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Global‑best brain storm 
optimization algorithm based 
on chaotic difference step 
and opposition‑based learning
Yanchi Zhao 1, Jianhua Cheng 1*, Jing Cai 2 & Bing Qi 1

Recently, the following global‑best strategy and discussion mechanism have been prevailing to 
solve the slow convergence and the low optimization accuracy in the brain storm optimization (BSO) 
algorithm. However, the traditional BSO algorithm also suffers from the problem that it is easy to fall 
into local optimum. Therefore, this work innovatively designed the chaotic difference step strategy. 
This strategy introduced four commonly used chaotic maps and difference step to expand the 
population search space to improve the situation. Moreover, opposition‑based learning thought was 
innovatively adopted into the BSO algorithm. The thought aims to generate the opposition‑based 
population, increase the search density, and make the algorithm out of the local optimum as soon 
as possible. In summary, this work proposed a global‑best brain storm optimization algorithm based 
on the chaotic difference step and opposition‑based learning (COGBSO). According to the CEC2013 
benchmark test suit, 15 typical benchmark functions were selected, and multiple sets of simulation 
experiments were conducted on MATLAB. The COGBSO algorithm was also compared to recent 
competitive algorithms based on the complete CEC2018 benchmark test suit. The results demonstrate 
that the COGBSO outperforms BSO and other improved algorithms in solving complex optimization 
problems.

Currently, the swarm intelligence algorithm, an emerging optimization algorithm, is indispensable to the field 
of artificial intelligence, which makes the population gradually move toward the optimal solution by simulating 
various behaviors and survival rules of the  swarm1. Traditional swarm intelligence algorithms include but are 
not limited to the ant colony optimization algorithm (ACO) and the particle swarm optimization algorithm 
(PSO)2,3. With the continuous further research of swarm intelligence algorithms, such novel swarm intelligence 
algorithms have sprung up as the brain storm optimization algorithm, the cuckoo search algorithm (CS), the 
fruit fly optimization algorithm (FOA), and the firefly algorithm (FA)4.

Inspired by a human brainstorming conference, the BSO algorithm has received extensive academic atten-
tion regarding its high optimization accuracy and superior optimization in high  dimensions5. The algorithm 
consists of four steps: clustering, substitution, selection, and mutation. Moreover, the brain storm optimization 
algorithm greatly improves the diversity of the population due to the use of clustering operations, which divides 
the population into multiple groups and makes it easier to jump out of the local optimum compared to other 
swarm intelligence algorithms. The BSO algorithm has succeeded in path  planning6, image  processing7, wireless 
sensor networks, and other  fields8. To demonstrate the research value of the brain storm optimization algorithm, 
Fig. 1 illustrates the number of papers published every three years since its inception in 2011. As shown in this 
figure, only fourteen papers were published between 2011 and 2013, with a significant increase in the number 
of papers published between 2014 and 2016. The number of papers has been increasing recently, indicating that 
more and more scholars are committed to improving and applying the brain storm optimization algorithm.

Although the clustering process may enhance the population’s diversity, traditional brain storm optimization 
still has some disadvantages. Compared with other improved intelligence algorithms, the traditional BSO algo-
rithm converges more slowly and fails to find the real optimal solution. A novel DE algorithm named quantum-
based avian navigation optimizer algorithm (QANA) was  proposed9. The QANA is modeled by introducing long-
term and short-term memories, a V-echelon communication topology, and quantum-based navigation including 
two mutation strategies and a qubit-crossover operator. The experimental results show that the QANA is highly 
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competitive with multiple intelligent algorithms. Mohammad proposed an enhanced moth-flame optimization 
(MFO-SFR)  algorithm10. The algorithm introduces an effective stagnation finding and replacing (SFR) strategy 
to maintain population diversity effectively and improve the algorithm’s performance. Ali proposed the improved 
binary quantum-based avian navigation optimizer algorithm (IBQANA) based on the QANA  algorithm11; the 
performance of the algorithm is further improved. A novel bio-inspired algorithm named starling murmura-
tion optimizer (SMO) was  proposed12. The SMO introduces a dynamic multi-flock construction and three new 
search strategies: separating, diving, and whirling. The SMO is applied to solve several mechanical engineering 
problems, and results demonstrate that it can provide more accurate solutions.

Compared to these very competitive algorithms, the performance of traditional BSO algorithms needs to be 
further improved. Therefore, scholars have improved the traditional BSO algorithm’s basic parameters, clustering 
methods, and mutation strategies. Yu presented a BSO algorithm based on an adaptive search radius to increase 
the convergence speed, which designed three search strategies by introducing the successful memory and failure 
memory to adjust the step  range13. This algorithm is a fusion of diverse fundamental parameters designed to 
enhance performance for varying problems. However, its optimization accuracy increases much less than the 
original BSO, and this algorithm cannot solve the problem that the BSO algorithm tends to fall into the local 
optimum. The BSO algorithm based on elite individual guidance and parameter adaptation introduced the elite 
and global-best individuals to guide population  mutation14. This algorithm sets adaptive parameters to increase 
the number of global mutations in the early iteration and the number of local mutations in the later iteration, 
whose convergence speed and optimization accuracy are significantly improved. Still, the algorithm is prone to 
local convergence when solving multi-modal optimization problems. El-Abd proposed the BSO algorithm based 
on global-best individual guidance and fitness grouping to cluster, reducing time complexity and improving 
 performance15. Meanwhile, this algorithm converges slower than some of the latest improved BSO algorithms. 
The low convergence speed makes its optimization accuracy unsatisfactory when the iterations are limited. 
A BSO algorithm was proposed based on the difference-mutation and the global-best individual, where the 
difference step replaces the original BSO mutation step and significantly improves the convergence  speed16. This 
algorithm follows the global-best mutation strategy and leads to dramatically improved optimization. However, 
the problem of trapping in local optimum remains, making the algorithm perform poorly in solving complex 
multi-modal problems. Tuba creatively introduced chaos theory and proposed a BSO algorithm based on chaotic 
maps to improve the BSO  algorithm17. Compared with the original BSO algorithm, its performance slightly 
improves yet hardly leads to apparent advantages. However, implementing chaotic maps proposes innovative 
methods to address the challenge of algorithms predisposed to local convergence. Based on multi-branch chaotic 
maps, a BSO algorithm introduced eight chaotic maps and improved its optimization accuracy, but with low 
convergence speed and higher time  complexity18. A BSO algorithm was proposed based on an adaptive self-
scaling chaotic search  mechanism19. This local search method adjusts the search space based on the adaptive 
self-scaling mechanism, and the chaotic local search mechanism prevents the algorithm from falling into the local 
optimum. Its convergence speed is improved somewhat, but the optimization accuracy is low. A BSO algorithm 
based on an advanced discussion mechanism was  proposed20, which introduced a difference step strategy and 
simplified the selection process of the BSO algorithm. The goal of strengthening the global search in the early 
stage and the local search in the later stage can improve the algorithm’s optimization accuracy. Furthermore, the 
difference step strategy has enhanced the algorithm’s convergence speed. However, the optimization accuracy 
for high-dimensional multi-modal problems is short of expectation, and it is easy to fall into the local optimum 
trap. The global-best brain storm optimization algorithm based on discussion mechanism and difference step was 
proposed by reviewing the  literature21. This algorithm combines several improvement strategies with different 
properties. It has optimal convergence speed and optimization accuracy compared to previous algorithms. 
However, it also tends to fall into local optimum when facing complex optimization problems. Therefore, the 
algorithm also needs further improvement.

