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Automated detection 
and recognition system 
for chewable food items using 
advanced deep learning models
Yogesh Kumar 1, Apeksha Koul 2, Kamini 3, Marcin Woźniak 4*, Jana Shafi 5 & 
Muhammad Fazal Ijaz 6*

Identifying and recognizing the food on the basis of its eating sounds is a challenging task, as it plays 
an important role in avoiding allergic foods, providing dietary preferences to people who are restricted 
to a particular diet, showcasing its cultural significance, etc. In this research paper, the aim is to 
design a novel methodology that helps to identify food items by analyzing their eating sounds using 
various deep learning models. To achieve this objective, a system has been proposed that extracts 
meaningful features from food-eating sounds with the help of signal processing techniques and deep 
learning models for classifying them into their respective food classes. Initially, 1200 audio files for 20 
food items labeled have been collected and visualized to find relationships between the sound files of 
different food items. Later, to extract meaningful features, various techniques such as spectrograms, 
spectral rolloff, spectral bandwidth, and mel-frequency cepstral coefficients are used for the cleaning 
of audio files as well as to capture the unique characteristics of different food items. In the next 
phase, various deep learning models like GRU, LSTM, InceptionResNetV2, and the customized CNN 
model have been trained to learn spectral and temporal patterns in audio signals. Besides this, the 
models have also been hybridized i.e. Bidirectional LSTM + GRU and RNN + Bidirectional LSTM, and 
RNN + Bidirectional GRU to analyze their performance for the same labeled data in order to associate 
particular patterns of sound with their corresponding class of food item. During evaluation, the 
highest accuracy, precision,F1 score, and recall have been obtained by GRU with 99.28%, Bidirectional 
LSTM + GRU with 97.7% as well as 97.3%, and RNN + Bidirectional LSTM with 97.45%, respectively. 
The results of this study demonstrate that deep learning models have the potential to precisely 
identify foods on the basis of their sound by computing the best outcomes.

Keywords Food identification, Deep learning, Eating sounds, Customized convolutional neural networks, 
Audio signal processing, Spectrograms, Mel-frequency cepstral coefficients

The crunch of their products is now being commercialized by some of the biggest food companies in the world. 
When a product’s acoustic qualities, such as crispy, crunchy, crackly, etc., are crucial, marketers will often empha-
size these attributes in TV commercials to highlight how important sound is to a product’s overall appeal. The 
marketed product’s flavour or scent cannot be experienced by viewers of television. They are only able to see it 
and, naturally, hear it. Advertising a food product’s audio features introduces potential customers to this crucial 
quality trait of many  goods1. Crunchiness, hardness, and crispness, to name just a few, are texture-related attrib-
utes that affect a product’s appeal. Thanks to recent advancements in analysis technology, such as the Acoustic 
Envelope Detector attached to a TA.XTplus Texture Analyzer, manufacturers are now able to extract this valuable 
data. Once product designers have created a popular "noisy" food product, the goal is to maintain this distinctive 
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quality of the product throughout manufacturing. Every brand is aware of the significance of consistent product 
quality, whether it is in flavour, appearance, or texture. In order to establish the benchmark product "noise" for 
quality control of all ensuing batches of the product, it is crucial to measure a product’s acoustic  signature2.

In order to create a louder product, you would seek out the one that produces the largest "peaks" or decibel 
values, i.e., towering peaks as opposed to numerous small ones. The number of peaks produced can be counted, 
and the number of seconds over which they occur divided, to compare the crispiness of various items. You may 
find out from this how many fractures are made every second; the more, the crispier the result. These sounds 
impart knowledge to the prospective customer. The listener or observer can first gauge the degree or severity 
of crunchiness and  sharpness3. They ascertain this by taking note of the overall volume of sound generated at 
a specific biting distance. The presence of a sizable percentage of high-pitched noises denotes crispiness in the 
product. The result is crunchier if lower-pitched noises make up a larger percentage of the sound spectrum. Due 
to the brittle breakage of the cell walls, crunchy food produces distinct sounds when broken or crushed. Cracks 
spread at speeds that are too fast for even high-speed camera; therefore the sound is created in a brief period of 
time, or as a  pulse4. The pulses, which appear as a succession of tall peaks when slowed down and plotted onto 
a graph, only persist for a few milliseconds. Simply said, the crispier it is, the more peaks there are. Acoustic 
emission has been used to measure the sharpness of the senses. The loudness of the sounds from crisp foods sets 
them apart from non-crisp dishes. Louder noises would be produced by crisper products since amplitude is a 
factor that separates more crisp sounds from ones that are less  sharp5.

In this article, we propose the deep learning models which include LSTM, GRU, Hybrid of RNN and Bidi-
rectional LSTM, Hybrid of RNN and GRU, Hybrid of Bidirectional LSTM and GRU and InceptionResNetV2 for 
the identification of different types of food sounds which may benefits to the food and media industries. Initially, 
data pre-processing and exploratory data analysis of the eating sounds is performed with libraries such as Ten-
sorflow, Seaborn. The primary idea is to use the eating food sounds of 20 categories of the foods by loading audio 
sound files and then apply feature extraction techniques which include spectrogram for visually representing the 
strength of the signal. The spectral rolloff is further used to measure the shape of the signal for computing the 
rolloff frequency for each frame. After that, spectral bandwidth represents the lower and upper frequencies in a 
continuous band of frequencies. Then further, MFCCs captured the timbral and textural aspects of sound. For 
extracting MFCCs, a Fourier Transform is applied to move from the time domain to the frequency domain for 
extracting the frequency domain features. Then finally, different deep learning techniques are applied to obtain 
the accuracy: 98.27% for hybrid (Bidirectional LSTM + GRU), 97.48% for Hybrid (Simple RNN + Bidirectional 
GRU), 97.83% for Hybrid (Simple RNN + Bidirectional LSTM), 94.56% for InceptionResNetV2, 95.57% for LSTM 
and 99.28% for GRU for eating food sounds identification. Additionally, a CNN model has been proposed, and 
its parameters have been fine-tuned in such a way that it computes an accuracy of 95.96% for the same dataset.

The remaining structure of the paper includes the contribution of researchers in identifying and classifying 
various food items using various learning models along with the limitations in Section II. Section III covers a 
detailed description of the framework used to identify and recognize various items of food on the basis of audio 
signals. Section IV displays the results in detail, and finally, the complete paper is discussed in section V and is 
concluded in section VI where the challenges and future scope are mentioned.

Related work
Recognizing food automatically on the basis of the eating sound is a difficult task but researchers have contrib-
uted a lot in this field because the traditional methods did not prove to be successful in order to achieve the best 
accuracy of classifying food items. But on the other hand, deep learning based techniques have showcased the 
promising results to identify various food items.

