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Linoleic acid induces human 
ovarian granulosa cell 
inflammation and apoptosis 
through the ER‑FOXO1‑ROS‑NFκB 
pathway
Wenying Zhang  & Fuju Wu *

Polycystic ovary syndrome (PCOS) is a complex reproductive endocrinological disorder influenced 
by a combination of genetic and environmental factors. Linoleic acid (LA) is a widely consumed ω-6 
polyunsaturated fatty acid, accounting for approximately 80% of daily fatty acid intake. Building 
upon the prior investigations of our team, which established a connection between LA levels in the 
follicular fluid and PCOS, this study deeply examined the specific impact of LA using a granulosa 
cell line. Our findings revealed that LA exerts its influence on granulosa cells (GCs) by binding to the 
estrogen receptor (ER). Activated ER triggers the transcription of the FOXO1 gene. Reactive oxygen 
species (ROS)-related oxidative stress (OS) and inflammation occur downstream of LA-induced FOXO1 
activation. Increased OS and inflammation ultimately culminate in GC apoptosis. In summary, LA 
modulates the apoptosis and inflammation phenotypes of GCs through the ER-FOXO1-ROS-NF-κB 
pathway. Our study provides additional experimental evidence to comprehend the pathophysiology of 
PCOS and provides novel insights into the dietary management of individuals with PCOS.
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HODE	� Hydroxyoctadecadiene acids
HFD	� High-fat diet
OS	� Oxidative stress
IVF-ET	� In vitro fertilization-embryo transfer
DEGs	� Differentially expressed genes
GO	� Gene ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes
HB-EGF	� Heparin-binding epidermal growth factor-like growth factor

Polycystic ovary syndrome (PCOS) affects a significant proportion of women in their childbearing years and 
manifests as a complex interplay of endocrine and metabolic disorders characterized by hyperandrogenism, 
anovulation or oligovulation, and polycystic ovary morphology1–3. Although a consensus on diagnostic crite-
ria has been globally established in Rotterdam, the Netherlands4, the underlying cause of this disease remains 
elusive. This has resulted in ongoing discussions regarding its pathogenesis. Metabolic aberrations observed in 
patients with PCOS are extensive, encompassing disruptions in steroid hormone biosynthesis, amino acid and 
nucleoside metabolism, glutathione metabolism, and lipid and carbohydrates metabolism5. Metabolic altera-
tions within the follicular fluid directly affect the surrounding cells, including oocytes and granulosa cells (GCs), 
consequently influencing ovarian function. Numerous clinical and experimental studies have suggested a critical 
role of GC apoptosis in the pathogenesis of PCOS, as dysfunctional GCs obstruct folliculogenesis and contribute 
to follicular atresia at the preantral stage6–10. Concurrently, it is widely accepted that patients with PCOS pre-
sent chronic low-grade inflammation, which is influenced by metabolic status11,12. However, whether abnormal 
metabolites are involved in PCOS pathogenesis by directly influencing GCs remains to be elucidated. A previous 
analysis of clinical data from our team13 and that of Qiao14 suggested that there are significant differences in the 
concentrations of certain fatty acids in the follicular fluid of patients with PCOS compared to infertile women 
without symptoms of PCOS. Notable variations have been observed in fatty acids such as palmitic acid, linoleic 
acid (LA), and oleic acid. LA, an essential n-6 polyunsaturated fatty acid (PUFA) in humans, possesses unique 
characteristics; it is exclusively obtained through diet and serves as a precursor for the synthesis of inflammatory 
substances, including arachidonic acid and prostaglandin E2. Both studies consistently identified a significant 
increase in LA levels in patients with PCOS. Therefore, we hypothesized that LA contributes to PCOS progres-
sion by influencing ovarian GCs.