Figure 1.  The number of papers on brain storm optimization since 2011.
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To sum up, the improved BSO algorithms in the existing reference have such problems as low convergence 
speed, poor optimization accuracy, and a high probability of falling into local optimum. The low convergence 
speed reduces the algorithm efficiency, i.e., for a given accuracy requirement, the lower the convergence speed, 
the more time it will take, thus reducing the effectiveness of the practical application. Optimization accuracy 
is the most essential metric for testing the performance of an optimization algorithm, and low accuracy means 
poor algorithm performance. The algorithm may fall into the local optimum and waste a vast of time during the 
iteration cycle, thereby impacting the final accuracy of the optimization search. Therefore, the improvement of the 
brain storm optimization algorithm in this paper is to further improve the convergence speed and optimization 
accuracy of the algorithm based on the existing improved algorithm and to improve the ability of the algorithm 
to jump out of the local optimum when facing complex problems.

Overall, this work introduces opposition-based learning thought and chaos theory, fusing chaotic maps 
and difference steps to construct a chaotic difference step strategy. The major innovations of the paper are the 
algorithms’ remarkable ability to jump out of local convergence when facing complex optimization problems with 
multiple peaks and high dimensions and its higher convergence speed and optimization accuracy. Subsequently, 
a global-best BSO algorithm is proposed based on chaotic difference step and opposition-based learning. This 
work: (1) proposes the chaotic difference step strategy, introduces the opposition-based learning thought to 
generate the opposition-based population, and designs the trigger condition and end condition of the strategy 
to reduce the algorithm’s time complexity; (2) combines the existing global-best mutation strategy combined 
with the discussion mechanism to improve the convergence speed and optimization accuracy; (3) completes a 
large number of experiments and data analysis based on the CEC2013 and  CEC201822,23.

BSO
Human brain storm conferences inspire the brain storm optimization algorithm. BSO algorithm sufficiently 
exerts the characteristics of human intelligence to solve problems and outperforms in convergence speed and 
optimization accuracy for various optimization problems. Moreover, it has more advantages than traditional 
optimization algorithms in high-dimensional problems. The algorithm includes four main steps: clustering, 
substitution, selection, and mutation.

Firstly, the K-means clustering analysis method is used. The current population of n solutions to enter the 
iteration is divided into m categories, and the purpose is to simulate the human group discussion behavior and 
improve the search efficiency of the algorithm.

Second, setting a parameter preplace and generating a random number r1 between 0 and 1. When r1 is less than 
preplace , a new individual will be generated to replace the selected cluster center. If the value of preplace is too large, 
it will affect the algorithm’s convergence efficiency, reducing the population’s diversity. If this value is too small, 
it may cause algorithms to make the algorithm converge in advance.

Third, setting the three probability parameters pone , pone_center and ptwo_center , generating random number r2
,r3 and r4 . When r2 is less than pone , select an individual in one cluster to mutate. Otherwise, select an individual 
from each cluster to mutate after fusion. If an individual in a cluster is selected for mutation, when r3 is less than 
pone_center , the cluster center is selected for mutation; otherwise, a random individual in this cluster is selected for 
mutation. If individuals in two clusters are selected to mutate, when r4 is less than ptwo_center , selecting the cluster 
centers of the two clusters to mutate; otherwise, selecting random individuals in each cluster (two individuals 
cannot be cluster centers at the same time) to mutate after fusion.

Fourth, fusion or mutation operations on the selected individuals are performed, and then they are compared 
with the original individuals according to their fitness. The outstanding individuals will be retained after the 
above operations. The fusion step is as follows:

where Xf  is a new individual after fusion, v is a random number from 0 to 1, X1 and X2 are two random individuals 
to be merged. The mutation step is as follows:

where Xm is a new individual after mutation, Xs is the selected individual to be mutated, n(µ, σ) is the Gaussian 
random number with the mean of µ and the variance of σ , and ξ is the mutation coefficient with the mathematical 
expression in (3).

where gmax is the maximum number of iterations, g is the current iteration number, k is the adjustment factor. 
The pseudo code of the BSO algorithm is shown in Algorithm 1.

(1)Xf = v × X1 + (1− v)× X2,

(2)Xm = Xs + ξ × n(µ, σ),

(3)ξ = log sig

(

0.5× gmax − g

k

)

× rand(),
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Algorithm 1.  The BSO algorithm.

COGBSO
In this section, improvements of the BSO algorithm in two aspects are introduced to improve the performance 
of the algorithm. The steps of the COGBSO algorithm are shown in Algorithm 2.

Discussion mechanism based on global‑best strategy
In the early iteration of intelligent algorithm search, the global search should be strengthened to improve the 
diversity of the population and convergence speed. The local search should be strengthened in the later iteration 
to improve the optimization accuracy. Because the traditional BSO algorithm’s selection process is entirely 
random and hard to meet the above requirements, a discussion mechanism is  introduced20, which divides the 
selection process into two situations: the inter-group discussion and the intra-group discussion. An adaptive 
probability parameter is set to adjust the frequency of inter-group and intra-group discussion. The adaptability 
of the BSO algorithm is strengthened, and the algorithm’s performance is improved.

The discussion mechanism is divided into two parts: the intra-group discussion and the inter-group 
discussion. Intra-group discussion means that the individuals to be mutated are generated in one cluster, and 
it can be divided into three mutation types: random cluster center mutation, random individual mutation, 
and mutation after the fusion of two random individuals in the group. The inter-group discussion is that the 
individuals to be mutated are generated by two different clusters, including two random cluster centers fused 
and then mutated, two random individuals fused and then mutated, and new individual randomly generated. 
The new individual is randomly generated to ensure the diversity of the population and reduce the probability 
of the algorithm falling into the local optimum. In addition, set the adaptive probability parameter as follows:

where Pintra is the probability of intra-group discussion, Pinter is the probability of inter-group discussion, Pl is 
the lowest probability of intra-group discussion being adopted, Pr is the linear range parameter.

The mutation step adopts the difference step. Compared with the Gaussian mutation step, the difference step 
has better adaptability, which can strengthen the global search ability in the early iteration and the local search 
ability in the later iteration. The mutation form of the difference step is as follows:

where X1 and X2 are two random individuals in the population. Since there is a large gap between individuals 
in the early population, the difference step is large, which can improve the search range. While the later 
individual gap is small, a smaller difference step can make the population search in a small range and improve 
the optimization accuracy.

Many intelligent algorithms have applied the global-best strategy with desirable  results24,25. The global-best 
strategy was introduced into the BSO algorithm for the first  time15. The global-best individual is the individual 
whose fitness of each generation best meets the requirements, and the global-best strategy is to make the newly 

(4)Pintra = Pl + Pr × (
g

gmax
),

(5)Pinter = 1− Pintra,

(6)Xm = Xs + (X1 − X2)× rand(),
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generated individual as close to the global-best individual as possible, which can improve the optimization 
accuracy of the algorithm. The core idea is as follows:

where Xn is the new individual following the global-best individual, R is a vector of dimension D and each 
dimension is a random number from 0 to 1, Xb is the global-best individual, C is the global-best coefficient that 
can affect the degree to which the new individual follows the global-best individual. The calculation method is 
as follows:

, where Cmin is the lower bound of the global-best coefficient, Cmax is the upper bound of the global-best 
coefficient.

Chaotic difference step and opposition‑based population strategy
The global-best strategy and discussion mechanism are combined to improve the traditional BSO algorithm, 
which can significantly improve the algorithm’s optimization accuracy and convergence speed. However, when 
the algorithm deals with high-dimensional multi-modal problems, it is easy to fall into local optimum and barely 
obtain an ideal solution. In order to improve this situation, this paper designs a local optimal escape mechanism 
by combining chaos theory and opposition-based learning.

In recent years, many chaotic maps have been discovered and applied to various fields of human  activities26. In 
intelligent algorithms, the chaotic map is widely used in population initialization, individual selection, mutation, 
and other  processes27,28. Because the chaotic solution has the characteristics of ergodicity, randomness, and 
long-term unpredictability, it can achieve better results than random numbers and improve the algorithm’s 
performance.