Khan et al. (2022)6 had discussed about a novel system i.e. iHearken which is a hardware wearable device 
in the form of a headphones embedded with sensors in it. This system had been developed for monitoring the 
eating activity so that the food item could be identified in a real world. The hardware had been designed in such 
a way which capture data of 16 persons for 20 various food items. The analysis had been done sound of chewing 
which were later pre-processed with the help of a Finite Impulse Response (FIR) filter and later extracted bot-
tleneck features. Bi-directional long short term memory and softmax function had been used for the calcula-
tion the identification score of chewing sound to classify the category of data i.e. whether solid or liquid food 
category. Likewise, Kojima et al. (2016)7 designed a knife device, known as “CogKnife” for the identification of 
various items of food like apple, banana, leeks, cabbages, and peppers. The knife had been attached with a mini 
microphone which captured the sound which had been produced during the chopping process. The features 
had been extracted using the technique spectrogram and were used to train the classifiers such as support vec-
tor machine, KNN, and convolutional neural network in the form of feature vectors. Transfer learning based 
model had been developed by Vijyakumari et al. (2022)8 for the classification of 101 different food products in 
their respective classes. Transfer learning model such as EfficientNetB0 had been trained with the dataset and it 
computed the accuracy of 80% which proved that the model worked well in terms of its accuracy as compared 
to their existing techniques. Bluetooth headsets were used by Gao et al. (2016)9 for detecting the eating events 
of the user by analyzing the sound pattern of their chewing any food. The model like support vector machine 
with conventional kernel based technique were used for the classification and while implementing, the model 
computed an accuracy of 95% for the tested images but on the contrary, the performance of the system dropped 
by 65–76% when applied on real world data. Hence, researchers also worked on deep learning model to overcome 
the said error and the promising results were shown as the detection accuracy was increased by 77–94% that too 
in the presence of ambient noise. Uchiyama et al. (2021)10 had mentioned about the audio visual model that could 
generate real food texture on the basis of the visuals of the people eating food without any sound. A magnitude 
spectrogram had been produced to match the visual information and to generate it from the raw audio audio 
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waves via inverse short –time Fourier transform had been the complex task. Hence to overcome it, the research-
ers applied Griffin-Lim method for recovering the information from the predicted magnitude spectrogram. A 
method was proposed by Päßler and Fischer (2014)11 to analyze the intake of food type by recording its chewing 
sound via microphone which had been placed in the outer ear canal. The researchers worked on eight different 
models which had been designed to automatically detect chewing sounds. The models were examined on the basis 
of 68,904 chewing sounds and two datasets in which the first dataset included the sound recordings of six type 
of food that had been taken and second dataset comprised of various environment sounds. While training and 
testing the model, it had been found that the most of the models computed recall and precision which exceed by 
80%. To cancel the noise and improve the quality of the signal, simple noise reduction algorithm had been used 
along with the spectral subtraction. Amfat et al. (2009)12 introduced the prediction of analyzing the chewing 
sound based on the individual bites to identify the type of food by placing sensor on the ear pad. In their paper, 
pattern recognition technique had been used for the recognition of eating cycles and identifies the food that 
had been consumed. The data had been collected from eight participants and was performed for three different 
food items which had 504 bite weights. Linear models were built to predict the bite weight and classify the food 
type. The models were evaluated based on their accuracy, recall, and precision which were 94%, 80%, and 70% 
respectively. During experimentation, it was found that the mean weight prediction error was lowest for apples 
with 19.4% and highest for lettuce with 31% using the sound-based recognition. In fact, Amfat et al. (2005)13 also 
worked on the automatic dietary monitoring system in which the type of food had been analyzed on the basis 
of their eating sounds. Microphone had been inserted inside the ear canal to capture the chewing sound of food 
and during implementation 3500 s of chewing data had been collected from four people who consumed four 
multiple food items. The model showcased the results up to 99% and achieved classification accuracies ranging 
from 80 to 100% for identifying different food types.

Food identification technology could help both the food and media industries to easy the people and com-
puters to work together. So, Ma et al. (2020)14 used 11,141 YouTube clips of 20 different kinds of food to make a 
CNN model for classifying food. The grouped holdout evaluation technique was used to test the model, and it 
was found to be accurate 18.5% of the time. But when the uniform holdout evaluation technique was used, the 
model was 37.58% more accurate. Also, the model did well for most pairs of food types when the job was looked 
at as a "binary classification problem." Overall, the method did better than acceptable baseline methods in both 
settings where it was tested. In fact, data-driven study on eating sounds showed that texture properties and dif-
ferences in how people eat were very important. Likewise, Rousat et al. (2018)15 worked on a way to automatically 
identify eating behavior from video data. The paper gave an in-depth look at the current state of the art in both 
active and passive dietary tracking which focused on the problems. The authors also developed a framework for 
user assistance systems that combined active and passive methods and offered three different levels of help. As 
part of their methodology, the paper described a proof-of-concept study that used 360-degree camera footage. 
Also, the suggested framework tried to improve the accuracy and effectiveness of dietary monitoring systems 
by using both active and passive methods.

Deep neural networks are thought to be good for automatically keeping track of a person’s food because they 
are good at classifying audio events. But they have some problems, like the fact that they are hard to program, 
waste a lot of energy, and need a lot of memory. To get around these problems, Nyamukuru et al. (2020)16 came up 
with shallow gated recurrent unit (GRU) architecture with limited resources. Researchers made Tiny Eats GRU, 
a shallow GRU neural network, on an Arm Cortex M0 + low-power microcontroller. During experimentation, 
it had been found that the Tiny Eats GRU only used 4% of the Arm Cortex M0 + memory and had a lag of 6 ms 
with a 95.15% accuracy rate when figuring out if an individual was eating or not. Nakamura et al. (2021)17 worked 
on making an automated way to recognize different items of food based on the sounds made while eating. A 
combined CTC/attention model was used by the researchers to automatically find left chewing, front biting, right 
chewing, and swallowing. The model was trained with weakly labeled data from sound recordings made with 
2-channel microphones placed close to the ear. The researchers used the weakly labeled data to create a bigger 
set of weakly labeled eating sounds to add to the training data. The performance of recognition was improved by 
using a model that combined CTC and attention and could learn from its surroundings. Also, the study showed 
that the model worked well for both open and closed foods. Overall, the method created showed promise for 
automatically recognizing eating behaviors through sound analysis. This could make healthcare and medical 
applications easier and more useful. Vasileios et al. (2021)18 used an in-ear microphone and developed algorithms 
which aimed at detecting chewing sounds as well as recognizing three distinct food-texture attributes such as 
crispiness, wetness (moisture), and chewiness. They used binary Support Vector Machines (SVMs), and proposed 
two algorithms in which one was used for recognizing each texture attribute at the chew level and another at the 
chewing-bout level. The researchers evaluated the performance of the algorithm using leave-one-subject-out 
cross-validation on a dataset which involved 9 subjects. Additionally, leave-one-food-type-out cross-validation 
was also conducted to analyze the generalization capability of the approach to new, unknown food types. Their 
results indicated a high level of performance in recognizing crispiness, with a weighted accuracy of 0.95 on new 
subjects and 0.93 on new food types.

Besides this, a comparison has been also done to compare the work of the researchers in the field to detect 
and classify food items in Table 1.

Methodology
This section of the paper presents the framework of the proposed system, as shown in Fig. 1, in which initially 
the libraries have been used for importing the different food sound datasets having audio files, which are further 
used for pre-processing, feature extraction, and model performance comparison of applying models for food 
sound recognition.
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Table 1.  Analysis of the previous work.