Materials and methods
Cells treatment
The human ovarian granulosa tumor cell line (KGN) cells were cultivated in DME/F12 (Hyclone) medium. 
Prior to drug stimulation, 10% DME/F12 medium was replaced with 2% DME/F12 medium. Subsequently, 
GCs were subjected to LA treatment (75 μM, Sigma-Aldrich) for 24 h, with or without a 1 h pre-treatment of 
the estrogen receptor (ER) antagonist ICI 182780 (0.05 μM, MCE), the forkhead box O 1 (FOXO1) inhibitor 
AS1842856 (1 μM, MCE), N‐Acetyl‐cysteine (NAC) (2 mM, Beyotime Biotechnology, China), and the NF-κB 
inhibitor JSH-23 (4 μM, MCE). LA was dissolved in PBS and NAC was dissolved in sterile water, whereas ICI 
182780, AS 1842856, and JSH-23 were dissolved in DMSO. The controls received only their respective vehicle.

Cell counting kit‑8 (CCK‑8) test
GCs were seeded (100 μL/well) in a 96-well plate, followed by a 24 h pre-cultivation period (at 37 °C, 5% CO2). 
Subsequently, different concentrations of LA (50, 75, and 100 μM) were added to the culture medium, stimulating 
the GCs for an additional 24 h. Next, 10 μL of CCK solution was added to each well, and the culture plate was 
further incubated in the incubator for 4 h. The absorbance at 450 nm was measured using a microplate reader.

Enzyme‑linked immunosorbent assay (ELISA)
Culture supernatants from each group were collected to assess the concentrations of the inflammatory cytokines 
interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) using ELISA kits from Pro-
teintech. All procedures were performed in strict accordance with manufacturer’s instructions. Absorbance was 
measured using a microplate reader at 450 nm, and the results were analyzed using ELISACalc software.

Real‑time quantitative reverse transcription‑polymerase chain reaction (qRT‑PCR)
Initially, total RNA was extracted according to the procedural guidelines available on the official website of 
Takara Biomed. Subsequently, RNA was reverse-transcribed to cDNA using the Takara cDNA Synthesis Kit. 
Finally, a qRT-PCR system was employed, consisting of 10 μL SYBR, 0.5 μL forward primer, and 0.5 μL reverse 
primer for the target gene, along with 4.6 μL ddH2O. The qRT-PCR was carried out at 95 °C for 3 min, followed 
by 40 cycles of 60 °C for 60 s and 95 °C for 15 s, to determine the relative mRNA expression levels of IL-6, IL-1β, 
TNF-α, CASPASE3, estrogen receptor 1(ESR1), estrogen receptor 2 (ESR2), FOXO1, and nuclear factor kappa-B 
1 (NFκB1). Data analysis was performed using the 2−△△Ct method. Primer sequences for the aforementioned 
genes are listed in Table 1.

Caspase 3 activity assay
After being treated as described above, GCs were collected by trypsin. Subsequent procedures were strictly fol-
lowing manufacturer’s instructions by using Caspase 3 Activity Assay Kit (Beyotime Biotechnology, China). The 
absorbance of end-products was measured using a microplate reader at 405 nm.
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Western blotting (WB)
Following protein extraction from the cellular lysate and quantification using a BCA protein assay kit (Beyotime 
Biotechnology, China), the samples were subjected to sodium dodecyl sulfate–polyacrylamide gel electropho-
resis (SDS-PAGE). The separated protein bands were transferred to PVDF membranes. Primary antibodies 
against FOXO1 (1:1,000, Proteintech), NF-κB subunit p65 (1:1,000, Proteintech), phospho-NF-κB p65 ((1:1,000, 
Abmart), IκBα (1:1,000, Cell Signaling Technology), phospho-IκBα (1:1,000, Cell Signaling Technology), and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 1:5,000, Proteintech) were incubated with the PVDF 
membranes at 4 °C overnight, followed by binding with an HRP-conjugated secondary antibody for 2 h at room 
temperature. The final signals were visualized using an enhanced chemiluminescence substrate kit. The original 
WB images are displayed in the Supplementry material.

Flow cytometry
Apoptosis and cellular levels of reactive oxygen species (ROS) were measured by flow cytometry. Various pretreat-
ments were administered to the stimulated cells using the Annexin V-FITC apoptosis detection kit (Beyotime 
Biotechnology, China) and the ROS assay kit (Beyotime Biotechnology, China). Live cells loaded with appropriate 
probes were analyzed using a BD FACSCalibur flow cytometer.