In most existing literature, the application of chaotic maps commonly replaces Gaussian mutation, and the 
properties of chaotic solutions can be used to increase the diversity of the population. However, the unpredictable 
mutation of the chaotic step makes it difficult to adjust the step value according to the current population 
distribution. Thus, the algorithm’s further potential can not be exploited. Since the difference step has remarkable 
population adaptability, this paper creatively combines the difference step with the chaotic step and, at the same 
time, retains the advantages of the difference step and the chaotic step, i.e. it has the characteristics of timely 
adjusting the step with the distribution of the population and increasing the diversity of the population at the 
same time.

The chaotic difference step scales the difference step by introducing chaotic maps, which can expand the 
search space and reduce the time of falling into the local optimum. The schematic diagram of its function is 
shown in Fig. 2.

The chaotic difference step can be expressed as:

where y(t) represents a chaotic map. The chaotic difference step formula and the schematic diagram are com-
bined, which can reflect the superiority of the chaotic difference step. In Fig. 2, R1 represents the average radius 
of the search space formed by the traditional difference step, R2 and R3 represent the average radius of the search 
space formed by the difference step after the perturbation of the logistic chaotic map. Two kinds of radii are 
formed because the logistic chaotic map has the characteristic that most of the solutions are distributed near 0 
and 1. Since there is (y(t)− 0.5) part in the formula, there will be two directions of radius reduction and increase 
to generate two search spaces. Take the population size of 10 as an example. It can be seen from Fig. 2 that the 
reduction of the search space makes the population more likely to find better solutions near the local optimal 
point in the range. At the same time, expanding the search space gives the population better diversity, which can 

(7)Xn = Xm + C × R.× (Xb − Xm),

(8)C = Cmin +
g

gmax
× (Cmax − Cmin),

(9)Xm = Xs + (X1 − X2)× rand()+ (X1 − X2)× (y(t)− 0.5),

Figure 2.  Schematic diagram of the chaotic difference step.
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make the positions of new individuals far away from the local optimum, increasing the possibility of jumping 
out of the local optimum.

Additionally, the solutions of different chaotic maps have different distribution characteristics. To fully expand 
the search space, various chaotic maps with different distributions and complementary chaotic maps are selected 
to form chaotic difference step with different intervals. Then, compare the fitness of the individuals after each 
chaotic difference mutation and select the best to retain and update the population so that the algorithm can 
jump out of the local optimum. The four chaotic maps selected in this paper are shown in the following Table 1:

We can achieve this better by illustrating the distinctions among each chaotic map through the visualization 
of chaotic  maps29. Visualizations of four chaotic maps are presented in Fig. 3. Figure 3 illustrates the distribution 
of the chaotic maps. The four selected chaotic maps are distinguishable. The distribution complements each 
other, covering entirely between 0 and 1. The cubic map is evenly distributed and performs a thorough search 
across the entire interval from 0 to 1. The distribution of the sine map is similar to that of the Cubic map, but 
its properties lead to not being able to be distributed near the endpoint 0, thus extending the search space even 
more. The logistic map covers the full range from 0 to 1 but is more centered on the verge. Furthermore, it can 
cause a significant transformation of the step. The circle map shows a more even distribution within the range of 
0.2 to 0.5, as evidenced by the distinct distribution displayed in the figure from the other three maps. Different 
distribution promotes the chaotic difference step adjustment and increases the algorithm’s ability to escape the 
local optimum.

There are various chaotic maps available in chaos theory, yet this work selects these four maps for two rea-
sons. Firstly, more chaotic maps increase time complexity and hinder the algorithm’s overall performance. On 

Table 1.  Definition of chaotic maps.

Chaotic map Definition

Cubic y(t + 1) = ρy(t)(1− y2(t))

Sine y(t + 1) = µ sin(πy(t))

Logistic y(t + 1) = µy(t)(1− y(t))

Circle y(t + 1) = mod(y(t)+ 0.2− ( 0.52π ) sin(2πy(t)), 1)

Figure 3.  The distribution of the four chaotic maps.
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the other hand, the four selected chaotic maps in this work are representative. While such map as the iterative 
map present a similar distribution to the logistic map, its introduction to the algorithm may fail to enhance its 
performance significantly. Therefore, these four chaotic maps are selected in this paper.

The chaotic difference step strategy can expand the search space of the population. Increasing search density 
improves the probability of jumping out of the local optimum if the search space is unchanged. Scientifically, 
opposition-based learning theory increases search density. Tizhoosh first proposed the idea of opposition-based 
learning and applied it to  intelligence30. Then, numerous scholars applied this idea to the intelligent algorithms 
to improve the algorithms’  performance31,32. In these amounts of simulation experiments of the literature, 
generating opposition-based populations through opposition-based solutions can improve the performance of 
the algorithms. Compared to the existing literature on brain storm optimization algorithms, opposition-based 
learning is first introduced into the algorithm. Therefore, to further improve the ability of the algorithm to jump 
out of the local optimum, this paper breaks through and introduces the opposition-based learning thought into 
the brain storm optimization algorithm.

According to probability theory, a solution and its opposition-based solution have a half probability of 
achieving better results. Therefore, an opposition-based solution can be generated after the individual achieves 
mutation, and excellent individuals are retained to improve the probability of jumping out of the local optimum. 
The expression for the opposition-based solution is as follows:

 where Xo is the opposition-based solution, Xd
o  is the d-dimensional component of Xo , MaxPd and MinPd 

represent the maximum and minimum values of the d-dimensional components of all individuals in the current 
population, Xd

m is the d-dimension component of the outstanding individual retained by difference mutation 
and chaotic difference step.

The chaotic difference step and the opposition-based population strategy do not conflict and jointly assist 
the algorithm in jumping out of the local optimum. However, it will significantly increase the time and space 
complexity of the algorithm. Therefore, a trigger condition and an end condition are required, and the schematic 
diagram is shown in Fig. 4.

Where t is the count variable, flag is the trigger variable. When flag is equal to 1, two strategies are executed, 
and when it is equal to 0, the original process remains unchanged. This design can improve the problem of 
increasing the algorithm’s time complexity caused by introducing a chaotic difference step and opposition-
based population strategy in the COGBSO algorithm. Since the chaotic difference step and opposition-based 
population strategy in this paper are designed to assist the algorithm in jumping out of the local optimum, it is 
necessary to define when the algorithm is in the local optimum. After combining many experimental tests, this 
paper briefly defines the local optimum. If the algorithm falls into a local optimum, which means that when the 
optimal fitness value remains unchanged for more than 20 iterations, the search space is expanded through the 

(10)Xd
o = MaxPd +MinPd − Xd

m,

Figure 4.  The trigger condition and end condition.
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chaotic difference step, and the opposition-based population is generated to help the algorithm escape the local 
optimum. The algorithm’s time complexity increases considerably at this point, so it is necessary to set an end 
condition to enable the algorithm to stop using both strategies in time. The end condition can be divided into two 
cases. On the one hand, if the algorithm’s fitness can quickly develop in a better direction after introducing the 
two strategies, it is considered that the strategies have played a role in assisting the algorithm to jump out of the 
local optimum. Then, the two strategies can be deactivated. On the other hand, if the algorithm’s fitness does not 
change within a long iteration period after the introduction of the two strategies, the new strategy is considered 
to have lost its effect, or the algorithm’s arithmetic power reaches its limit, which makes it impossible to improve 
its performance. Then, the algorithm can stop using the two strategies promptly, thus reducing the algorithm’s 
time complexity. The end conditions are also clearly defined in Fig. 4. If the fitness value of the algorithm changes 
or the fitness value does not change in 50 iterations, it will jump back to the original mutation process to reduce 
the algorithm’s time complexity. The algorithm pseudo code is shown in the following Algorithm 2.

Algorithm 2.  The COGBSO algorithm.