Ref Dataset Tech Outcome Challenges

Khan et al. (2022)6 Data of 20 food items Bi-LSTM, iHearken

Accuracy = 97.42%
The work could be extended by 
incorporating more advanced 
techniques for the classification of 
food items

Precision = 96.80%

Recall = 98%

F1 score = 97.51%

Kojima et al. (2016)7 Data of six fruits and vegetables

KNN Accuracy = 83%

Limited datasetSVM Accuracy = 95%

CNN Accuracy = 89%

Vijayakumari et al. (2022)8 101 different food products EfficientNetB0 Accuracy = 80%
The model should in future be 
applied to both image as well as 
text data

Gao et al. (2016)9 Data collected from 28 individuals SVM Accuracy = 95% No diversity had been seen in the 
dataset

Uchiyama et al. (2021)10 Data of food ASMR video collected 
from YouTube

Spectrogram, inverse STFT, Griffin-
Lim algorithm

Perceptual evaluation of speech 
quality (PESQ) = 1.27

The algorithm could be applied to 
real time data

Päßler and Fischer (2016)11 68,094 chewing sounds Biomedical signal processing Precision = 80% The system needed an optimization 
to enhance its performance

Amft et al. (2009)12 Data taken from eight participants Pattern Recognition Procedure
Precision = 70% The model could be applied only for 

the solid foodsRecall = 80%

Amft et al. (2005)13 Four various types of food Hearing aids, Headsets Accuracy = 99% Limited dataset

Figure 1.  Proposed system of food detection and classification.
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Platforms and libraries used
Several Python libraries, including pandas, librosa, seaborn, matplotlib, sklearn, tensorflow, pathlib, and NumPy, 
have been used to import the dataset and perform the dataset visualization and cleaning of data to perform food 
sound feature extractions and classification for eating food prediction. All the used supportive libraries have 
different purposes for operations to perform the desired task. Likewise, the tensorflow framework is used in 
the applied deep learning models to perform faster computations for numerical audio data. The computation in 
tensorflow is described in terms of nodes which perform data movement between nodes such as tensor. Edges 
define the flow of data, branching and looping in graphs. Where operations in tensorflow take input attributes 
and produce output attributes to perform different operations such as multiplying, etc.19.

Data descriptions and visualization
The audio data was gathered from publicly available YouTube video sources, with an emphasis on the availability 
and abundance of content produced by eating-themed channels. The appropriate content based on the top search 
results for the term ’eating sound,’ had been selected and took into account both the popularity of the channels 
and the variety of food items. This thorough effort resulted in the creation of a food categorization dataset that 
included 246 YouTube videos encompassing twenty various food classes. Within each class, a thorough selec-
tion of 12–14 videos was made which results in to a comprehensive dataset of 11,141 clips each spanning from 
1 to 22  s20.

In addition, to improve the dataset’s quality and relevance, variations in space features, food kinds, record-
ing qualities, and eating behaviours were purposefully introduced during video recording in a controlled room 
environment.

To extract eating sound samples with precision, Logic Pro X 10.5.1 was used. Notably, the extraction approach 
focused removing undesired items like chatting, silverware, and packaging sounds. To ensure consistent audio 
quality across all clips, longer chunks lasting more than 6 s were carefully broken into smaller, more manageable 
segments. Peak normalization was used to provide uniform audio quality throughout all clip sections, with a 
target of -1 dB. This normalizing method, which used 0 dB as the distortion edge, helped to retain consistency 
and improve the overall reliability of the audio data for future  study21.

For exploratory data analysis, the seaborn python libraries have been used to visualize the different categories 
of food sounds. Figure 2 also highlights the total number of used food sound clips for each category. The main 
purpose of exploratory data analysis for food categories is to better understand the patterns within the sound data 
files to detect outlier or anomalies and to find the relationships between the sound files of different food items. 
It also helps to manipulate the audio data of eating food items to understand the categorizations.

Feature extractions
For feature extractions, the spectrograms, spectral rolloff, spectral bandwidth and mel-frequency cepstral coef-
ficients is used for cleaning of audio files for different categories of food. Initially, audio data file is loaded by 
using librosa library which further visualizing audio file by plotting the audio array using the librosa.display.
waveplot class.

Figure 2.  Food categories audio sample count.
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Spectrogram and spectral rolloff for eating food audio files
A spectrogram is a visual representation of the signal strength, or "loudness," of a signal across time at different 
frequencies contained in a specific waveform. The estimation of spectrograms involves transforming a signal 
from the time domain to the frequency domain to visualize its frequency content over time using the technique 
Short-Time Fourier Transform (STFT). The STFT divides the signal into short, overlapping segments, applies the 
Fourier Transform to each segment, and then combines the results to create a time-varying representation of the 
signal’s frequency content. This process allows for the visualization of how the signal’s energy is distributed across 
different frequencies at each point in time. The horizontal axis in a spectrogram depicts time in the same way 
that the waveform does, but the vertical axis represents sound frequency, with low frequencies at the bottom and 
high frequencies at the top. The brightness at that place represents the magnitude of a certain frequency at that 
 time22. In addition to this, the Short-Time Fourier Transform (STFT) approach defines three crucial parameters 
which have been used for this work: `n_fft`, `hop_length`, and `win_length`. The value of the `n_fft` option 
is 2048, which specifies the size of the analysis window and affects the frequency resolution of the STFT. The 
`hop_length` option, set to 512, determines the number of samples by which the analysis window moves forward 
between each frame. This parameter affects the temporal resolution and the amount of overlap between frames. 
Likewise, the `win_length` parameter is assigned a value of `None`, which means that it will use the default value 
of `n_fft`. The selected values for these parameters strike a balance between the frequency and time resolution, 
which affect the properties of the spectral features obtained from the audio stream in later processing stages.

Spectral rolloff, on the other hand, is a signal shape measure that represents the frequency at which high 
frequencies drop to zero. To get it, we calculate the fraction of bins in the power spectrum that have 85% of 
their power at lower frequencies. To compute the rolloff frequency for each frame of food sounds, the librosa.
feature.spectral_rolloff module is employed. Librosa is a Python package for music and audio analysis, provid-
ing functions for feature extraction, including spectrogram generation. It impact the proposed approach by 
providing efficient and user-friendly tools for analyzing and visualizing the audio data, contributing to a more 
comprehensive understanding of the features extracted from the food sound wave files. Figure 3 shows a sample 
of food sound wave files together with their spectrograms and spectral rolloff.

Spectral bandwidth and MFCCs
The spectral bandwidth, denoted by λSB and represented on the wavelength axis by two vertical red lines, is akin 
to the band width of light at half maximum. For a food noise WAV file, its bandwidth is defined as the disparity 
between the lower and upper frequencies within a continuous frequency range. In the context of signals oscil-
lating around a specific point, Equation (1) encapsulates the concept of spectral bandwidth. It calculates the 
bandwidth as the sum of the largest deviations of the signal on both sides of the central frequency at a given time 
 frame23. This equation serves to quantify the cumulative span of frequencies around the central point, providing 
a meaningful measure of the signal’s spectral characteristics.

fi represents individual frequencies within the continuous range, fcenter is the central frequency around which 
the signal oscillates, and 