Molecular docking
First, the structure-data file (SDF) of the ligand was retrieved from the PubChem database. Subsequently, the 
obtained SDF file was converted into a Protein Data Bank (PDB) file format using OpenBabel. In the second step, 
the AutoDock Tools 1.5.6 software was utilized for preprocessing tasks, including dehydration and hydrogenation, 
on the protein targets. Furthermore, both the active ingredients and target protein structures were transformed 
into pdbqt format to facilitate subsequent molecular docking studies. Finally, molecular docking analyses were 
conducted using AutoDock Vina, allowing for a comprehensive exploration of the binding interactions between 
the ligands and protein targets.

Molecular dynamics simulation
First, a molecular system was defined by specifying the molecules and their initial configurations. Next, an appro-
priate force field was selected to describe the intermolecular interactions. Energy minimization was performed 
to relax the system, followed by equilibration to adjust the temperature and pressure. The main production run 
was initiated, allowing the system to evolve over time, and trajectory data were recorded. The root mean square 
deviation (RMSD) was used to characterize the behavior of the system.

Statistical analysis
All experiments were independently repeated at least 3 times. Comparisons between two groups were assessed 
using the Independent-Samples T Test, whereas multiple comparisons were analyzed using one-way ANOVA 
with Tukey’s post-hoc test. Data were presented as mean ± SEM. GraphPad Prism (version 8.0) was used to create 
bar and line charts. Statistical significance was set at P < 0.05.

Results
LA causes GC apoptosis and inflammation
Prior to the phenotypic observations, we determined the optimal concentration of LA using the CCK-8 assay 
(Fig. 1a). Various concentrations of LA (50, 75, and 100 μM) were added to the cell culture medium for 24 h. 
Notably, 50 μM LA exhibited no apparent impact on cell viability, whereas 75 μM LA inhibited the activity of 
GCs, and 100 μM significantly decreased cell viability. To minimize drug toxicity, we selected the 75 μM con-
centration for subsequent experiments.

Following the addition of LA, the rate of apoptosis in KGN cells increased significantly (Fig. 1b), and both 
the mRNA levels (Fig. 1e) and activity (Fig. 1d) of CASPASE 3 were notably elevated. In terms of inflammation, 

Table 1.   Sequence list of primers used for qRT-PCR. GAPDH Glyceraldehyde-3-phosphate dehydrogenase, 
CASPASE3 Cysteine-aspartic acid protease 3, IL-6 Interleukin-6, IL-1β Interleukin-1β, TNF-α Tumor necrosis 
factor α, ESR1 Estrogen receptor 1, ESR2 Estrogen receptor 2, FOXO1 Forkhead box O 1, NFκB1 Nuclear factor 
kappa-B 1.

Gene Sequence of forward primer Sequence of reverse primer

GAPDH 5’-ATT​TGG​CTA​CAG​CAA​CAG​G-3’ 5’-TTG​AGC​ACA​GGG​TAC​TTT​ATT-3’

CASPASE3 5’-CTG​GAC​TGT​GGC​ATT​GAG​AC-3’ 5’-GCA​AAG​GGA​CTG​GAT​GAA​CC-3’

IL-6 5’-ACT​CAC​CTC​TTC​AGA​ACG​AATTG-3’ 5’-CCA​TCT​TTG​GAA​GGT​TCA​GGTTG-3’

IL-1β 5’-CAG​AAG​TAC​CTG​AGC​TCG​CC-3’ 5’-AGA​TTC​GTA​GCT​GGA​TGC​CG-3’

TNF-α 5’-GCA​ACT​GCT​GCA​CGA​AAT​C-3’ 5’-CTG​CTT​GTC​CTC​TGC​CCA​C-3’

ESR1 5’-GAA​AGG​TGG​GAT​ACG​AAA​AGACC-3’ 5’-GCT​GTT​CTT​CTT​AGA​GCG​TTTGA-3’

ESR2 5’-TCC​ATC​GCC​AGT​TAT​CAC​ATCT-3’ 5’-CTG​GAC​CAG​TAA​CAG​GGC​TG-3’

FOXO1 5’-TCG​TCA​TAA​TCT​GTC​CCT​ACACA-3’ 5’-CGG​CTT​CGG​CTC​TTA​GCA​AA-3’

NFκB1 5’-AAC​AGA​GAG​GAT​TTC​GTT​TCCG-3’ 5’-TTT​GAC​CTG​AGG​GTA​AGA​CTTCT-3’
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LA significantly stimulated the secretion of IL-6, IL-1β, and TNF-α by KGN (Fig. 1c), evidenced by increased 
corresponding mRNA levels (Fig. 1e).