Experimental results
According to the CEC2013 benchmark test suit, 15 benchmark functions, including uni-modal and multi-
modal, are selected and defined in Table 2. Experiments are performed on 10, 20, and 30-dimensional condi-
tions, respectively. Simulation comparison experiments are carried out for eight algorithms:  BSO5,  GBSO15, 
 GDBSO16,  ADMBSO20,  SSA33,  MSCA34,  MSWOA35, and COGBSO. In addition, to more fully validate the per-
formance of the algorithms, this paper also includes a variety of competitive intelligent algorithms tested using 
the CEC2018 benchmark test suit for comparison, with the test conditions set to 30-dimensional9,36. Then, 
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analyze the performance of each algorithm, and each group of simulations is run 30 times independently. The 
simulation platform is Matlab 2018a.

Parameters settings
Some basic parameters of the BSO algorithm and its improved algorithm compared in this paper are referenced 
 in5. The parameter settings are as follows: the population size n = 100 , the number of clusters m = 5 , the 
adjustment factor k = 20 , the number of evaluations Fmax = D ∗ 104 , the probability parameter Preplace = 0.1 , 
Pone = 0.5 , Pone_center = 0.3 and Ptwo_center = 0.2 . The parameters (El-Abd, 2017) related to the global-best 
strategy are set as: Cmin = 0.2 and Cmax = 0.8 . The discussion mechanism probability parameter (Yang et al.20) 
is set to Pl = 0.2 and Pr = 0.7 . Meanwhile, the algorithm in this paper also compares five other types of swarm 
intelligence algorithms with parameter  settings9,33–36.

Simulation results and analysis
The optimization situation of each algorithm under the condition that the dimension D is equal to 10, 20, and 30 
is shown in Tables 3, 4, 5, 6, 7, and 8. Each benchmark function is run 30 times, and four data types are obtained 
through statistical analysis: mean value, standard deviation, best value, and worst value. The comparison of the 
algorithms based on the complete CEC2018 benchmark test suit is shown in Tables 9 and 10. The best mean 
value of each benchmark function is marked in bold.

Several conclusions can be drawn by analyzing the optimization accuracy of 15 test functions selected from 
the CEC2013. First, for the 10-dimensional problems in the comparison of other improved brain storm optimi-
zation algorithms, the performance of the COGBSO algorithm is much better than that of the BSO algorithm, 
and the performance of the relatively improved GBSO, GDBSO, and ADMBSO algorithms are still greatly 
improved. The COGBSO algorithm has the best performance on all benchmark functions. The main reason is 
that the COGBSO algorithm combines the advantages of the GDBSO and ADMBSO algorithms to improve the 
convergence speed of the algorithm. Moreover, the possibility of the algorithm jumping out of the local optimum 
is significantly increased with the assistance of the chaotic difference step and the opposition-based population 
strategy, which improvs the optimization accuracy of the algorithm. The COGBSO algorithm still has some 

Table 2.  Benchmark functions.

 Function  Definition  Range

 F1
 
F1=

D
∑

i=1
x2i  [− 100, 100]

 F2
 
F2=

D
∑

i=1
(106)

i−1
D−1 x2i  [− 100, 100]

 F3
 
F3 = x21 + 106

D
∑

i=2
x2i  [− 100, 100]

 F4
 
F4 = 106x21 +

D
∑

i=2
x2i  [− 100, 100]

 F5
 
F5 =

√

D
∑

i=1
|xi |

2+4 i−1
D−1  [− 100, 100]

 F6
 
F6 =

D−1
∑

i=1

(

100
(

x2i − xi+1

)2
+ (xi − 1)2

)

 [− 2.048, 2.048]

 F7
 
F7 = 20+ e − 20 exp

(

−0.2

√

1
D

D
∑

i=1
x2i

)

+ exp

(

1
D

D
∑

i=1
cos (2πxi)

)

 [− 32, 32]

 F8
 
F8 =

D
∑

i=1
|xi sin (xi)+ 0.1xi |  [− 10, 10]

 F9
 
F9 =

D
∑

i=1

x2i
4000 −

D
∏

i=1
cos

(

xi√
i

)

+ 1  [− 600, 600]

 F10
 
F10 =

D
∑

i=1

(

x2i − 10 cos (2πxi)+ 10
)

 [− 5.12, 5.12]

 F11
 
F11 =

D
∑

i=1
|xi | +

D
∏

i=1
|xi |  [− 100, 100]

 F12  F12 = max |xi |, (1 < i < D)  [− 100, 100]

 F13
 
F13 =

D
∑

i=1
x10i  [− 10, 10]

 F14
 
F14 =

D
∑

i=1
|xi |  [− 100, 100]

 F15
 
F15 =

D
∑

i=2

(

(xi − 1)2 +
(

x1 − x2i
)2
)

 [0, 10]
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BFs BSO GBSO ADMBSO GDBSO COGBSO

