.45
,p = 0.023 , see Fig. S6 in the Supplementary Material). This suggests that participants rating triplets from the 
explicitly learned sequence higher than those from the implicitly learned sequence performed better at the end 
of training in terms of correct key presses in the explicit condition.

As reported in the recall ratings analysis (see previous section), some subjects had lower recall ratings in 
the explicit condition compared to the implicit condition at the end of training session 1. These subjects either 
failed to learn the explicit sequence explicitly or seemingly obtained explicit knowledge of the implicit motor 
sequence. Therefore, we excluded six subjects with lower recall ratings in the explicit condition compared to the 
random and implicit ones at the end of session 1 from further analysis. In the restricted subset of the remaining 
19 subjects, the following significant correlations between �ERSP and behavioral performance measures were 
observed: For the explicit component, in addition to the previously reported correlations, the �ERSPec of the 
first half of session 1 shows a positive correlation with the RTs in the explicit condition in the second half of 
session 1 ( r = 0.60 , p = 0.014 , see Fig. 8f) and, accordingly, a negative correlation with the accuracy in this ses-
sion half ( r = −0.53 , p = 0.036 , see Fig. 8g). Moreover, the difference in �ERSPexp between the first and second 
half of session 1 is positively correlated with the accuracy in the explicit condition in the second half of session 
1 ( r = 0.56 , p = 0.024 , see Fig. 8h). Lower �ERSPexp in the first half compared to the second half of session 1 
(which yields positive �ERSPexp values) was associated with higher accuracy ratings in the next session half, 
showing an advantageous effect similar to the �ERSPec changes on the initial RTs (Fig. 8c). The overall change 
of �ERSPexp between the first half of session 1 and the last session correlated negatively with RTs in the explicit 
condition of the second half of session 1 ( r = −0.57 , p = 0.044 , see Fig. 8i). Again, lower �ERSPexp in the early 
phase (session 1 first half) compared to the last session was associated with faster RTs in the second half of session 
1. Note that the explicit condition includes the implicit one plus the cognitive component. Finally, the difference 
in �ERSPimp between the first and second half of session 1 showed a negative correlation with accuracy in the 
implicit condition in the final training session ( r = −0.50 , p = 0.033 , see Fig. 8j).

Discussion
This study aimed to investigate how beta oscillations change by training, specifically in implicit and explicit motor 
sequence learning. Our unique task design, characterized by the concurrent learning of an implicit and an explicit 
motor sequence, allowed an intra-subject contrast of experimental conditions. In our modified version of the 
SRTT​9, multiple processes affect the behavioral performance: Participants have to familiarize themselves with 
the task and the experimental setup, including learning the visuomotor association between the color stimuli 
and the button press. Furthermore, their motivation and fatigue can vary throughout a training session. Those 
factors are not specific to sequence learning and occur in all three experimental conditions (random, implicit, 
explicit). To resolve those confounding general practice effects and extract sequence-specific learning correlates, 
the implicit or explicit condition can be contrasted against the random control condition. The implicit and 
explicit conditions in our task design differ in terms of awareness of the sequence and declarative knowledge 
about the order of the sequence elements. In the explicit condition, subjects were instructed about the presence 
of a repeating sequence, thus learning here is intentional. Subjects received no instructions about the second 
repeating sequence in the implicit condition, thus learning here is incidental. It is crucial to note that although 
termed “explicit” motor sequence learning, the explicit condition also entails “implicit” motor sequence learning 
as in repeated motor practice61,62. Notably, while subjects were not informed about the implicit sequence, some 
became aware of its regularities during the learning process, as evidenced by the triplet recognition test results. 
As mentioned in the Introduction, awareness about sequence regularities can also emerge in a setting of implicit 
motor sequence learning. Nevertheless, by contrasting the implicit and explicit conditions, the explicit or cogni-
tive component of explicit motor sequence learning can be extracted. In our discussion, we will first delve into 
the behavioral results, followed by a discussion of the EEG data. Subsequently, we will explore the outcomes 
of the triplet recognition task, placing them within the broader context of the ongoing implicit/explicit debate.