∑
i is the summation is performed over all relevant frequencies within the considered 

range.
On the other hand, Mel-frequency cepstral coefficients (MFCCs) play a crucial role in representing timbral 

and textural aspects of sound, particularly in the context of audio processing in deep learning applications. To 
extract MFCCs, a Fourier Transform is employed to transition from the time domain to the frequency domain, 
thus converting the audio signal into a representation suitable for further analysis. The MFCCs, being frequency 
domain features, provide a nuanced understanding of the underlying audio characteristics. The process involves 
several steps, starting with the division of the audio signal into frames. Let x(t) represents the audio signal at time 
t  , and X(ω) denotes its Fourier transform. The power spectrum S(ω) is computed as |X(ω)|2 . Following this, a 
filter bank is applied and the logarithm of the filter bank energies is calculated. The Discrete Cosine Transform 
(DCT) is then employed to obtain the final MFCCs. Mathematically, the i − th MFCC coefficient, ci , is expressed 
as shown in Equation (2):

where Sj represents the energy in the j − th filter of the filter bank, and N is the total number of filters. This 
process is conducted for each frame, resulting in a time sequence of MFCC vectors, capturing the evolution of 
these coefficients over time. The number of coefficients, typically ranging from 13 to 40, can be adjusted based on 
the desired level of feature granularity. Overall, the extraction of MFCCs provides a comprehensive representa-
tion of the frequency content of audio signals, crucial for effective utilization in deep learning models aimed at 
understanding and processing auditory information. Further, the obtained data is then split in to training and 
validation in the form of 75% and 25% respectively. Figure 4 represent the spectral bandwidth and MFCC for 
food sounds:

Applied models
Once the required features have been extracted, various deep learning classifiers have been trained for their 
efficacy in capturing temporal patterns in sequential audio data. In fact, these applied deep learning models 

(1)�SB =
∑

i

|fi − fcenter |.

(2)ci =

N∑

j=1

log
(
Sj
)
.cos

(
π i
(
j − 0.5

)

N

)
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Figure 3.  Spectrograms and spectral rolloff generations for food sounds.
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play a crucial role in recognizing and classifying various food-related sounds. Throughout the training process, 
a categorical cross-entropy loss function, 0.0001 learning rate, batch size of 32, and the number of epochs (20) 
for deep transfer learning models and 200 epochs in case of customized CNN model during training has been 
employed to optimize the models for accurate classification. This approach aimed to leverage the strengths of 
recurrent neural networks in handling sequential data which contributes to the effective detection and classifica-
tion of food sounds in the dataset.

LSTM (Long Short Term Memory) is a type of recurrent neural network developed to overcome the vanishing 
gradient problem that frequently happens during deep neural network training. The core concept of LSTM is to 
employ memory cells and gates to selectively recall or forget information from earlier time steps. Each LSTM 
cell has three gates which are used for controlling the flow of information: the input gate ( IT ) , the forget gate 
( FT ) , and the output gate ( OT ).

The input and the previous cell state (CT−1) are sent via the input gate at each time step, which determines 
how much of the new input to remember. The prior hidden state hT and the input are both sent via the forget 
gate, which determines how much of the previous hidden state should be forgotten. The changed hidden state 
is then used to calculate the output, which is then transmitted through the output gate. In addition to the gates, 
the LSTM contains a memory cell that functions as a "conveyor belt," allowing information to be transported 
across time steps without being altered. The input and forget gates can also modify the memory cell, allowing 
the network to selectively store or delete information as  required24–26. It can be mathematically computed by 
using Equations ((3), (4), and (5)).

Here WX—the weight of all gates,—σsigmoid function, hT−1—output of the previous LSTM block at times-
tamp (T-1), X—neurons, bX—biases for respective gates, and XT—input at current timestamp.

In this research work, the model begins with an LSTM layer with an output shape of (None, None, 128), fol-
lowed by another LSTM layer producing an output shape of (None, 64), as mentioned in Table 2. The subsequent 
Dense layer yields an output shape of (None, 64), which is then passed through a Dropout layer resulting in an 
output shape of (None, 64). Finally, a dense layer produces an output shape of (None, 20). The term "None" in 
the output shape column signifies that the corresponding dimension is not fixed or constrained to a specific size.

GRU (Gated Recurrent Unit) is also a type of recurrent neural network and is similar to long short term 
memory but has fewer parameters and is computationally less expensive than LSTM. The main idea behind GRU 
is to use gating mechanisms for selectively remembering or forgetting the information from previous time steps. 
GRU has two types of gates, a reset gate (R) and an update gate (Z), which control the flow of information. At each 
time step, the input (X) and the previous hidden state are passed through the reset gate, which decides how much 
of the previous hidden state to forget. Then, the input and the modified previous hidden state are passed through 
the update gate, which decides how much of the new input to remember. The output is then calculated based 
on the modified hidden  state27,28. Mathematically, it can be computed by using Equations ((6), (7), (8), and (9)).

(3)IT = σ(WI [hT−1,Xt]+ bI )

(4)FT = σ(WF [hT−1,Xt]+ bF)

(5)OT = σ(WO[hT−1,Xt]+ bO)

Figure 3.  (continued)
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(6)Zt = σ(Wz .[Ht−1,Xt])

(7)Rt = σ(Wz .[Ht−1,Xt])

Figure 4.  Spectral bandwidth and MFCCs for food sounds.

Table 2.  Parameters of LSTM.

Number of layers Name of layers Output shape

1 LSTM (None, None, 128)

2 LSTM (None, 64)

3 Dense (None, 64)

4 Dropout (None, 64)

5 Dense (None, 20)
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where H and H̃ and represent the output and candidate hidden state respectively, σ is an activation function, Zt 
is update gate at time step t, tanh is the hyperbolic tangent activation function, Wz is weight matrix associated 
with update gate, and W is the weight of the candidate hidden state.

In this research, the model begins with a GRU layer with an output shape of (None, None, 128), followed by 
another GRU layer producing an output shape of (None, 64), as shown in Table 3. The subsequent Dense layer 
yields an output shape of (None, 64), which is then passed through a Dropout layer resulting in an output shape 
of (None, 64). Finally, a Dense layer produces an output shape of (None, 20). [In the output shapes column, 
’None’ represents a flexible or variable dimension that can vary based on the input data].

A bidirectional GRU (gated recurrent unit) is a type of recurrent neural network (RNN) that processes 
sequential data in both backward and forward directions. In a bidirectional GRU, there are two GRU layers in 
which one sequence is processed in the forward direction and the other is processed in the backward direction. 
The output of each layer at each time step is concatenated to form a final output which is enabling the model 
to incorporate both future and past context while predicting any task or  event22. The formulae to compute this 
network is shown in Equations ((10), (11), and (12)).

where ←−Ht is the backward state GRU, −→Ht is the forward state GRU, ⊕ indicates the concatenation operation of 
two vectors, Xt is input at time  t29,30.

In this study, we combined RNN with bidirectional GRU to accomplish food detection and classification and 
its layered architecture is shown in Table 4. The first layer is a dense layer, which is a fully linked layer in which 
every neuron in the previous layer is connected to every neuron in the current layer. Despite the layer having 128 
neurons, it produces an output form of (None, None, 128), which demonstrates that the batch size and sequence 
length can vary. A SimpleRNN layer, a kind of recurrent layer that enables the network to recall previous inputs, 
is the second layer. It generates the shape (None, 128), indicating that the batch size is flexible and that there are 
128 neurons in the layer. A bidirectional GRU layer, or bidirectional recurrent layer using the GRU architecture, 
is the third layer. Bidirectional layers analyze the input sequence in both a forward and a reverse orientation, 
collecting data from the past and the future. With a batch size that is user-configurable and a layer of 64 neurons, 
this layer generates a variant of (None, 64). The fourth layer is another dense layer that is fully connected and has 
an output shape of (None, 64). It has 64 neurons and is linked to the previous layer. The fifth layer is a dropout 
layer, which prevents overfitting by randomly removing a percentage of input units during training. It keeps the 
previous layer’s shape, resulting in an output shape of (None, 64). Finally, the sixth layer is another dense layer 
with a (None, 20) output form. It is a fully connected layer with 20 neurons that produces the model’s final output.