F1

Mean 2.17E-22 1.69E−22 7.27E−38 3.13E−39 1.57E−67

Std 8.50E−23 7.54E−23 1.45E−37 5.81E−39 2.37E−67

Min 5.16E−23 5.57E−23 8.41E−40 5.56E−41 3.34E−69

Max 3.76E−22 3.76E−22 5.55E−37 2.06E−38 8.80E−67

F2

Mean 1.84E+04 2.49E−18 5.00E−33 5.06E−31 3.86E−55

Std 2.24E+04 1.30E−18 1.19E−32 1.22E−30 1.18E−54

Min 8.99E+01 1.16E−18 2.14E−35 4.83E−35 6.71E−58

Max 8.62E+04 5.12E−18 4.67E−32 4.48E−30 4.64E−54

F3

Mean 2.35E+02 1.31E−16 2.10E−27 7.15E−24 2.30E−42

Std 2.38E+02 4.35E−17 3.81E−27 2.63E−23 8.70E−42

Min 1.38E−01 5.39E−17 2.55E−29 5.90E−28 3.16E−47

Max 7.00E+02 2.14E−16 1.36E−26 1.02E−22 3.38E−41

F4

Mean 1.13E+03 3.18E−20 1.71E−36 5.34E−38 3.37E−66

Std 8.45E+02 2.13E−20 1.93E−36 5.12E−38 6.91E−66

Min 2.30E+02 1.05E−20 1.38E−38 3.71E−39 9.80E−69

Max 3.42E+03 8.76E−20 7.38E−36 1.73E−37 2.69E−65

F5

Mean 8.65E−05 7.01E−14 5.55E−26 3.49E−25 4.99E−38

Std 6.80E−05 3.97E−14 9.69E−26 7.51E−25 7.29E−38

Min 1.03E−06 2.14E−14 1.28E−29 1.89E−28 9.06E−40

Max 2.27E−04 1.52E−13 3.53E−25 2.68E−24 2.22E−37

F6

Mean 6.19E+00 5.38E+00 4.69E−08 5.57E−09 6.17E−10

Std 1.07E+00 1.95E+00 5.34E−08 6.41E−09 4.60E−10

Min 3.91E+00 2.00E−09 1.16E−10 6.36E−10 1.50E−10

Max 8.22E+00 7.39E+00 1.43E−07 1.96E−08 1.08E−09

F7

Mean 1.88E−11 1.55E−11 2.93E−15 2.93E−15 1.87E−15

Std 3.56E−12 3.20E−12 6.88E−16 6.88E−16 1.38E−15

Min 1.36E−11 7.65E−12 4.44E−16 4.44E−16 4.44E−16

Max 2.50E−11 1.92E−11 3.11E−15 3.11E−15 3.11E−15

F8

Mean 2.97E−03 3.71E−12 5.71E−09 1.68E−11 6.05E−18

Std 2.39E−03 8.06E−13 2.11E−08 4.10E−11 1.61E−17

Min 3.79E−12 2.50E−12 4.48E−15 2.91E−15 1.25E−33

Max 7.31E−03 5.31E−12 8.18E−08 1.26E−10 5.15E−17

F9

Mean 4.30E+00 1.13E−01 1.38E−01 3.41E−01 5.64E−02

Std 1.86E+00 7.84E−02 1.38E−01 1.27E−01 3.48E−02

Min 2.57E+00 2.95E−02 1.48E−02 4.94E−02 9.86E−03

Max 7.70E+00 2.61E−01 4.85E−01 5.26E−01 1.21E−01

F10

Mean 5.97E+00 4.78E+00 1.03E+01 2.14E+01 4.31E+00

Std 1.88E+00 1.20E+00 6.45E+00 6.93E+00 2.15E+00

Min 2.98E+00 2.98E+00 1.99E+00 4.98E+00 9.95E−01

Max 8.95E+00 7.96E+00 2.39E+01 3.04E+01 6.96E+00

F11

Mean 3.57E+01 3.30E−11 6.36E−12 5.37E−12 3.37E−23

Std 6.13E+01 9.03E−12 1.75E−11 1.99E−11 7.75E−23

Min 3.65E−11 1.23E−11 1.12E−16 2.51E−16 1.33E−33

Max 1.52E+02 4.60E−11 6.42E−11 7.72E−11 2.97E−22

F12

Mean 9.14E−12 7.51E−12 8.95E−15 1.88E−15 3.76E−23

Std 1.72E−12 1.09E−12 5.57E−15 1.67E−15 3.76E−23

Min 6.09E−12 5.45E−12 1.42E−15 2.60E−16 4.06E−24

Max 1.18E−11 9.12E−12 2.03E−14 6.39E−15 1.46E−22

F13

Mean 1.45E−110 4.33E−111 3.71E−157 4.73E−168 1.48E−267

Std 1.75E−110 6.41E−111 0.00E+00 0.00E+00 0.00E+00

Min 1.12E−111 1.18E−113 3.64E−169 1.21E−178 2.43E−283

Max 6.72E−110 2.43E−110 3.23E−156 6.47E−167 1.11E−266

F14

Mean 4.06E−11 3.12E−11 1.32E−17 3.74E−18 3.71E−25

Std 5.91E−12 5.16E−12 1.06E−17 3.92E−18 4.45E−25

Min 3.17E−11 2.53E−11 1.27E−18 4.24E−19 1.89E−26

Max 5.05E−11 4.45E−11 4.10E−17 1.47E−17 1.67E−24

Continued
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advantages compared to other swarm intelligence algorithms. Compared to the SSA algorithm, the COGBSO 
algorithm performs slightly less on the F9 function and is the absolute leader in performance on the remaining 
functions. Compared to the MSCA and MSWOA algorithms, the COGBSO algorithm can guarantee the lead in 
optimization accuracy on most benchmark functions but performs poorly on several test functions.

Second, compared to other improved brain storm optimization algorithms, the performance of the COGBSO 
algorithm degrades on individual benchmark functions for 20-dimensional problems. On the F12 and F13 
benchmark functions, the performance of the COGBSO algorithm is only slightly lower than the GBSO 
algorithm, higher than the ADMBSO and GDBSO algorithms, and much higher than the BSO algorithm. On 
the F15 benchmark function, although the performance of the COGBSO algorithm is higher than that of the BSO 
algorithm, it is lower than the three algorithms of GBSO, GDBSO, and ADMBSO. The global optimal value 0 can 
be found in 30 experiments, but the number of times is limited. On other benchmark functions, the COGBSO 
algorithm has the best performance. Compared to other swarm intelligence algorithms, the performance of the 
COGBSO algorithm is similar to that of the 10-dimensional case. COGBSO still dominates the comparison of 
the SSA algorithms across the board. Compared to the MSCA and MSWOA algorithms, the COGBSO algorithm 
can take the lead on eight test functions.

Third, for 30-dimensional problems, compared to other improved brain storm optimization algorithms, the 
COGBSO algorithm also performs poorly on the three benchmark functions of F12, F13, and F15. However, 
in general, it still has the best optimization performance and can better optimize the multi-modal function. 
Compared to other swarm intelligence algorithms, the COGBSO algorithm still takes the lead on eight test 
functions. The results also prove that no one type of swarm intelligence algorithm can solve all optimization 
problems perfectly, and all need to choose a more suitable intelligent algorithm according to the problem.

In the experiments on the CEC2018 benchmark test suit, we directly use the complex dimension of 30 
dimensions to test the optimization accuracy of the algorithms further, and two new competitive algorithms are 
added, which are the AOA algorithm and the QANA algorithm, and the following conclusions can be obtained 
based on the simulation results. The COGBSO algorithm has a significant advantage over the other variants of 
the BSO algorithm in the CEC2018, leading to optimization accuracy on 22 functions and a tiny gap with the 
other algorithms on their inferior functions. Compared with other types of competitive, intelligent algorithms, 
the COGBSO algorithm still has certain advantages; as can be seen from Table 10, the COGBSO algorithm is only 
weaker than the QANA algorithm in terms of overall performance, but it can still achieve better optimization 
results on one-third of the functions and is entirely ahead of the other four algorithms. All of these experimental 
results prove the superiority of the COGBSO algorithm.

In order to better demonstrate the advantages of the COGBSO algorithm in terms of convergence speed, 
the convergence curves of the different improved BSO algorithms on four benchmark functions from CEC2013 
are shown in Figs. 5, 6, and 7, and the box line diagram situation is shown in Fig. 8. Meanwhile, based on the 
optimization accuracy results of each algorithm, this paper also provides further evidence of the effectiveness 
of the COGBSO algorithm through the Friedman test. The results of the non-parametric tests are presented in 
Tables 11 and 12. In addition, the convergence curve test and Friedman test results are only used to compare the 
COGBSO algorithm with other improved BSO algorithms to ensure the brevity of the paper. The comparison 
with other types of swarm intelligence algorithms through the table of optimization accuracy is enough to prove 
the advantages of the COGBSO algorithm.

It can be seen from the figure that COGBSO has better convergence speed and optimization accuracy than 
other improved BSO algorithms. On the convergence curve of the F10 function, it can be observed that with the 
assistance of the chaotic difference step search space and the strategy of the opposition-based population, the time 
for the algorithm to fall into the local optimum is very short. The probability of jumping out of the local optimum 
is significantly higher than other algorithms. This is because the COGBSO algorithm has a broader search space 
and a higher probability of generating an optimal solution, which makes it difficult for the algorithm to fall into 
the trap of local optimum for a long time. The boxplots are only given for the 10-dimensional condition due to 
space limitations. On the boxplots of the four functions, the COGBSO algorithm has optimal performance on 
minimum, maximum, and median. The Friedman test was used to obtain the average ranking of each algorithm 
on all test functions. In the nonparametric statistical test, the lower the ranking, the better performance of the 
algorithm. Table 11 shows the test results. COGBSO ranked first (1.9333), while GDBSO ranked second (2.6). 
Moreover, the Wilcoxon statistical test was used to verify the significance of the algorithm, and the results are 
summarized in Table 12. In comparison with that of COGBSO, the p-value of each algorithm was lower than 
0.05, indicating that COGBSO has significant advantages over the other algorithms. In addition, the resistance 
values R+ and R- reflected the excellent performance of COGBSO. The results once again prove the validity of 
the COGBSO algorithm.

Table 3.  Comparison between BSO variants on 10-D problems. Optimal mean values are in bold.