On a behavioral level, performance can improve in terms of faster reaction times (RTs) or in terms of less 
incorrect motor responses. Over the course of learning, participants demonstrated improved accuracy rates. 
While accuracy increased across all experimental conditions, it was higher in both the explicit and implicit condi-
tions compared to the random condition. Additionally, the accuracy rates in the explicit and implicit conditions 
are comparable during the initial and final phases of learning. Previous studies have indicated that errors in one 
trial can lead to increased RTs in the subsequent trial80, indicating a potentially confounding effect of higher 
error rates on the measurement of RTs. Moreover, errors might induce increased levels of response inhibition as 
a strategy to avoid repeating the same mistakes in upcoming trials, while response inhibition has been shown to 
impact beta oscillatory dynamics in a GO/NO-GO paradigm81. To mitigate these potential confounding factors, 
our analysis on RTs and beta ERSPs focused exclusively on correct sequence trials, where participants executed 
all 8 key presses correctly.

Regarding the RTs, a reduction of RTs in the explicit condition is evident very early in learning, already within 
the first block of the first training session. This performance gain is reflected in the contrast of the implicit and 
explicit conditions. While established within the first session, it stays constant throughout the 5 training sessions. 
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That leads us to assume that the explicit process plays a critical role in performance improvements very early on. 
Moreover, the RTs reduce throughout training sessions, in both the explicit and implicit conditions. We attribute 
those performance gains to the implicit component of motor sequence learning, which dominates learning in 
the implicit condition, but also plays a role in the explicit condition. This implicit component reduces the RTs 
on a slower timescale compared to the fast explicit component.

The point of a fast and slow component contributing to motor learning has been raised before, especially in 
the context of motor adaptation: in a prominent model by Smith et al.82, a learning curve is modeled by includ-
ing two underlying components of learning, a fast and a slow process13,82. McDougle et al.83 suggested the fast 
component being equivalent to the explicit component and the slow component being equivalent to the distinct 
implicit component, respectively13. An according model of parallel processes is proposed in motor sequence 
learning35, which is in line with our behavioral data. Typically, the fast component is characterized as being 
learned fast and being forgotten fast. However, it is noteworthy, that despite repeated practice and automation 
of the explicit motor sequence, the performance gains attributed to the cognitive component do not reduce 
throughout the 5 training sessions. This might be related to our task design: We ask participants to remember the 
numbers of the fingers pressed, and that a memory test will follow at the end of session 1 and session 5. Since the 
sequence consists of only 8 elements, participants can typically learn the element order very fast, within the first 
few explicit sequence trials. Once explicit knowledge about the sequence is obtained, it is easy to retain it in the 
working memory, since the working memory capacity is otherwise relatively free in this task. Furthermore, since 
the stimuli are paced in 1-s intervals, participants have an incentive to react fast, therefore the explicit knowledge 
about the sequence order remains relevant throughout all training sessions. Moreover, the 5 training sessions 
in our experiment might be too less to transition to a more automated stage. Especially given that the practice 
trials in our experiment are split across three conditions, resulting in a reduced number of sequence repetitions 
per condition compared to the typically used version of the SRTT​9.

Regarding the EEG data, we were interested in how beta power changes in early versus late training and 
between implicit and explicit motor sequence learning, with a focus on motor-cortical sites. For that purpose, 
we regarded ERSP changes at motor-cortical sites contralateral to the moving hand, at an early and late training 
stage (session 1 and session 5) and within the initial learning stage in session 1. A first observation that spans 
all experimental conditions was an increase in beta ERSPs from the early (session 1), to the late training stage 
(session 5). An increase in movement-related beta oscillations related to the prolonged practice of a motor task, 
in which participants simply performed reaching movements towards unpredictable targets, has been reported 
previously53. This might be related to a habituation effect reducing the amount of attention that is directed 
toward the practiced motor task84,85, since less attention might be needed to perform the by session 5 already 
well-known experiment. Furthermore, Kilavik et al.86 reported an increase in beta power in the pre-cue phase 
that is possibly related to the expectancy of the upcoming cue, while this effect was observed even when the cue 
had no task-related information. Since in our modified SRTT design, the stimuli appeared in fixed 1-s intervals, 
subjects could get used to this rhythm over time. This could have induced an expectancy of the next stimulus 
presentation at later training stages, in turn leading to an increase in beta power in all three experimental condi-
tions. Such general practice effect from the early to late learning phase, irrespective of sequence learning, strains 
the importance of contrasting the experimental conditions against each other.