(8)H̃t = tanh(W .[Rt ∗Ht−1, xt ])

(9)Ht = (1− Zt) ∗Ht−1 + Zt ∗ h̃t ,

(10)−→
Ht = GRUfwd(Xt ,

−−→
Ht−1)

(11)←−
Ht = GRUbwd(Xt ,

←−−
Ht+1)

(12)Ht =
−→
Ht ⊕

←−
Ht

Table 3.  Parameters of GRU model.

Number of layers Name of layers Output shape

1 GRU (None, None, 128)

2 GRU (None, 64)

3 Dense (None, 64)

4 Dropout (None, 64)

5 Dense (None, 20)

Table 4.  Parameters of RNN + BidirectionalGRU.

Number of layers Name of layers Output shape

1 Dense (None, None, 128)

2 SimpleRNN (None, 128)

3 Bidirectional GRU (None, 64)

4 Dense (None, 64)

5 Dropout (None, 64)

6 Dense (None, 20)
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Bidirectional Long Short-Term Memory (BiLSTM) is used for sequence data processing. In a conventional 
LSTM model, the input sequence is processed sequentially in a unidirectional fashion, often from left to right. 
Each time step’s output is then used as input for the next time step. The BiLSTM model, on the other hand, 
processes the input sequence in a bidirectional way. This is accomplished by separating the sequence into two 
independent sequences, one processed forward (from left to right) and the other backward (from right to left)31. 
The BiLSTM can collect information from both past and future events. This is because the hidden states at each 
time step are influenced by both the previous and next time steps. The fusion of forward and backward hidden 
states is commonly achieved through concatenation, which yields a combined hidden state that integrates infor-
mation from both directions. The fused hidden state is utilized for making predictions or transmitting to sub-
sequent layers within the neural network architecture for additional  processing32,33. Let X = (x1, x2, . . . . . . , xT ) 
be the input sequence of the length T , where xt is the input at time step t  . The forward hidden states hforwardt  are 
computed as shown in Eq. (13):

Here, LSTM is the operation performed by the Long Short-Term Memory cell, which involves computations 
like input and output gate activations, cell state updates, and hidden state computations. The final output at each 
time step t  is a concatenation of the forward and backward hidden states, as shown in Eq. (14):

The semicolon (; ) denotes concatenation. The output sequence H = (h1, h2, . . . . . . , hT ) can be used for 
further tasks such as classification or sequence-to-sequence prediction.

In this study, we combined RNN with bidirectional LSTM to accomplish food sound dataset detection and 
classification. Table 5 depicts a neural network model with several layers and their associated output shapes. 
Each layer has a distinct role to play in processing and modifying the input data. The dense layer is a completely 
connected layer that transforms the input data linearly by linking every neuron from its preceding layer to suc-
ceeding layer. The output shape of this layer is (None, None, 128) where None indicates that the dimension can 
change depending on the input information. The number "128" designates the layer’s total number of neurons. A 
recurrent layer built with SimpleRNN units is called the SimpleRNN Layer. Its purpose is to manage sequential 
data and maintain data from prior inputs. This layer gives a fixed-size output for each input sequence because 
its output shape is (None, 128). The long-short-term memory (LSTM) layer type known as the bidirectional 
LSTM layer processes the input sequence both forward and backward. The output shape for this layer is (None, 
64), which denotes a fixed-size output. Like the preceding layer, this one is also dense and totally connected. It 
applies a linear transformation to the output of the layer that came before it. The output shape is identical to the 
preceding layer (None, 64). Dropout is a regularization technique that helps to lessen the network’s reliance on 
specific features and encourages it to learn more robust representations. The output shape is unchanged (None, 
64). The model’s last dense layer applies additional linear transformations to the input and generates the final 
output. The output shape is (None, 20), which indicates that it has 20 neurons, which may correspond to different 
groups or categories depending on the task.

The InceptionResNetV2 architecture combines the Inception and ResNet modules to form a deep convolu-
tional neural network (CNN). By using residual connections within the Inception module, InceptionResNetV2 
merges these two  components34. It also has various other features to increase network performance and stability, 

(13)h
forward
t = LSTM

(
xt , h

forward
t−1

)
.

(14)ht =
[
h
forward
t ; hbackwardt

]

Table 5.  Parameters of RNN + BidirectionalLSTM.

Number of layers Name of layers Output shape

1 Dense (None, None, 128)

2 SimpleRNN (None, 128)

3 Bidirectional LSTM (None, 64)

4 Dense (None, 64)

5 Dropout (None, 64)

6 Dense (None, 20)

Table 6.  Parameters of InceptionResNetV2.

Number of layers Name of layers Output shape

1 Inception ResNetV2 (None, 5, 5, 1536)

2 Global Average Pooling (None, 1536)

3 Dropout (None, 1536)

4 Dense (None, 20)
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such as batch normalization, dropout, and pre-activation. InceptionResNetV2’s architecture comprises of several 
levels, with a total of 164 layers, including multiple Inception and ResNet  modules35–38.

The neural network model depicted in Table 6 has four layers. The first layer is an Inception ResNetV2 layer 
that extracts features from input data using a combination of Inception and ResNet modules. It yields the shape 
(None, 5, 5, 1536), suggesting a feature map with a spatial size of 5 × 5 and 1536 channels. The second layer is 
a global average pooling layer that shrinks the spatial dimensions and outputs a single value for each channel, 
yielding an output shape of (None, 1536).The third layer is a Dropout layer and its output shape remains the 
same, (None, 1536). Finally, there is a Dense layer, a fully connected layer that produces the final output with 
a shape of (None, 20), which implies 20 neurons representing different classes or categories depending on the 
specific task. [In the output shapes column, ’None’ represents a flexible or variable dimension that can vary 
based on the input data].

Besides applying the advanced deep learning models, we have also customized the CNN model to detect 
and classify the eating sound of various food items. Table 7 represents a neural network model with different 
layers and their corresponding output shapes. It starts with the MFCC input layer where MFCC stands for Mel 
Frequency Cepstral Coefficients, which are commonly used features for audio processing. This layer represents 
the input layer of the network and has an output shape of (None, 64), where "None" indicates that the batch size 
can vary, and 64 represents the number of MFCC coefficients. Subsequently, there is a Dense Layer which is a 
fully connected layer applies a linear transformation to the input data. It relies on the output from the preceding 
layer and has 512 neurons, as indicated by its output shape of (None, 512). Batch Normalization technique is used 
for normalizing the activations of a neural network layer. It helps to stabilize and improve the training process. 
The output shape remains the same as the previous layer i.e. (None, 512). Next is the Activation Relu where the 
activation function is applied element-wise to the output of the previous layer. ReLU (Rectified Linear Unit) is 
a commonly used activation function that introduces non-linearity to the model. Further, there is a Dropout 
Layer which is a regularization technique which sets a fraction of input units to 0 randomly during training. 
It prevents overfitting by reducing the reliance on specific features. The output shape remains the same as the 
previous layer, (None, 512).