LA affects GC apoptosis and inflammation through ER
From our prophase RNA-seq results, ER-related genes differentially expressed in LA-treated GCs. In this study, 
we confirmed that treatment of KGN with LA resulted in ESR1 and ESR2 upregulation (Fig. 2e). After 50 rounds 
of molecular docking, it was observed that the binding energy between LA and ESR1 reached a minimum value 
of − 6.9 kcal/mol (Fig. 2a). Similarly, the binding energy between LA and ESR2 was determined to be as low 
as − 6.1 kcal/mol (Fig. 2c). The results of the molecular dynamics simulations suggested that LA is capable of 
establishing stable complexes with ESR1 and ESR2. Specifically, the RMSD fluctuation range for the complex 
formed with ESR1 was within 0.02, whereas the RMSD fluctuation range for the complex formed with ESR2 was 
within 0.03. (Fig. 2b, d). Next, we pretreated the cells with the ER antagonist ICI 182,780. This led to a notable 
reduction of apoptosis in KGN cells (Fig. 2f), accompanied by a significant decrease in both mRNA level and 
activity of CASPASE 3 (Fig. 2h, i). Additionally, the inflammation of KGN markedly improved, as evidenced by 
the reduced secretion of inflammatory factors IL-6, IL-1β, and TNF-α (Fig. 2g) and the decrease in their respec-
tive mRNA levels (Fig. 2i).

LA activates FOXO1 expression through the ER
To identify the downstream molecular mechanism behind LA triggered ER activation on GCs, we focused on 
FOXO1, which has been reported as a down-stream gene involved in ER activation and it plays a critical role in 
many cell signaling pathways, such as oxidative stress (OS), inflammation, apoptosis. WB showed an increase in 
FOXO1 protein expression after LA treatment (Fig. 3a). Consequently, we used the FOXO1 inhibitor AS1842856 
to investigate whether FOXO1 is involved in LA effect on GCs. Upon inhibition of FOXO1, the previously 
elevated apoptosis rate was markedly decreased (Fig. 3b). This reversal was further evidenced by a decrease in 
mRNA expression (Fig. 3d) and the protein activity of the apoptosis-related gene CASPASE3 (Fig. 3e). Addi-
tionally, the heightened secretion of inflammatory factors IL-6, IL-1β, and TNF-α demonstrated a decrease, as 
confirmed by both protein (Fig. 3c) and mRNA levels (Fig. 3d). To clarify whether the ER is involved in the 
regulation of FOXO1, we examined FOXO1-related indicators. Blocking ERs resulted in the normalization of the 
FOXO1 protein expression (Fig. 3f), accompanied by a noticeable decrease in its elevated mRNA levels (Fig. 3g).
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Figure 1.   LA causes GC apoptosis and inflammation. (a) Dose-dependent effect of LA on GC viability. N = 3. 
(b) Apoptotic effect of LA on KGN. N = 3. (c) LA stimulated the secretion of inflammatory cytokines IL-6, 
IL-1β, and TNF-α in GCs. N = 3. (d) LA increased intracellular CASPASE3 protein activity. N = 5. (e) Real-
time PCR results showing IL-6, IL-1β, TNF-α, and CASPASE3 mRNA levels after LA addition. N = 3. *P < 0.05 
versus control group, #P < 0.05 versus LA group. CON: control group; LA: LA group; IL-6: interleukin-6; IL-1β: 
interleukin-1β; TNF-α: tumor necrosis factor α; CASPASE3: cysteine-aspartic acid protease 3.
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Figure 2.   LA affects GC apoptosis and inflammation through the ER. (a) The molecular docking results of LA and 
ESR1 with a binding energy of − 6.9 kcal/mol. (b) The molecular dynamics simulation results for the interaction 
between LA and ESR1 revealed a RMSD fluctuation range of their complex within 0.02. (c) The molecular docking 
result of LA and ESR2 with a binding energy of -6.1 kcal/mol. (d) The molecular dynamics simulation results for 
the interaction between LA and ESR2 revealed that the RMSD fluctuation range of their complex is within 0.03. (e) 
Real-time PCR confirmed the increase of ESR1 and ESR2 mRNA levels after LA treatment. N = 3. (f) ER antagonist ICI 
182780 decreased the apoptosis rate of GCs induced by LA. N = 3. (g) The hypersecretion of IL-6, IL-1β, and TNF-α 
was inhibited by ICI 182780. N = 3. (h) CASPASE3 activity was suppressed in the LA + ICI 182780 group compared 
with that in the LA group. N = 5. (i) mRNA levels of IL-6, IL-1β, TNF-α, and CASPASE3 after treatment of LA in the 
absence or presence of ICI 182780. N = 3. *P < 0.05 versus control group, #P < 0.05 versus LA group. CON: control 
group; LA: LA group; ICI + LA: ICI 182780 + LA group; RMSD: root mean square deviation; IL-6: interleukin-6; IL-1β: 
interleukin-1β; TNF-α: tumor necrosis factor α; CASPASE3: cysteine-aspartic acid protease 3.
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LA leads to intracellular ROS rise by ER‑FOXO1 pathway
It is well known that OS is an important manifestation in cellular and organ damages15. To investigate the role of 
LA regulating OS, we measured the intracellular ROS generation and cellular antioxidant capacity. We noticed 
a marked increase in ROS intracellular levels in LA-treated KGN (Fig. 4a), accompanied by a decrease in the 
levels of the antioxidant enzyme superoxide dismutase (SOD) (Fig. 4b). When KGN cells received NAC before 
LA treatment, apoptosis- and inflammation-related indicators showed appreciable recovery. NAC alleviated GCs 
apoptosis (Fig. 4c), resulting in decreased CASPASE3 activity (Fig. 4d) and mRNA expression (Fig. 4f). Further-
more, NAC hampered the excessive secretion of IL-6, IL-1β, and TNF-α (Fig. 4e, f). Subsequently, we investigated 
whether the ER-FOXO1 pathway mediates the regulation of ROS changes. ICI 182780 and AS1842856 suppressed 
the increase in ROS intracellular levels (Fig. 4g) and concomitantly restored SOD ones (Fig. 4h).