When regarding the ERSPs in the explicit and implicit condition contrasted against the random condition, 
an increase from the first to the second half of session 1 was apparent. This increase within session 1 might again 
relate to the prolonged practice of a motor task, in this case repeatedly practicing the explicit and implicit motor 
sequence (in contrast to the general practice of pressing the corresponding button associated with the color cue). 
An increased beta ERSP from the first to the second half of session 1 in the explicit condition was associated 
with higher accuracy rates in the second half of session 1, at least in a subset of the participants, namely those 
who showed higher recall ratings for triplets from the explicit condition compared to the implicit one. For the 
same subset of participants, however, an increased beta ERSP from the first to the second half of session 1 in 
the implicit condition was negatively correlated with the accuracy in the implicit condition during session 5. 
Suggesting that subjects that showed a decrease in beta ERSP specifically during the first session in the implicit 
condition, had better accuracy scores at the end of training. At the same time, most subjects showed an increase 
in beta ERSPs during this initial session. We advise caution when interpreting this short-term change in the 
beta ERSPs in the implicit condition: most participants have not yet learned the implicit sequence in terms of 
improved RTs during the initial training session, as the RTs between the random and implicit condition do not 
differ on a group level. Furthermore, the subjects could still have formed explicit knowledge about the implicit 
sequence in one of the subsequent four training sessions, affecting the accuracy in the last training session.

A related MEG study by Pollok et al.50 reported similar findings when studying motor-cortical beta oscilla-
tions in an implicit SRTT, while the SRTT was performed in two training sessions separated by a 10-min break: 
Faster RTs were associated with stronger beta power suppression during the second training session, thus, a 
decrease in beta power specific to implicit motor sequence learning was associated with superior learning. 
Interestingly, in the study by Pollok et al.50, approximately half of the subjects showed a decrease in beta power 
from the first to the second training session, while the other subjects showed an increase. Since those subjects 
also showed improved RTs, the authors suggested that beta power suppression over M1 is probably not the sole 
mechanism for motor consolidation50. Moreover, in a study using a real-world billiard task as a model of motor 
skill learning, Haar and Faisal87 reported that some subjects showed an increase while others showed a decrease 
in the post-movement beta rebound, suggesting that the distinct pattern might be related to different learning 
strategies that participants used for the task48. Overall, we also emphasize that although we see an increase of beta 
power in both explicit and implicit sequence learning within session 1 on a group level, there is high variability 
among subjects, which might reflect different strategies. While some might continue to simply respond to the 
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color stimuli in a reaction mode, others might start to form associations between consecutive motor responses 
or even gain explicit knowledge about sequence regularities.

In a motor-reaching task, Nelson et al.52 reported a progressive increase of movement-related beta modulation 
in healthy controls, a phenomenon not evident in patients with Parkinson’s disease. The authors proposed that 
this increase might be associated with feed-forward mechanisms that improve performance and use-dependent 
plasticity mechanisms for skill retention52. Beta power modulation has been previously suggested to represent 
a neurophysiological marker of functional M1/S1 reorganization related to motor learning and early motor 
memory consolidation49,50. Similarly, Meissner et al.55 propose that beta ERD might be associated with an increase 
in cortical excitability and, in turn, with training-related plasticity changes. Short-term plasticity changes follow-
ing a 45-min training session of motor sequence learning have been reported previously, measured by diffusion 
magnetic resonance imaging88.