Another fully connected layer (Dense Layer) with an output shape of (None, 512) and is succeeded by another 
batch normalization layer with the same output shape as the previous layer (None, 512) as well as ReLU activa-
tion function. Likewise, another dropout layer with the same output shape as the previous layer is applied and 
is finally concluded by final fully connected layer with an output shape of (None, 20) which indicates 20 neurons 
representing different classes or categories depending on the specific task.

The values provided in the last column represent the number of parameters (weights and biases) in each layer. 
For example, "0" indicates that the MFCC Input Layer does not have any learnable parameters, while "33280" 
represents the number of parameters in the Dense Layer. It’s important to note that the number of parameters 
in a layer depends on the size of its input and output dimensions.

Evaluative parameters
Performance evaluation metrics such as accuracy, loss, precision, recall, and F1 score play a pivotal role in assess-
ing the effectiveness of machine learning models. These metrics are valuable tools for model comparison and 
fine-tuning of hyperparameters to enhance overall  performance18,39–41. The following Equations ((15), (16), (17), 
(18), (19)) are commonly employed to quantify these metrics and analyze the performance of diverse machine 
learning models.

(15)Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

(16)Loss =
(Actual Value − Predicted Value)2

Number of observations

Table 7.  Parameters of CustomizedCNN.

Layers Output shape Parameters

MFCC input layer (None, 64) 0

Dense layer (None, 512) 33,280

Batch normalization (None, 512) 2048

Activation Relu (None, 512) 0

Dropout layer (None, 512) 0

Dense layer (None, 256) 131,328

Batch normalization (None, 256) 1024

Activation Relu (None, 256) 0

Dropout layer (None, 256) 0

Dense layer (None, 20) 5140



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6589  | https://doi.org/10.1038/s41598-024-57077-z

www.nature.com/scientificreports/

Results
In this section the various learning models such as GRU, LSTM, Bidirectional LSTM + GRU, Simple RNN + Bidi-
rectional GRU, Simple RNN + Bidirectional LSTM, InceptionResNetV2 including the customized CNN that have 
been trained with the dataset are evaluated and displayed based on the parameters as mentioned in Sect. "Evalu-
ative parameters". In the initial evaluation phase, models are assessed for accuracy and data loss, with subsequent 
scrutiny of precision, recall, and F1 score across the entire dataset and its individual classes.

From Table 8, during training phase, the GRU model exhibited the highest accuracy at 96.45%, closely fol-
lowed by the CNN model at 96.62%. Both models achieved low loss values (0.11 for GRU and 0.09 for CNN), 
indicating strong predictive capabilities and efficient convergence during training. The Bidirectional LSTM + GRU 
model also demonstrated competitive performance with an accuracy of 95.77% and a relatively low loss of 0.13. 
Interestingly, the InceptionResNetV2, designed for image classification, showcased notable adaptability with 
a commendable accuracy of 95.61%. However, the Simple RNN-based architectures, both standalone and in 
combination with Bidirectional LSTM or GRU, exhibited slightly lower accuracies, suggesting that the more 
advanced recurrent and convolutional architectures better capture the intricate temporal patterns present in 
food-related sounds, leading to improved classification performance.

On the contrary, in validation phase, the GRU model stands out with an exceptionally high accuracy of 99.28% 
and a remarkably low loss of 0.02, indicating robust generalization capabilities. The Bidirectional LSTM + GRU 
and Simple RNN + Bidirectional LSTM models also exhibit strong performance with accuracies of 98.27% and 
97.83%, respectively, and relatively low losses. The LSTM model maintains a solid performance with an accu-
racy of 95.57% and a moderate loss of 0.15. The Simple RNN + Bidirectional GRU model achieves an accuracy 
of 97.48%, while both the InceptionResNetV2 and CNN models, originally designed for image classification, 
demonstrate reasonable adaptability with accuracies of 94.56% and 95.96%, respectively. The consistency in 
performance across training and validation phases underscores the models’ ability to effectively generalize to 
unseen data, with GRU showcasing particularly impressive results in this regard.

Similarly, as mentioned earlier, the models have been also examined for another set of parameters i.e. preci-
sion, F1 score, and recall as shown in Table 9. The presented models exhibit varying levels of performance across 

(17)Precision(Pr) =
True Positive

True Positive + False Positive

(18)Recall(Re) =
True positive

True positive + False Negative

(19)F1 score (F1) = 2
Precision ∗ Recall

Recall + Precision

Table 8.  Accuracy and loss values of models.

Model

Training Validation

Accuracy (%) Loss Accuracy (%) Loss

LSTM 94.46 0.17 95.57 0.15

GRU 96.45 0.11 99.28 0.02

Bidirectional LSTM + GRU 95.77 0.13 98.27 0.06

Simple RNN + Bidirectional GRU 92.07 0.25 97.48 0.08

Simple RNN + Bidirectional LSTM 94.03 0.17 97.83 0.07

InceptionResNetV2 95.61 0.29 94.56 0.64

CNN 96.62 0.09 95.96 0.15

Table 9.  Performance analysis of models.

Model Precision Recall F1 score

LSTM 95.15 95.35 95.2

GRU 96.2 97.3 97.2

Bidirectional LSTM + GRU 97.7 97 97.3

Simple RNN + Bidirectional GRU 96.8 97.1 96.75

Simple RNN + Bidirectional LSTM 96.55 97.45 96.95

InceptionResNetV2 94.15 96.65 93.2

CNN 97.15 96.75 96.55
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precision, recall, and F1 score metrics. The Bidirectional LSTM + GRU model demonstrates strong overall per-
formance, achieving high precision of 97.7%, 97% recall, and 97.3% F1 Score. The GRU model follows closely, 
displaying notable 96.2% precision and 97.3% recall, resulting in a commendable F1 score of 97.2%. The Simple 
RNN + Bidirectional GRU model also performs well with balanced 96.8% precision and 97.1% recall, yielding 
a competitive F1 score of 96.75%. Conversely, the Simple RNN + Bidirectional LSTM model, while achieving 
respectable precision and recall, falls slightly short in the F1 score at 96.95%. The InceptionResNetV2 model 
demonstrates a comparatively lower F1 score of 93.2% despite reasonably high precision of 94.15% and recall of 
96.65%. The CNN model, while achieving a high precision of 97.15%, experiences a minor dip in recall (96.75%) 
and F1 score (96.55%). Overall, the Bidirectional LSTM + GRU and GRU models stand out as top performers in 
this evaluation which implies higher performance in this task. However, other models also display reasonably 
decent performance.

Furthermore, the evaluation extends to the classification models when trained on a dataset comprising twenty 
distinct classes. The performance is thoroughly scrutinized using various metrics such as precision, recall, and 
F1 score, as depicted in Fig. 5. Additionally, for clarity and detailed reference, a tabular representation of these 
results is presented in Table 10. This comprehensive analysis allows for a nuanced understanding of each model’s 
efficacy in handling a diverse set of twenty classes, providing valuable insights into their performance across 
multiple metrics.

Based on the results, the LSTM model has attained good precision and recall ratings for the majority of the 
food categories. Precision ranges from 0.87 to 0.99, recall ranges from 0.90 to 0.98, and F1 ranges from 0.91 to 
0.98. Based on these data, it can be stated that the model provides adequate precision and recall rates for the 
majority of food categories. There are differences in performance measures across food categories, with certain 
categories scoring lower in specific metrics. Pizza, for example, has a lesser recall (0.90), whereas chocolate has a 
lower precision (0.87). These variances indicate potential areas for model improvement or fine-tuning to improve 
overall performance across all food groups.