LA induces NF‑κB expression through the ER‑FOXO1‑ROS pathway
OS is regarded as one of triggers of the inflammation response, in which NF-κB serves as a pivotal mediator16. 
We found that in GCs, NF-κB 1 (p50) was up-regulated after LA stimulation at the mRNA level (Fig. 5a). The 
use of the NF-κB inhibitor JSH-23 significantly repressed the observed increase in apoptosis, as indicated by 
the apoptotic rate (Fig. 5b) and CASPASE3 levels (Fig. 5d, g). The secretion of inflammation factors IL-6, IL-1β 
and TNF-α was prevented by JSH-23 (Fig. 5c, g). The relationship of ROS and NF-κB depends on different 
upstream pathways and specific cell17. Our further research aimed to dissect the upstream regulation of NF-κB. 
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Figure 3.   LA activates FOXO1 expression through the ER. (a) The WB results suggested FOXO1 activation 
by LA. (b) The FOXO1 inhibitor AS1842856 reduced the high apoptosis rate of GCs caused by LA. N = 3. (c) 
ELISA revealed that the level of inflammatory cytokines returned to values comparable to baseline after adding 
FOXO1 inhibitor AS1842856. N = 3. (d) Corresponding mRNA levels of IL-6, IL-1β, TNF-α, and CASPASE3 
in the absence or presence of AS1842856. N = 3. (e) Effect of LA on CASPASE3 activity with or without 
AS1842856. N = 5. (f, g), WB and real-time PCR results suggested that the increased FOXO1 level returned to 
values comparable to baseline when the effect of LA was antagonized by ICI 182,780. N = 3. *P < 0.05 versus 
control group, #P < 0.05 versus LA group. CON: control group; LA: LA group; AS + LA: AS1842856 + LA group; 
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IL-6: interleukin-6; IL-1β: interleukin-1β; TNF-α: tumor 
necrosis factor α; CASPASE3: cysteine-aspartic acid protease 3; FOXO1: forkhead box O 1.
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Figure 4.   LA leads to increased intracellular ROS levels through the ER-FOXO1 pathway. (a) Flow cytometry analyses 
showed that intracellular ROS was significantly increased. N = 3. (b) SOD content was reduced by LA. N = 3. (c) The 
apoptosis rate was reduced after administration of NAC. N = 3. (d) NAC enabled CASPASE3 activity level to normal. 
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By blocking ER, repressing FOXO1, and clearing excess intracellular ROS, LA was unable to elevate mRNA 
expression of NF-κB 1 (Fig. 5e). More intuitively, LA enhanced the protein expressions of phosphorylated IκBα 
and phosphorylated NF-κB subunit p65, whereas corresponding inhibitors eliminated the enhancement in these 
protein expressions (Fig. 5f).