Besides the increase in beta power associated with sequence learning independent of awareness, our results 
showed a stronger beta power suppression in the explicit condition compared to the implicit one during the early 
phase of learning. Correlating the contrasted beta ERSPs against the behavioral performance measures revealed 
that an initially stronger beta suppression specific to the cognitive component (explicit–implicit) was associated 
with faster RTs in the first half of session 1. Besides the stronger beta suppression early in learning, the contrast 
between the explicit and implicit conditions revealed an increase in beta power over the course of learning, i.e. 
within session 1 and from session 1 to 5. The overall increase in the beta ERSP specific to the cognitive component 
from the early to late training phase was associated with better performance at the end of training, in terms of 
faster RTs and a higher number of correct presses. In addition, the subset of subjects that reported higher recall 
ratings in the explicit condition compared to the implicit and random one after session 1, showed a correlation 
between the ERSP values of the cognitive component during the first half of session 1 and RTs and accuracy in 
the explicit condition of the second half of session 1. This suggests that lower values obtained from the ERSP 
contrast (explicit–implicit) possess predictive value for performance in subsequent blocks.

The explicit condition is characterized by acquiring knowledge about the sequence elements, which in turn 
allows anticipating the next stimulus and therefore the next motor response. It has been assumed that beta 
oscillations are stronger when the current state is intended to be maintained56. In turn, if change is expected, 
beta oscillations should decrease. Jenkinson and Brown57 propose that beta in the basal ganglia-cortical sys-
tem is indicative of the probability that a new action has to be executed. They assume that beta oscillations are 
modulated via dopamine levels at cortical input sites to the basal ganglia57. In conclusion, beta power suppres-
sion has been proposed to represent a state of motor or cognitive readiness, related to prospective control and 
anticipatory mechanisms55–57. Another study has linked beta ERD to motor preparation and motor timing: 
movements induced by predictable rhythmic stimuli showed a stronger beta ERD at central regions, in contrast 
to a weaker beta ERD in non-predictable random stimuli58. In our case, we used a paced version of the SRTT, 
so time-wise the stimuli in each condition were equally predictable. However, only in the explicit condition the 
element identity and therefore the upcoming movement were known and plannable. Moreover, Teodoro et al.59 
showed that beta ERD over sensorimotor cortex is associated with preparing predictable movements in healthy 
subjects. In contrast, patients with functional movement disorders showed no performance improvements in 
their study and impairment of beta desynchronization before movement, straining the relevance of beta ERD in 
explicit movement control59. Additionally, Ghilardi et al.89 hypothesized that changes in beta power, particularly 
the practice-related increase in beta power during movements, may signify the localized energy consumption 
facilitating plasticity processes through long-term potentiation (LTP) mechanisms.

Intriguingly, an EEG study where subjects made semantic decisions on objects that were presented either in 
random order or in a repeating sequence, revealed increased alpha and beta power during pre-response periods 
for objects in the sequential condition compared to the random condition60. The alpha and beta oscillations 
were found to have predictive value for the RTs in the current trial60. This suggests a role of beta oscillations 
not only in motor sequences but also in sequences within the cognitive domain. Furthermore, a recent review 
by Peter et al.90 on movement-related beta oscillations in neuropsychiatric disorders showed abnormalities in 
beta oscillations associated with aging, Alzheimer’s disease, and schizophrenia. Their findings align with the 
perspective of shared mechanisms between cognition and movement, that are regulated by beta modulation90. 
Our observations regarding beta ERSP changes specific to the cognitive component of explicit motor sequence 
learning and their correlation with improvements in behavioral performance can be aligned with these proposi-
tions. In line with the idea of beta modulation representing a capacity for use-dependent plasticity52, the stronger 
beta suppression specific to the cognitive component in the initial stages of learning may reflect higher cortical 
excitability. A speculative assumption could be that the stronger beta suppression reflects a state of readiness 
for acquiring new skills, since here subjects have the intention to learn. Lower beta power at the beginning of 
learning might potentially enhance the capacity for a subsequent increase in beta power, in turn enhancing the 
acquisition and retention of the learned sequence. This assumption could explain the superior performance in 
the explicit condition over the course of training.