With precision and recall values greater than 0.95 and an F1 score larger than 0.97, the GRU  model performs 
well in culinary categories such as aloe, cabbage, candied fruits, carrots, chocolate, drinks, fries, grapes, pickles, 

Figure 5.  Performance evaluation of deep learning models.
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and wings. This indicates that the model accurately predicts these dietary categories; however, for chips, gum-
mies, ice cream, jelly, noodles, pizza, ribs, salmon, and soup, the model’s performance is relatively poor, with 
precision, recall, and F1 Score values that falls in between 0.65 to 0.98. This implies that the model may contain 
false positives or false negatives in certain categories and that its efficacy should be improved.

The bidirectional LSTM + GRU  model has been shown to have good precision, recall, and F1 score values 
that range from 0.94 to 0.99 for each food class. This suggests that the model is capable of properly categorising 
sound related to these food categories. Other aspects, including the amount and quality of the dataset, model 
hyper-parameters, and task-specific needs, must be considered when interpreting these results. As evidenced 
by the model’s high performance metrics, the bidirectional LSTM and GRU model is good at classifying food 
categories based on eating sound.

Likewise, RNN + BidirectionalGRU  demonstrates consistently high precision values for most classes by ranging 
from 0.94 to 0.98 and indicate a low false positive rate in classifying food items. Additionally, the recall values 
are generally robust by computing the scores from 0.94 to 0.99 and showcase the model’s ability to capture a 
substantial portion of true positive instances. The F1 scores fall within a narrow range of 0.94 to 0.99 and indicate 
an overall well-balanced performance across different food categories. It is worth noting that the model excels 

Figure 5.  (continued)
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in discriminating between classes, particularly evident in its ability to distinguish between similar food items 
like Aloe and Burger.

In evaluating the performance of the RNN + BidirectionalLSTM model across various categories of the food, 
the precision values range from 0.94 to 0.98 which indicates a low false-positive rate, while recall values range 
from 0.95 to 0.99 and highlights the ability of the model’s to capture a high percentage of true positives. The F1 
score range from 0.95 to 0.99 and demonstrates the overall effectiveness of the model in achieving a balance 
between precision and recall. The model excels in differentiating between distinct food categories, with notable 
performance on classes such as Aloe, Drinks, Burger, and Wings. However, slight variations in performance are 
observed across classes that suggest potential areas for further refinement. Overall, the RNN + BidirectionalL-
STM model exhibits a robust as well as competitive performance in the context of food category classification.

Similarly, for classes like Aloe, Cabbage, Burger, Candied fruits, and others, the model exhibits strong preci-
sion, recall, and F1 scores by ranging from 0.94 to 0.99. This implies that InceptionResNetV2 model effectively 
identifies and classifies instances of these food classes with high accuracy and minimal misclassification. However, 
for the ’Gummies’ and ’Ribs’ categories, the precision and recall values are comparatively lower, particularly for 
’Gummies,’ where the F1 score is also reduced. This indicates that the model may struggle with accurate predic-
tions for these specific food categories.

In the end, on evaluating the performance of the customized Convolutional Neural Network (CNN) model to 
classify food item on the basis of sounds, we observe that the model showcases excellent precision that ranges 
from 0.95 to 0.99 and indicates a low false-positive rate. The recall values which spans from 0.94 to 0.98, reflects 
the ability of the model to effectively identify instances of each class and minimize the false negatives. The F1 
scores, which balance the precision and recall, range from 0.94 to 0.98 to emphasize the overall robustness of the 
model. Notably, certain classes such as Chips and Gummies exhibit exceptional performance across all metrics. 
These results suggest that the customized CNN model effectively discriminates between different food items, 
showcasing its potential for accurate and reliable classification in a diverse range of scenarios.

Discussion
The presented research on food identification using deep learning based on eating sounds sparks an interest-
ing debate on the potential uses, problems, and future directions of this novel approach. One of the research’s 
primary features is its capacity to handle different practical concerns with food identification. The suggested 
technology, which analyses eating sounds, provides a non-intrusive and convenient method of detecting food 
items. This enables users to make informed judgments and stay away from potentially hazardous foods, which 
can be especially helpful for those who have dietary restrictions or allergies. Additionally, the system can offer 
helpful details on the quality as well as the freshness of the food items, which also enables the consumers to 
assess their suitability before eating. This technique can also be used to highlight the cultural significance of 
food, enhancing culinary experiences.

The paper employs a thorough approach to deal with the challenge of food identification by collecting the 
labeled data of 1200 audio files for 20 distinct food items. Signal processing techniques, including spectrograms, 

Table 10.  Analysing the performance of models for various classes.

Classes

LSTM GRU 
BidirectionalLSTM + 
 GRU 

RNN + Bidirectional 
GRU 

RNN + BidirectionalL 
STM InceptionResNetV2 Customized CNN

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

Aloe 0.95 0.97 0.96 0.99 0.98 0.99 0.97 0.97 0.98 0.98 0.98 0.98 0.97 0.99 0.98 0.95 0.98 0.98 0.97 0.98 0.95

Burger 0.99 0.93 0.96 0.98 0.99 0.98 0.98 0.99 0.99 0.97 0.95 0.97 0.97 0.98 0.96 0.98 0.95 0.99 0.95 0.95 0.96

Cabbage 0.92 0.94 0.93 0.99 0.99 0.99 0.99 0.98 0.94 0.96 0.97 0.95 0.95 0.95 0.97 0.96 0.95 0.96 0.98 0.98 0.98

Candied fruits 0.99 0.98 0.98 0.98 0.97 0.97 0.98 0.99 0.95 0.94 0.99 0.96 0.98 0.96 0.95 0.97 0.96 0.95 0.96 0.97 0.98

Carrots 0.96 0.94 0.95 0.94 0.94 0.98 0.99 0.97 0.98 0.98 0.96 0.94 0.97 0.97 0.98 0.95 0.94 0.94 0.98 0.96 0.95

Chips 0.96 0.97 0.96 0.65 0.97 0.98 0.98 0.95 0.99 0.97 0.98 0.98 0.98 0.95 0.96 0.64 0.95 0.94 0.99 0.94 0.98

Chocolate 0.87 0.95 0.91 0.98 0.98 0.99 0.97 0.98 0.98 0.98 0.98 0.94 0.94 0.98 0.98 0.98 0.96 0.94 0.97 0.98 0.97

Drinks 0.96 0.97 0.97 0.99 0.96 0.99 0.95 0.96 0.99 0.95 0.99 0.97 0.97 0.99 0.98 0.99 0.95 0.95 0.95 0.94 0.95

Fries 0.96 0.98 0.97 0.97 0.98 0.99 0.97 0.94 0.97 0.96 0.99 0.98 0.95 0.99 0.95 0.97 0.98 0.98 0.98 0.98 0.97

Grapes 0.99 0.95 0.97 0.98 0.99 0.97 0.98 0.98 0.98 0.97 0.97 0.99 0.98 0.98 0.98 0.94 0.95 0.97 0.98 0.97 0.98

Gummies 0.93 0.98 0.96 0.99 0.97 0.95 0.98 0.98 0.95 0.98 0.96 0.98 0.97 0.95 0.96 0.95 0.98 0.69 0.99 0.98 0.95