BFs BSO GBSO ADMBSO GDBSO COGBSO

F15

Mean 1.17E−11 9.62E−22 0.00E+00 0.00E+00 0.00E+00

Std 4.55E−11 2.18E−22 0.00E+00 0.00E+00 0.00E+00

Min 1.01E−21 5.95E−22 0.00E+00 0.00E+00 0.00E+00

Max 1.76E−10 1.36E−21 0.00E+00 0.00E+00 0.00E+00
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BFs BSO GBSO ADMBSO GDBSO COGBSO

F1

Mean 3.31E−43 1.56E−43 2.89E−50 9.73E−51 8.07E−66

Std 9.04E−44 3.34E−44 3.69E−50 3.49E−50 1.87E−65

Min 1.95E−43 1.09E−43 2.73E−52 1.36E−54 8.53E−69

Max 5.15E−43 2.20E−43 1.30E−49 1.36E−49 7.12E−65

F2

Mean 9.36E+04 2.07E−39 7.98E−45 2.59E−45 1.10E−64

Std 4.97E+04 1.06E−39 1.27E−44 2.82E−45 1.88E−64

Min 2.53E+04 8.94E−40 2.47E−46 8.16E−48 1.61E−67

Max 2.14E+05 4.80E−39 3.99E−44 8.36E−45 6.33E−64

F3

Mean 4.08E+02 6.64E−34 5.39E−34 1.91E−32 3.11E−55

Std 5.66E+02 2.08E−33 1.53E−33 5.19E−32 7.43E−55

Min 3.76E+00 1.74E−37 6.39E−36 2.56E−37 4.17E−59

Max 2.05E+03 8.09E−33 6.02E−33 1.98E−31 2.19E−54

F4

Mean 5.28E+02 1.44E−41 2.11E−49 3.71E−51 3.48E−66

Std 3.13E+02 1.14E−41 3.16E−49 5.93E−51 8.20E−66

Min 3.20E+01 1.58E−42 3.25E−52 9.64E−54 1.16E−69

Max 1.03E+03 3.74E−41 1.22E−48 2.28E−50 3.23E−65

F5

Mean 1.41E−03 1.28E−24 5.37E−37 1.98E−38 2.09E−49

Std 4.97E−04 5.74E−25 1.75E−36 4.26E−38 3.46E−49

Min 6.07E−04 4.20E−25 9.23E−41 1.90E−43 2.18E−52

Max 2.51E−03 2.34E−24 6.85E−36 1.43E−37 1.00E−48

F6

Mean 1.77E+01 1.67E+01 2.66E−01 2.41E−07 5.43E−08

Std 9.01E−01 4.70E+00 1.03E+00 3.52E−07 2.15E−08

Min 1.60E+01 1.31E−07 1.03E−07 4.22E−08 2.09E−08

Max 1.92E+01 1.93E+01 3.99E+00 1.41E−06 8.46E−08

F7

Mean 3.64E−15 2.22E−15 2.46E−15 2.22E−15 2.22E−15

Std 1.80E−15 8.17E−31 9.17E−16 8.17E−31 8.17E−31

Min 2.22E−15 2.22E−15 2.22E−15 2.22E−15 2.22E−15

Max 5.77E−15 2.22E−15 5.77E−15 2.22E−15 2.22E−15

F8

Mean 6.81E−02 8.14E−17 5.71E−17 1.22E−16 1.48E−17

Std 6.97E−02 2.15E−16 1.63E−16 2.53E−16 5.73E−17

Min 1.42E−02 3.63E−23 1.30E−21 2.93E−21 1.02E−39

Max 2.76E−01 6.11E−16 6.11E−16 6.11E−16 2.22E−16

F9

Mean 2.35E−02 8.21E−03 8.54E−03 7.88E−03 1.31E−03

Std 2.27E−02 1.09E−02 6.37E−03 9.36E−03 5.09E−03

Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 7.14E−02 2.96E−02 1.97E−02 2.95E−02 1.97E−02

F10

Mean 1.92E+01 1.30E+01 3.10E+01 5.02E+01 1.05E+01

Std 4.40E+00 5.33E+00 2.71E+01 3.82E+01 3.94E+00

Min 1.29E+01 4.97E+00 6.96E+00 5.97E+00 2.89E+00

Max 2.89E+01 2.39E+01 8.95E+01 1.05E+02 1.89E+01

F11

Mean 2.20E+02 2.36E−21 2.33E−17 1.28E−17 3.70E−36

Std 5.76E+01 3.95E−22 4.40E−17 4.88E−17 7.08E−36

Min 9.75E+01 1.82E−21 1.75E−19 4.93E−21 1.34E−46

Max 3.17E+02 3.01E−21 1.52E−16 1.89E−16 2.15E−35

F12

Mean 1.20E−03 2.05E−17 6.05E−15 5.91E−16 2.72E−16

Std 1.46E−03 2.30E−17 6.08E−15 4.95E−16 4.11E−16

Min 6.47E−07 4.08E−19 1.00E−15 5.54E−17 2.28E−17

Max 4.43E−03 7.74E−17 2.24E−14 1.71E−15 1.59E−15

F13

Mean 3.51E−45 2.11E−212 6.03E−180 4.58E−192 1.58E−211

Std 1.36E−44 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Min 2.56E−216 7.00E−216 4.79E−198 1.05E−206 2.32E−223

Max 5.26E−44 3.00E−211 9.04E−179 4.06E−191 2.01E−210

F14

Mean 2.69E−09 1.37E−21 7.89E−23 8.46E−24 8.69E−34

Std 1.04E−08 1.54E−22 5.82E−23 1.02E−23 1.55E−33

Min 1.67E−21 1.17E−21 1.08E−23 7.67E−25 5.97E−35

Max 4.03E−08 1.73E−21 1.94E−22 2.99E−23 6.28E−33

Continued
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Discussion and experimental summaries
In order to fully understand the effect of chaotic difference step and opposition-based learning population strat-
egy on jumping out of the local optimal solution, We used the idea of ablation experiments. Additionally, we 
simulated the optimization of the algorithm in three cases. These three cases are the COGBSO algorithm without 
the assistance of the chaotic difference step as well as the opposition-based population strategy (COGBSO-
noCO), the COGBSO algorithm without the assistance of the chaotic difference step only (COGBSO-noC), 
and the COGBSO algorithm without the opposition-based population strategy only (COGBSO-noO). Select 
the typical multi-modal benchmark function F10 (Rastrigin) from CEC2013 for simulation comparison, on the 
one hand, to ensure the simplicity of the article. On the other hand, the local optimal problem is more likely 
to appear on the multi-modal function, so using this benchmark function is enough to study the contribution 
of the chaotic difference step and opposition-based population strategy. The COGBSO-noCO, COGBSO-noC, 
COGBSO-noO, and COGBSO algorithms are simulated under 10, 20, and 30 dimensions, and the convergence 
curves are shown in Fig. 9.

The convergence curve shows the superiority of the chaotic difference step and the opposition-based 
population strategy in jumping out of the local optimal solution. First, the black line in the figure represents the 
COGBSO algorithm, which has the fastest convergence speed in 10, 20, and 30 dimensions. This result proves 
the effectiveness of the chaotic difference step with the opposition-based population strategy. Second, it can 
be observed from the curve that the COGBSO algorithm with chaotic difference step and opposition-based 
population strategy makes it difficult to fall into the local optimum for a long time before reaching the final 
solution. Moreover, the COGBSO-noCO algorithm has many cases where it falls into local optimum for a long 
time and fails to move forward under three dimensions. The COGBSO-noC also has some cases of falling into a 
local optimum for a long time, but the situation is slightly improved compared to the COGBSO-noCO algorithm. 
The COGBSO-noO is significantly improved but still not as effective as the COGBSO algorithm, which proves 
that both the chaotic difference step strategy and the opposition-based population strategy can improve the ability 
of the algorithm to jump out of the local optimum and the chaotic differential step strategy is more effective, but 
the two strategies are not conflicting. Thus, they can be applied simultaneously to the algorithm to improve its 
performance even more. Third, the COGBSO algorithm also has the best performance in optimization accuracy, 
which is better than other algorithms.