Discussion
LA is an important PUFA and its deficiency has been linked to sterility18. However, LA derivatives, such as 
hydroxyoctadecadiene acids (HODE), play a role in pathological conditions related to reproduction, especially 
PCOS19–21. No research has been conducted on the correlation between reproductive diseases and LA itself. Based 
on our discovery of a significant difference in the concentration of LA in the follicular fluid of patients with 
PCOS13, this study further demonstrated that LA induces ovarian GCs apoptosis and inflammation, potentially 
contributing to the etiology of PCOS. RNA-seq analysis of PCOS GCs has revealed that differentially expressed 
genes (DEGs) in lipid metabolism pathway and fatty acid biosynthetic processes are enriched (DEGs numbers 
of the two pathways are more than that of other GO or KEGG pathways) and abnormally expressed22. During 
follicular development, the intrafollicular cells of polycystic ovaries exhibit abnormal maturation, leading to 
the absence of dominant follicles, which is a principal reason for anovulation and oligovulation. As the largest 
number of supporting cells in follicles, ovarian GCs not only provide nutrients and growth regulators for oocyte 
development but also determine the fate of follicles23. A popular viewpoint in the academic community is that 
apoptosis of GCs may be involved in ovulatory dysfunction in PCOS6–8,24. Although apoptosis of ovarian GCs 
tends to increase according to the stage of follicular development25, patients with PCOS exhibit high percentages 
of both early and late apoptosis6, along with proliferation suppression26. The GCs of androstenedione-induced 
PCOS mice not only showed increased apoptosis but also exhibited abundant lipid droplets27, which is consist-
ent with our results. The apoptosis-inducing effect of LA has also been demonstrated in colorectal cancer28 
and human aortic endothelial cells29. Additionally, high-dose linoleic was shown to inhibit the viability of rat 
pancreatic exocrine cells30.

ER is a ligand-activated protein belonging to the steroid and nuclear receptor superfamily31. The ER regulates 
the transcription of genes involved in growth, metabolism, sexual development, gestation, and other reproductive 
functions32. Mammalian ER is encoded by two genes, ESR1 and ESR2, which function as signal transducers and 
transcription factors to modulate the expression of target genes31. The molecular docking and molecular dynam-
ics simulations conducted in our study collectively suggested that LA exhibits a consistent and stable binding 
affinity for ERs. Thus, it is a potential ligand that binds to both ER subtypes, thereby regulating the expression 
of downstream genes. Following LA treatment, the mRNA expression of these two genes in GCs significantly 
increased. Blockade of ER by ICI 182780 resulted in the abrogation of apoptosis induced by LA, confirming that 
binding to ER is the initial step in LA effect on GCs. In 1998, Hilakivi-Clarke et al. confirmed that a high-fat diet 
(HFD) may be an important factor in increasing estrogenic activity during pregnancy33. Different dietary PUFAs 
may affect lipid metabolism by altering ER expression34. In a case-case study, investigators discovered that dietary 
consumption of LA influenced the ER status in patients with premenopausal breast cancer35. The alterations in 
the expression of ERα and ERβ in PCOS may be related to abnormal follicular development36. A mouse model 
showed that excessive ER activation by injecting estrogen into female mice can cause anovulation and follicular 
cysts37. More importantly, ERβ may play a role in the pathogenesis of GC tumor, acting as a binding partner of 
proteins involved in the apoptotic cascade in GCs38.