Ice Cream 0.99 0.96 0.97 0.98 0.98 0.94 0.99 0.99 0.99 0.95 0.95 0.99 0.96 0.98 0.95 0.95 0.99 0.98 0.99 0.98 0.94

Jelly 0.93 0.93 0.93 0.97 0.95 0.98 0.97 0.99 0.98 0.98 0.98 0.95 0.95 0.96 0.98 0.89 0.99 0.97 0.98 0.97 0.96

Noodles 0.95 0.95 0.95 0.96 0.98 0.95 0.98 0.97 0.97 0.98 0.94 0.96 0.98 0.97 0.96 0.97 0.98 0.94 0.95 0.95 0.95

Pickles 0.96 0.97 0.96 0.99 0.99 0.98 0.99 0.96 0.95 0.97 0.97 0.98 0.96 0.98 0.98 0.98 0.98 0.95 0.96 0.98 0.98

Pizza 0.99 0.90 0.94 0.98 0.98 0.97 0.98 0.94 0.96 0.95 0.98 0.97 0.98 0.99 0.97 0.95 0.98 0.94 0.98 0.97 0.98

Ribs 0.95 0.96 0.96 0.98 0.97 0.94 0.97 0.98 0.95 0.96 0.95 0.95 0.94 0.99 0.96 0.96 0.96 0.65 0.97 0.95 0.98

Salmon 0.90 0.97 0.93 0.98 0.96 0.95 0.95 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.94 0.98 0.98 0.98 0.96 0.97

Soup 0.95 0.92 0.94 0.97 0.95 0.98 0.98 0.96 0.97 0.97 0.98 0.97 0.97 0.97 0.98 0.95 0.94 0.97 0.97 0.98 0.98

Wings 0.93 0.95 0.94 0.99 0.98 0.99 0.99 0.94 0.99 0.98 0.98 0.96 0.96 0.98 0.99 0.96 0.98 0.97 0.95 0.98 0.95
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spectral rolloff, spectral bandwidth, and mel-frequency cepstral coefficients, are applied for extracting meaning-
ful features from the audio files. These techniques effectively capture the unique characteristics of different food 
items, enabling accurate classification based on their eating sounds. To learn and recognize the spectral and 
temporal patterns in the audio signals, various deep learning models as mentioned in Sect. “Feature extractions” 
are fine-tuned and trained.

These models have been evaluated using various parameters as mentioned in Sect. “Results” and their graphi-
cal curves on the basis of loss and accuracy are shown in Fig. 6. It can be seen that the good fit of learning curves 

Figure 6.  Graphical analysis of deep learning models.
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in terms of accuracy and loss has been shown by customized CNN model as there is no such gap between the 
validation and training performances of the model irrespective of noise in them. On the contrary, the other 
models display certain gaps and high peaks of validation accuracy and loss which signifies that the model is 
overfitting the training data.

The comparison and evaluation of different deep learning models provide insights into their performance for 
food identification tasks. This analysis helps identify the most suitable models for accurately recognizing food 
items based on eating sounds. Additionally, the exploration of hybrid models, such as Bidirectional LSTM + GRU 
and RNN + Bidirectional LSTM, showcases the potential benefits of combining different architectures to improve 
classification performance.

The models’ training times have also been determined in Table 11, with LSTM, a form of recurrent neural 
network (RNN), taking 1 h and 58 min to train. Another form of RNN, GRU, takes 5 h and 4 min of training. 
The training duration is reduced to 4 h and 35 min when LSTM and GRU are coupled in the LSTM + GRU 
model. It takes 6 h and 25 min to train the SimpleRNN + bidirectional GRU model and 9 h and 45 min to train 
the SimpleRNN + Bidirectional LSTM model. The deep convolutional neural network (CNN) architecture Incep-
tionResNetV2 takes 5 h and 20 min to train. Finally, training a custom model takes 7 h.

These training times reflect the computational resources and they are not fixed as they rely on the configura-
tion of the system.

However, various challenges has been recognized and handled in order for the proposed methodology to 
be effective and practicable. One of the most difficult tasks is assembling and curating a comprehensive dataset 
that includes a diverse range of food items and dining settings. Eating sound variability, such as varied eating 
methods, utensils, and background noise, can introduce variability that must be properly regulated in order 
to obtain efficient identification. Another issue is the extraction of features from audio files. While the study 
used spectrograms, spectral rolloff, spectral bandwidth, and mel-frequency cepstral coefficients, there may be 
opportunity for further research into more advanced feature extraction approaches. These approaches may be 
able to work on greater details and remove nuances in eating noises, resulting in better classification accuracy.

Furthermore, the proposed system’s scalability and real-time implementation should be investigated. As the 
dataset grows and more food items are considered, it is critical to keep the computing requirements modest. 
Furthermore, investigating the system’s deployment in practical settings such as mobile applications or embedded 
systems will facilitate real-time food detection, making it more accessible to a wider audience.

Conclusion
This paper describes a novel method for food identification based on eating sounds that employs several deep 
learning models. The study effectively demonstrated the capability of deep learning algorithms to reliably iden-
tify food items based on their distinct sound patterns. The developed approach has a lot of potential for helping 
people with dietary restrictions, allergen avoidance, food quality assessment, and cultural understanding. During 
the conduct of this research, the data had been collected in the form of 1200 audio samples for 20 food products. 
Although signal processing techniques were used to extract relevant characteristics from the audio recordings, 
further advances in feature extraction approaches could improve the system’s performance. Furthermore, select-
ing and fine-tuning deep learning models was a hurdle, necessitating extensive experimentation to determine 
the most effective architectures. Despite these obstacles, the findings of this investigation are optimistic. Deep 
learning methods such as LSTM, GRU, InceptionResNetV2, and a customized CNN model were used to learn 
and recognize spectral and temporal patterns in food-eating sounds. Besides this, the models were also hybridized 
such as BidirectionalLSTM + GRU and RNN + BidirectionalLSTM and were examined based on their accuracy, 
precision, F1 score, and recall.

The outcomes of this study suggest various possibilities for further investigation. Firstly, expanding the size 
of the dataset, encompassing a diverse range of food items and dining scenarios, is recommended to enhance 
the system’s adaptability. Additionally, fine-tuning the layers of the customized CNN model and exploring more 
advanced deep learning architectures and approaches are crucial for boosting accuracy and robustness. Moreo-
ver, it would be beneficial to explore the real-time implementation and practical applications of the suggested 
methodology in real-world scenarios such as nutritional tracking apps, allergen detection systems, and culinary 
cultural preservation. Finally, this study shows a considerable advancement in food identification using deep 
learning models based on eating sounds. It demonstrates the potential of these models for accurately recogniz-
ing food products and lays the groundwork for future study in this subject. With future adjustments and study, 

Table 11.  Time Frame of the applied models.

Algorithms Time frame

LSTM 1 h 58 min

GRU 5 h 04 min

LSTM + GRU 4 h 35 min

SimpleRNN + Bidirectional GRU 6 h 25 min

SimpleRNN + Bidirectional LSTM 9 h 45 min

InceptionResNetV2 5 h 20 min

CNN custom model 7 h
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the proposed methodology offers significant promise for numerous applications in nutrition, dietary planning, 
as well as food-related sectors.

Data availability
The dataset used in the study is openly available at the following link. https:// www. kaggle. com/ datas ets/ mashi 
jie/ eating- sound- colle ction.
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