Furthermore, the COGBSO-noO algorithm has a higher optimization accuracy than the COGBSO-noC 
algorithm, and the COGBSO-noC algorithm outperforms the COGBSO-noCO algorithm in optimization 
accuracy. This implies that both strategies bolster the algorithm’s search accuracy. This result is well-supported, 
as the algorithm’s more robust ability to escape from the local optimum leads to better performance during 
iteration. The results show that the chaotic difference step and the opposition-based population strategy enhance 
the algorithm’s ability to deal with multi-modal problems, significantly improving the optimization accuracy 
and the probability of jumping out of the local optimum. Moreover, since the two strategies do not conflict with 
each other, they can be applied to the improvement of the BSO algorithm at the same time.

Based on all the experimental results in Sect. "Simulation results and analysis" and this section, it can be shown 
that the COGBSO algorithm has the following advantages. First, the optimization accuracy of the COGBSO 
algorithm has a significant advantage over other variants of the BSO algorithm. This claim can be corroborated by 
Tables 3, 4, 5, and 9. The COGBSO algorithm can achieve optimal optimization search results on most functions 
from the CEC2013 and CEC2018 benchmark test suit. Meanwhile, the nonparametric test results in Tables 11 
and 12 and the boxplots in Fig. 8 argue this point. Second, the optimization accuracy of the COGBSO algorithm 
also has a significant advantage over other types of recent competitive intelligent algorithms. This claim can be 
corroborated by Tables 6, 7, 8 and 10. These results indicate that the COGBSO algorithm’s overall performance 
is weaker than that of the QANA algorithm but still manages to gain an advantage over many functions while 
being significantly better than the other intelligent algorithms. Third, the COGBSO algorithm also converges 
significantly faster than the other BSO variants. This claim can be corroborated by Figs. 5, 6, and 7. Fourth, 
the chaotic difference step strategy and the opposition-based population strategy proposed in this paper can 
significantly improve the probability of the BSO algorithm jumping out of the local optimum. This claim can 
be corroborated by Fig. 9.

Conclusion
This paper proposes a global-best brain storm optimization algorithm based on chaotic difference step and 
opposition-based learning (COGBSO). First, the discussion mechanism and the global-best strategy are com-
bined into the BSO algorithm, improving the algorithm’s convergence speed and optimization accuracy. Second, 
chaos theory is introduced to design a chaotic difference step to expand the search space of the population, and 
the opposition-based population is introduced to improve the population density. Both strategies are designed 

Table 4.  Comparison between BSO variants on 20-D problems. Optimal mean values are in bold.

BFs BSO GBSO ADMBSO GDBSO COGBSO

F15

Mean 5.57E−03 0.00E+00 0.00E+00 0.00E+00 1.04E−30

Std 4.88E−03 0.00E+00 0.00E+00 0.00E+00 1.12E−30

Min 1.13E−03 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 1.87E−02 0.00E+00 0.00E+00 0.00E+00 4.19E−30
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BFs BSO GBSO ADMBSO GDBSO COGBSO

F1

Mean 2.00E−64 7.02E−65 9.20E−63 3.02E−67 5.40E−78

Std 4.19E−65 1.70E−65 2.00E−62 4.00E−67 1.06E−77

Min 1.28E−64 5.12E−65 1.84E−65 7.58E−69 5.03E−80

Max 2.53E−64 1.00E−64 6.38E−62 9.09E−67 3.45E−77

F2

Mean 2.19E+05 8.69E−58 1.04E−54 1.25E−57 3.47E−79

Std 9.97E+04 1.86E−57 2.75E−54 2.30E−57 8.70E−79

Min 9.60E+04 2.64E−60 2.20E−58 1.36E−60 7.15E−83

Max 4.08E+05 7.13E−57 1.05E−53 8.74E−57 3.27E−78

F3

Mean 3.79E+02 1.15E−42 1.07E−41 4.17E−41 2.25E−67

Std 6.13E+02 2.75E−42 1.89E−41 1.02E−40 6.44E−67

Min 3.37E−02 2.88E−47 5.12E−44 3.98E−45 8.86E−72

Max 2.31E+03 9.03E−42 5.98E−41 3.94E−40 2.41E−66

F4

Mean 2.85E+02 3.47E−63 8.08E−63 5.04E−66 3.18E−77

Std 2.62E+02 2.84E−63 9.66E−63 5.82E−66 8.82E−77

Min 3.86E+01 8.43E−64 1.72E−65 8.21E−68 8.31E−80

Max 8.42E+02 1.13E−62 3.12E−62 1.85E−65 3.48E−76

F5

Mean 5.03E−03 1.58E−35 3.02E−46 2.41E−49 2.01E−58

Std 1.44E−03 5.79E−36 3.20E−46 6.49E−49 5.05E−58

Min 3.23E−03 7.12E−36 8.79E−49 4.14E−53 8.26E−62

Max 8.10E−03 2.38E−35 9.03E−46 2.50E−48 1.99E−57

F6

Mean 2.84E+01 1.78E+01 5.32E−01 8.95E−06 6.36E−06

Std 5.30E−01 1.75E+01 1.40E+00 1.20E−05 9.87E−06

Min 2.77E+01 9.33E−07 5.49E−06 9.71E−07 5.41E−07

Max 2.94E+01 3.92E+01 3.99E+00 4.52E−05 2.83E−05

F7

Mean 1.28E−14 3.82E−15 5.71E−15 5.48E−15 3.35E−15

Std 3.41E−15 1.47E−15 1.63E−15 1.73E−15 9.17E−16

Min 6.66E−15 3.11E−15 3.11E−15 3.11E−15 3.11E−15

Max 2.09E−14 6.66E−15 6.66E−15 6.66E−15 6.66E−15

F8

Mean 3.23E−01 4.66E−16 4.48E−16 3.77E−16 1.11E−16

Std 3.07E−01 6.81E−16 4.32E−16 6.07E−16 2.33E−16

Min 3.45E−02 1.01E−33 1.74E−29 1.21E−25 4.77E−43

Max 1.02E+00 2.04E−15 1.22E−15 2.11E−15 6.11E−16

F9

Mean 8.55E−03 6.18E−03 4.44E−03 4.60E−03 8.21E−04

Std 9.15E−03 6.90E−03 4.49E−03 6.83E−03 3.18E−03

Min 5.76E−07 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Max 3.20E−02 2.22E−02 1.23E−02 2.22E−02 1.23E−02

F10

Mean 3.67E+01 3.47E+01 3.04E+01 4.14E+01 1.70E+01

Std 6.46E+00 8.90E+00 8.23E+00 4.22E+01 5.51E+00

Min 2.79E+01 1.92E+01 1.79E+01 1.49E+01 9.95E+00

Max 4.78E+01 4.95E+01 4.18E+01 1.45E+02 2.79E+01

F11

Mean 3.79E+02 6.11E−25 5.57E−23 1.40E−23 7.95E−40

Std 9.30E+01 2.35E−24 1.92E−22 5.36E−23 3.08E−39

Min 2.31E+02 3.04E−30 4.79E−26 5.69E−28 2.69E−47

Max 5.90E+02 9.09E−24 7.48E−22 2.08E−22 1.19E−38

F12

Mean 4.67E−02 2.13E−17 1.05E−13 1.07E−16 4.67E−15

Std 1.50E−02 2.91E−17 1.22E−13 1.49E−16 2.74E−15

Min 2.15E−02 5.50E−18 8.10E−15 2.23E−17 7.76E−16

Max 7.43E−02 1.09E−16 4.70E−13 5.21E−16 1.08E−14

F13

Mean 3.64E−20 3.18E−245 1.36E−216 1.94E−235 2.33E−203

Std 8.13E−20 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Min 1.55E−26 3.50E−263 7.11E−225 2.25E−252 1.43E−218

Max 2.83E−19 3.05E−244 1.11E−215 2.86E−234 2.66E−202

F14

Mean 2.83E−02 2.23E−31 4.05E−29 3.65E−30 1.83E−42

Std 3.24E−02 2.16E−31 5.95E−29 5.15E−30 4.60E−42

Min 2.38E−04 6.45E−32 1.34E−30 2.00E−31 8.36E−45

Max 1.07E−01 6.74E−31 2.09E−28 1.85E−29 1.82E−41
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Table 5.  Comparison between BSO variants on 30-D problems. Optimal mean values are in bold.