Overall, our results align with the idea that explicit and implicit motor sequence learning can operate as par-
allel processes35, particularly evident in the explicit motor sequence learning condition where both explicit and 
implicit learning occur. However, explicit learning could also have contributed to the implicit motor sequence 
learning condition in our modified SRTT, as subjects became aware of the sequence regularities. To assess 
declarative knowledge, specifically the order of sequence elements, we employed a triplet recognition task at 
the end of session 1 and session 5. Given our task design, optimal participant ratings would involve assigning 
high numbers to triplets from the explicit condition and low numbers to triplets from the implicit and random 
conditions. On a group level, the mean rating for triplets in the explicit condition was indeed higher compared 
to the implicit and random condition. Contrasting the recall ratings between conditions revealed that 19 out of 
25 subjects had greater recall ratings in the explicit compared to the implicit and random condition at the end of 
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session 1, and 14 out of 25 subjects at the end of session 5. One possible explanation might be, that subjects that 
rated the triplets of the implicit sequence at least as high as the ones from the explicit sequence became aware of 
the implicit sequence. However, the difference between the recall ratings in the implicit and random conditions 
is comparably low for most subjects. Another possible explanation might be that those participants have not 
acquired sufficient explicit knowledge about the explicit sequence, or that the explicit knowledge has decayed 
over time and is thus reduced at the timepoint of the recall test. Lastly, the triplet recognition task might not 
have been sensitive or specific enough in probing the declarative knowledge about the sequence elements. We 
found no correlation between the recall ratings and the ERSP measures. However, we have seen that a stronger 
beta suppression in the explicit condition is of advantage for RTs in the current and upcoming blocks. One 
confounding factor might be that we asked subjects to rate if they think the three displayed numbers occurred 
during the training, without performing the displayed sequence triplet in finger movements. However, we could 
not control if subjects indeed were not performing the shown triplets (via real or imaginary movements) to test 
how familiar performing those specific triplets felt. Translating the shown triplets into real or imaginary finger 
movements could lead to increased recall ratings not specific to the declarative knowledge.

In general, detecting the emergence of declarative knowledge poses a great challenge in research on motor 
sequence learning. Typically, knowledge about the sequence regularities is probed at the end of the training ses-
sion by asking subjects to recall or generate the sequence9,11, while also forced-choice recognition tests such as 
the triplet recognition task have been used previously29. Tests of declarative knowledge, which often equate to 
tests of awareness, have been criticized previously because they might be not sensitive and not specific enough 
to detect awareness18,24. Awareness is often assumed to be either there or not, while it has been argued that the 
level of awareness and conscious accessibility of learned knowledge is variable over time25 and should rather 
be viewed as a continuum18. The retention of learned sequences can decay over time or via interference from 
other sources such as interspersed random blocks26. Therefore, the declarative knowledge probed at the end of 
learning might not equal the declarative knowledge during training. To overcome the problem of awareness, 
one strategy is to instruct participants about the sequence regularity18, which we did in the explicit condition. 
Instructing participants about the regularity in an SRTT without providing the specific details of the regularity 
has been shown to increase explicit knowledge, measured by a sequence generation task91. In another SRTT study 
by Robertson et al.92 providing instructions about the presence of an underlying sequence in an explicit group 
was enough to modify the level of awareness in comparison to an implicit group with no instructions. Interest-
ingly, Robertson et al.92 also reported that some participants in the implicit group gained explicit knowledge 
about the sequence, while not all subjects in the explicit group showed an optimal recall performance when 
measuring subjects’ awareness of the sequence. The issue of detecting declarative knowledge makes it difficult 
to control and extract the underlying learning processes in the implicit condition. Despite reports on behavioral 
improvements without declarative knowledge about the sequence9, findings of impaired SRTT performance of 
patients with amnesia19,27 and deteriorated SRTT performance under dual-task conditions10, regarding learn-
ing in the SRTT as purely implicit is unrealistic13. Not only the amount of training36, but also sleep is related to 
the emergence of explicit knowledge in an implicitly learned sequence38,91,93, which plays an important role in 
our multi-session experimental design. Lastly, a notable issue in multi-session designs of implicit learning is 
the restricted opportunities to acquire tests for probing declarative knowledge: Once participants are prompted 
to recall any encountered regularities during training, their attention becomes heightened toward recognizing 
such patterns in subsequent training sessions. Consequently, recall or recognition tests are typically deferred 
until the conclusion of the training period.