FOXO1 belongs to the forkhead transcription factor (FOX) family, which modulates various downstream 
genes involved in apoptosis, autophagy, OS, cell cycle, and metabolic and immune regulation39. In our study, the 
activation of FOXO1 by LA increased intracellular ROS levels, indicating a crucial role for FOXO1 in mediat-
ing the oxidative and anti-oxidative systems in GCs. When AS1842856 was used to repress FOXO1, the LA-
induced changes in GCs were fully restored. LA binds to the ER to activate FOXO1, inducing an increase in 
the transcription and expression of FOXO1. This is the first study to report the relationship between LA and 
FOXO1 expression. Consistent with our findings, non-esterified fatty acids induce OS, apoptosis, and steroid 
hormone synthesis disorders in bovine GCs by regulating FOXO1 phosphorylation and nuclear translocation40. 
Additionally, FOXO1 has been implicated in mediating heparin-binding epidermal growth factor-like growth 
factor (HB-EGF) -induced apoptosis of GCs41.

OS-induced injury in GCs is considered a common trigger for follicular atresia42. Women with PCOS have 
increased OS and decreased anti-oxidant capacity43. OS in cells manifests as an over-physiological level of ROS. 
Elevated ROS expression levels in PCOS GCs significantly induce cell apoptosis, thereby affecting oocyte quality 
and reducing the positive outcomes of in vitro fertilization-embryo transfer (IVF-ET) in women with PCOS44. 
We confirmed that LA induces ROS production in GCs, accompanied by a decrease in the antioxidative enzyme 
SOD. This phenomenon was attributed to increased expression of FOXO1. SOD catalyzes the dismutation of 
O2¯ to H2O2 and O2. The anti-oxidant capacity eliminated by LA was restored by the ER antagonist ICI 182780 
and FOXO1 inhibitor AS1842856, further the apoptotic and inflammatory phenotypes were also rescued by the 
inhibitors. The protective effects of ameliorating OS and ROS by inhibiting FOXO1 were observed in primary 
rat alveolar epithelial cells subjected to smoke inhalation-induced lung injury45. LA-induced OS has also been 
identified in tissues such as the liver of cows46.

Numerous clinical data have explored the associations between LA and inflammation, but conflicting opin-
ions persist regarding whether it increases or decreases inflammation47,48. Our results unequivocally confirm 
that LA exposure induces inflammation in ovarian GCs. Consistent with our findings, a HFD rich in LA was 
linked to an increased risk of colon inflammation49. PCOS is a chronic, low-grade inflammatory disease50. 
Infertile women with PCOS have higher TNF-α and IL-6 levels in follicular fluid51,52, and elevated IL-1β level 
in serum53. We determined that LA-induced phosphorylation of the NF-κB subunit p65 and IκBα, activating 
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the canonical NF-κB pathway, stimulated the secretion of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α 
by GCs, providing a possible explanation for the surge in their levels. Simultaneously, the expression of another 
NF-κB subunit, NF-κB 1 (p105/p50), was enhanced. The p50-p65 heterodimer plays a pivotal role in the canonical 
NF-κB pathway54. Under normal conditions, these dimers are retained in the cytoplasm, bound by IκB55. Acti-
vation of the canonical NF-κB pathway involves phosphorylation of IκBα, leading to the release of the p50-p65 
dimer and phosphorylation of the p65 subunit. This process facilitates translocation of the heterodimer to the 
nucleus and activates target gene transcription. Phosphorylated p65 is crucial for the interaction of RelA with 
CBP/300 coactivator complexes, enabling its translocation from the cytoplasm to the nucleus, activating the 
NF-κB pathway56, resulting in histone and p65 acetylation, and promoting target gene transcription57. Our find-
ings demonstrate that LA activates the canonical NF-κB pathway in GCs. Adding NAC to scavenge ROS hinders 
the phosphorylation of p65 and IκBα, as well as the secretion of pro-inflammatory cytokines, implying that ROS 
is upstream of NF-κB58. ROS has been shown to activate NF-κB through alternative IκBα phosphorylation17. 
Respectively inhibiting ER and FOXO1, and clearing intracellular ROS obstructed the activation of NF-κB by 
LA, and subsequent apoptosis. Recently, LA has been reported to affect the apoptosis pathway through NF-κB in 
in vitro development of parthenogenic porcine embryos59. As found in our research, the NF-κB inhibitor JSH-23 
can block LA-induced GCs apoptosis, indicating that NF-κB mediate LA-induced apoptosis.