The challenge of effectively probing declarative knowledge in implicit motor sequence learning in a sensitive 
and specific manner remains an open question in the field. Over the decades, several models have been developed 
to explain the different learning systems involved. Avoiding the implicit/explicit debate, some models focus on 
the role of cognitive control processes in motor sequence learning and performance: During sequential learning, 
cognitive control processes can contribute towards performance improvements by regulating attention, work-
ing memory, and executive functions such as response selection94,95. Tubau et al.96 propose that the control of 
sequence performance can be stimulus-based, where the cognitive system is prepared to respond to stimuli, or 
response-based, while response-based planning relies on an internally generated action plan and depends on cog-
nitive control to reach learning goals95,97. It has been reported that the increase or decrease of top-down control, 
achieved through a cognitive task such as focused-attention meditation, can bias participants’ performance and 
learning in a subsequent SRTT towards more stimulus- or response-based planning, respectively95. Similarly, as 
the model by Tubau et al.96, Abrahamse et al.98 describe a strategy shift from a reaction mode during early learn-
ing to an associative mode in later learning, which favors an increased sequence automatization. Moreover, in a 
prominent framework, Verwey et al.99 proposed that sequence execution can be controlled by a central processor 
and a motor processor. The central processor uses central-symbolic representations, while the motor processor 
uses sequence-specific motor representations. This framework also partially relates to the Dual-System Model of 
Keele et al.94 which consists of two learning systems, a multidimensional system and a unidimensional or intra-
dimensional system. The former is capable of associations spanning multiple dimensions and could associate 
for example motor representations with higher-order representations of sequence order and thus supports the 
development of explicit knowledge (also see Willingham et al.61)94. On the contrary, the latter learning system 
could represent implicit sequence learning by associating motor responses between consecutive movements.

In conclusion, the contrast of implicit and explicit motor sequence learning realized in an intra-subject 
manner in our modified SRTT task, revealed, on a behavioral level, a slow component of learning in the explicit 
and implicit condition, representing gradual implicit sequence learning, and a fast component that is specific 
to the cognitive/explicit component in the explicit condition. Both components contributed to an increase in 
performance, especially by faster RTs. On the neural level, a stronger beta power suppression in the early phase 
of learning specific for the cognitive component in explicit motor sequence learning, is apparent. Additionally, 
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throughout training, an increase in the beta ERSP could be observed which was associated with increased 
performance at the later training stage. On the other hand, in the implicit learning conditions, the level of beta 
ERSPs increased within the initial training session and decreased from early to late learning on a group level. 
Paralleling the behavioral data, various components can be observed that affect the motor-cortical beta ERSPs: 
General practice effects result in an increase in beta ERSPs from early to late learning, while the explicit com-
ponent is characterized by a stronger beta suppression early on, followed by an increase in beta ERSPs. For the 
behavioral data, implicit and explicit learning impact the RTs in the same direction, causing a reduction in RTs. 
On the other hand, for the ERSP data, the effects of implicit and explicit learning mechanisms and sequence-
independent effects might lead to an increase or a decrease in beta power at different time points, all contribut-
ing to the observed changes in beta ERSP. In a review focusing on beta oscillations in the sensorimotor cortex, 
Kilavik et al.86 mentioned that several components (postural maintenance, signal expectancy, signal processing, 
motor readiness), can contribute to producing observed changes in beta power. Thus, especially the changes in 
beta ERSPs that can be attributed to implicit motor sequence learning are not fully comprehensible, since here 
different mechanisms might play a role. On a group level, an initial increase within session 1 plus a decrease from 
early to late training is observable. However, in the implicit/incidental learning condition, subjects might follow 
different strategies to execute the sequences. The matter is even more complicated since some subjects potentially 
gained explicit knowledge in the implicit learning condition. This issue is ubiquitous in motor sequence learn-
ing research. Nevertheless, our task design allowed an intra-subject contrast between the explicit and implicit 
conditions, therefore extracting the cognitive component. Based on our data we assume that explicit learning 
is happening early on, reflected by a fast reduction in RTs and by stronger beta power suppression, while the 
explicit behavioral performance gains remain as a “jump-start” throughout learning. The stronger beta power in 
the explicit condition might be related to anticipation and pre-planning of the upcoming movement. Moreover, 
it might reflect a state of the intention to learn, inducing plasticity mechanisms to learn and retain the explicit 
sequence. We propose that after and during the fast explicit knowledge acquisition, associations between consecu-
tive motor responses are strengthened via implicit learning in parallel, which is reflected in the slow RT reduction 
over sessions and the stepwise beta power increase in both sequence learning conditions.

Given that our task design involves the concurrent learning of both implicit and explicit motor sequences, it 
is essential to address potential confounding factors, particularly concerning the interleaved practice schedule. 
Two noteworthy considerations arise: Firstly, critics may contend that the interleaving of sequence trials across 
implicit, explicit, and random conditions could be subject to task-switching effects. A switch cost had been 
reported when subjects had to change responses based on distinct rules and, recently the switch cost has been 
shown to impact beta oscillations100. However, in our task design, participants consistently adhered to the same 
fundamental rule across all conditions-reacting to visual stimuli by pressing the corresponding key as fast as 
possible. In the explicit condition, participants received additional instruction to remember the keys pressed, 
which did not counteract the primary rule but rather supported it by facilitating the motor response. Moreover, 
rather than different rules, our task design incorporates distinct response modes, shifting from a reactive mode in 
the random and implicit conditions to an anticipatory mode of response initiation in the explicit condition (and 
potentially in the later training stage of the implicit condition with the emergence of declarative knowledge)26. 
Each sequence trial commenced with a preparatory period of 0.5 seconds, indicating if the explicit sequence 
would follow. Additionally, a 4-s break separated each sequence trial, allowing participants time to reset. A sec-
ond argument in a similar vein suggests that the learning of the two sequences might interfere with each other. 
However, past studies have demonstrated the feasibility of learning two visuomotor sequences in immediate 
succession101 or even simultaneously102,103. Notably, an interleaved practice schedule between implicit and random 
sequences is advantageous for retention compared to a blocked practice design104. Moreover, Esser and Haider6 
showed that presenting random and sequence trials in a blocked manner led to more explicit knowledge com-
pared to randomly mixing sequential and random trials97, which we wanted to avoid given that we also included 
an implicit sequence learning condition.