A previous study indicated that patients with PCOS have a higher percentage of apoptotic GCs than the 
control group6. Increased apoptosis in GCs has been identified as a major factor contributing to aberrant follicle 
maturation7, underlying the abnormal ovarian function observed in PCOS. Regardless of whether apoptosis 
is initiated extracellularly or intracellularly, the caspase cascade serves as the terminal phase of apoptosis60. 
Caspase-3, the ultimate effector, contributes to apoptosis by directly disassembling cell structures61. Boone et al. 
reported that Caspase-3 is localized in the GCs of atretic follicles rather than in healthy follicles62. Our work 
demonstrated that the level of CASPASES3 was increased and its activity was enhanced by LA, in accordance with 
the observed apoptotic effect. NF-κB inhibitor JSH-23 impeded the activation of CASPASE3, further confirm-
ing that the activation of NF-κB is a pre-requisite for LA-induced GCs apoptosis. Prior to incubation with LA, 
pre-treatment respectively with ICI 182780, AS 1842856, and NAC reduced the apoptotic rate of GCs, revealing 
that LA-induced GCs apoptosis is mediated by ER-FOXO1-ROS- NF-κB pathway.

Conclusion
Our study showed that LA can induce apoptosis and inflammation in GCs through the ER-FOXO1-ROS-NF-κB 
pathway (Fig. 6). To the best of our knowledge, this is the first study to identify the precise pathway through 
which LA affects GCs, with experimental data confirming that ER is the target receptor of LA. As the detrimental 
effects of LA on GCs, this type of ω-6 PUFAs may participant in the pathophysiology of PCOS, which should 
draw more attention. Given that the present dietary recommendation is to consume higher ratio of ω-6 PUFAs 
to lower the incidence of cardiovascular diseases, it is imperative to be more vigilant about the reproductive risks 
associated with this type of dietary choices. Appropriate management of inflammation and apoptosis in GCs is 

Figure 6.   Schematic diagram illustrating the regulatory mechanism of LA on GC apoptosis and inflammation. 
LA exerts its effect by binding to the ER and subsequently initiating the activation of FOXO1. Elevated FOXO1 
expression results in a redox system imbalance, manifested as increased ROS and decreased SOD levels. This 
imbalance further activates inflammation-related indicators. The p50/p65 complex uncouples with IκBα, then 
p65 and IκBα are phosphorylated. p-IκBα undergoes degradation, whereas p-P65 translocates to the nucleus 
to stimulate downstream NFκB-related gene expression such as IL-6, IL-1β, and TNF-α. Simultaneously, the 
activation of NFκB leads to CASPASE3 overexpression and enhances its activity, ultimately resulting in GC 
apoptosis. (Constructed using Figdraw) LA: linoleic acid; ER: estrogen receptor; FOXO1: forkhead box O 1; 
ROS: reactive oxygen species; NFκB: nuclear factor kappa-B; SOD: superoxide dismutase; IL-6: interleukin-6; 
IL-1β: interleukin-1β; TNF-α: tumor necrosis factor α; CASPASE3: cysteine-aspartic acid protease 3; P65: NF-κB 
subunit p65; p-P65: phosphorylated NF-κB subunit p65; IκBα: NF-κB inhibitor alpha ; p-IκBα: phosphorylated 
NF-κB inhibitor alpha; CBP/p300: histone acetyltransferases CBP and p300.
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critical for regaining ovarian function in patients with PCOS. Our research has enabled a deeper understanding 
of the pathophysiological mechanisms underlying PCOS. In order to collect more data confirming the clinical 
phenotypes of PCOS patients, our team is currently conducting animal experiments on LA administration.

Data availability
All data generated or analyzed during this study are included in this published article.
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