One possible limitation of our experimental design might be that we used a paced version of the SRTT​9. 
Typically, in the commonly used version of the SRTT, a motor response triggers the presentation of the next 
spatial cue immediately or following a fixed, short delay. In our study design, the time interval between stimuli 
remained fixed, requiring participants to react within the 1 s window between stimulus presentations. A fixed 
time interval between stimulus presentations has been employed previously by Albouy et al.15 in an SRTT design 
relying on oculomotor movements rather than key presses. Consequently, the response-to-stimulus interval 
(RSI) varies in each trial, and previous research has demonstrated that the RSI impacts the amount of explicit 
knowledge acquired5. Notably, in the explicit condition, shorter reaction times (RTs) lead to a correspondingly 
longer RSI, promoting explicit learning5. On the other hand, even in the implicit condition, the RSI gradually 
increases throughout the learning process, potentially increasing the likelihood of subjects becoming aware of 
the sequence regularities. However, when examining the RTs in the implicit condition, RSIs in the implicit con-
dition ranged from 400 ms in session 1 to 500 ms in session 5, at the group level, differing only by 100 ms from 
the random condition by the end of training. The advantage of using a paced version is a fixed trial length which 
simplifies the time-frequency analysis of the EEG data. Furthermore, by limiting the possible reaction time to 
maximally 1 s, and punishing responses that exceeded that maximum duration, participants were challenged and 
had an incentive to maintain high levels of attention throughout the training sessions. Another aspect is, that we 
aimed to keep the visual stream constant across all training stages. Although we use our modified version of the 
SRTT​9 as a paradigm for motor sequence learning, as it is widely done in this field of research, also perceptual 
learning plays a role18,105. Whilst implicit perceptual learning can also contribute towards performance improve-
ments in our task, we aimed at reducing its influence by using color stimuli that were all presented at the center 
of the screen, in contrast to spatially varying stimuli. Moreover, as we instructed participants to remember the 
specific finger they pressed, the primary emphasis was put on the motor responses rather than the retention of 
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color stimuli sequences (no instruction was provided to remember the series of colors displayed on the screen). 
In agreement with Pedraza et al.105, we recognize that the term ’visuomotor sequence learning’ more accurately 
characterizes the SRTT​9, as it encompasses both perceptual and motor components. Nevertheless, to align with 
prior literature and for historical context, we use the term ’motor sequence learning’, especially given our specific 
focus on motor-cortical beta oscillations in this study.

Furthermore, we want to emphasize that we did not distinguish a planning and execution phase of move-
ments in this work, since we used the whole sequence trial as an epoch so that a period before the start of the 
sequence can be applied as a baseline. We then averaged the ERSPs across 1 s windows, representing the duration 
of each stimulus presentation. Within this time window, planning and execution are taking place, since we only 
included correctly executed sequences in our analysis. With this approach, we wanted to avoid the problem that 
the movements happen at different time points after the stimulus onset. Participants performed their motor 
response on a common computer keyboard, making it not possible to discriminate between movement initiation 
or movement onset and execution, which would be favorable in studying explicit and implicit components of 
motor sequence learning, as it is done for example in the 2D version of the SRTT described by Moisello et al.26.

Lastly, EEG only probes signals at the surface of the scalp. Deeper brain structures that are reported to be 
crucial in motor sequence learning, such as the basal ganglia106, can’t be targeted with EEG or MEG107. To make 
assumptions about subcortical brain structures, EEG studies should be complemented with MRI studies or 
findings from intracranial recordings.

In conclusion, the intra-subject task design allows the extraction of neural and behavioral correlates associated 
with implicit and explicit components of motor sequence learning. Our study revealed stronger beta suppression 
early in learning in the explicit condition compared to the implicit and random one, and a subsequent increase 
in beta power over the course of practice. Thus, possibly expanding the role of sensorimotor beta modulation 
from the motor learning domain to the cognitive component entailed in explicit motor sequence learning. To 
date, the distinction between implicit and explicit learning processes remains a prominent issue in the field of 
motor sequence learning. In implicit task designs where participants are not instructed about the presence of 
a sequence, explicit knowledge about the sequence can emerge. Typically, explicit sequence knowledge is only 
probed at the end of training with a recall or recognition test. In the case of evidence for explicit knowledge, it 
can not be identified when this cognitive component emerged during learning. By taking into account the strong 
beta power suppression that was specifically evident in the explicit condition during the early learning phase, 
the explicit component could be possibly identified on a trial-by-trial basis. Combined with sudden drops in 
reaction times, the time point of emergence of explicit knowledge in an implicit learning task could potentially 
be identified in future applications.

Data availability
All data generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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