BFs BSO GBSO ADMBSO GDBSO COGBSO

F15

Mean 1.72E−01 0.00E+00 7.48E−32 0.00E+00 1.54E−29

Std 7.65E−02 0.00E+00 1.62E−31 0.00E+00 1.76E−29

Min 5.32E−02 0.00E+00 0.00E+00 0.00E+00 1.43E−30

Max 2.88E−01 0.00E+00 4.93E−31 0.00E+00 6.54E−29

BFs SSA MSWOA MSCA COGBSO

F1

Mean 5.94E−10 2.39E−67 1.85E−51 1.57E−67

Std 1.81E−10 1.44E−67 5.14E−51 2.37E−67

Min 3.76E−10 1.18E−67 2.67E−70 3.34E−69

Max 9.73E−10 4.54E−67 1.81E−50 8.80E−67

F2

Mean 9.59E+02 1.07E−54 1.81E−50 3.86E−55

Std 6.80E+02 2.00E−54 6.94E−50 1.18E−54

Min 1.44E+02 1.21E−55 7.93E−67 6.71E−58

Max 2.37E+03 3.87E−54 2.69E−49 4.64E−54

F3

Mean 4.03E+00 6.59E−39 1.59E−40 2.30E−42

Std 4.87E+00 1.02E−39 6.17E−40 8.70E−42

Min 3.45E−02 9.88E−48 2.56E−47 3.16E−47

Max 1.80E+01 3.48E−37 2.39E−39 3.38E−41

F4

Mean 1.89E+02 2.77E−62 1.04E−53 3.37E−66

Std 2.30E+02 5.48E−62 2.43E−53 6.91E−66

Min 9.14E+00 5.12E−68 9.56E−73 9.80E−69

Max 6.87E+02 3.78E−61 9.12E−53 2.69E−65

F5

Mean 1.41E−04 0.00E+00 1.76E−28 4.99E−38

Std 4.33E−05 0.00E+00 4.65E−28 7.29E−38

Min 7.53E−05 0.00E+00 2.92E−30 9.06E−40

Max 2.55E−04 0.00E+00 1.53E−27 2.22E−37

F6

Mean 4.58E−08 1.20E+00 6.47E+00 6.17E−10

Std 1.04E−08 2.10E+00 3.89E−01 4.60E−10

Min 4.20E−08 1.70E−07 6.15E+00 1.50E−10

Max 4.60E−08 5.96E+00 7.22E+00 1.08E−09

F7

Mean 2.38E−01 − 4.44E−16 − 4.44E−16 1.87E−15

Std 2.38E−01 − 4.44E−16 − 4.44E−16 1.38E−15

Min 5.12E−06 − 4.44E−16 − 4.44E−16 4.44E−16

Max 3.57E+00 − 4.44E−16 − 4.44E−16 3.11E−15

F8

Mean 2.20E−05 3.87E−05 1.86E−28 6.05E−18

Std 6.21E−06 1.50E−04 7.20E−28 1.61E−17

Min 1.55E−05 1.52E−17 2.91E−40 1.25E−33

Max 4.22E−05 5.80E−04 2.79E−27 5.15E−17

F9

Mean 1.62E−02 0.00E+00 0.00E+00 5.64E−02

Std 3.87E−02 0.00E+00 0.00E+00 3.48E−02

Min 1.16E−09 0.00E+00 0.00E+00 9.86E−03

Max 1.35E−01 0.00E+00 0.00E+00 1.21E−01

F10

Mean 9.95E+00 5.62E+00 9.95E+00 4.31E+00

Std 8.50E−11 3.33E+00 9.95E+00 2.15E+00

Min 9.95E+00 9.95E−01 9.95E+00 9.95E−01

Max 9.95E+00 6.96E+00 9.95E+00 6.96E+00

F11

Mean 6.19E−05 6.41E−17 3.02E−11 3.37E−23

Std 8.24E−06 8.85E−17 1.10E−10 7.75E−23

Min 4.33E−05 6.86E−18 1.39E−19 1.33E−33

Max 7.46E−05 9.02E−17 4.27E−10 2.97E−22
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Table 6.  Comparison between different swarm intelligence algorithms on 10-D problems. Optimal mean 
values are in bold.

BFs SSA MSWOA MSCA COGBSO

F12

Mean 1.31E−05 7.20E−19 4.55E−18 3.76E−23

Std 1.67E−06 6.51E−19 1.76E−17 3.76E−23

Min 9.40E−06 6.26E−20 5.56E−28 4.06E−24

Max 1.48E−05 2.10E−13 6.83E−17 1.46E−22

F13

Mean 1.40E−58 0.00E+00 3.25E−229 1.48E−267

Std 2.25E−58 0.00E+00 0.00E+00 0.00E+00

Min 8.32E−61 0.00E+00 1.36E−317 2.43E−283

Max 7.85E−58 0.00E+00 4.76E−228 1.11E−266

F14

Mean 5.94E−05 2.94E−179 9.70E−28 3.71E−25

Std 1.13E−05 0.00E+00 3.73E−27 4.45E−25

Min 3.89E−05 3.59E−182 7.51E−41 1.89E−26

Max 7.54E−05 2.50E−178 1.45E−26 1.67E−24

F15

Mean 9.12E−13 1.10E−01 4.38E+00 0.00E+00

Std 6.16E−19 4.20E−01 1.67E+00 0.00E+00

Min 9.12E−13 5.27E−04 4.72E−01 0.00E+00

Max 9.12E−13 1.63E+00 6.16E+00 0.00E+00

BFs SSA MSWOA MSCA COGBSO

F1

Mean 2.43E−09 2.55E−65 1.73E−64 8.07E−66

Std 4.40E−10 6.17E−66 6.69E−64 1.87E−65

Min 1.84E−09 1.05E−66 2.46E−65 8.53E−69

Max 3.35E−09 1.59E−65 2.59E−63 7.12E−65

F2

Mean 3.58E+03 2.70E−63 8.64E−63 1.10E−64

Std 2.62E+03 4.91E−64 3.35E−62 1.88E−64

Min 4.60E+02 1.03E−64 2.67E−79 1.61E−67

Max 1.06E+04 1.33E−63 1.30E−61 6.33E−64

F3

Mean 6.67E+00 4.60E−54 5.25E−49 3.11E−55

Std 6.62E+00 1.04E−54 2.03E−48 7.43E−55

Min 1.44E−01 3.38E−55 2.09E−57 4.17E−59

Max 1.92E+01 2.19E−54 7.88E−48 2.19E−54

F4

Mean 3.81E+01 9.85E−66 6.44E−64 3.48E−66

Std 2.45E+01 1.26E−65 8.33E−64 8.20E−66

Min 1.02E+01 2.64E−66 4.32E−65 1.16E−69

Max 1.12E+02 3.23E−65 5.16E−63 3.23E−65

F5

Mean 3.83E−04 0.00E+00 4.88E−48 2.09E−49

Std 8.33E−05 0.00E+00 1.39E−47 3.46E−49

Min 2.02E−04 0.00E+00 1.06E−51 2.18E−52

Max 4.84E−04 0.00E+00 5.07E−47 1.00E−48

F6

Mean 9.72E−11 2.93E−01 1.69E+01 5.43E−08

Std 3.16E−18 1.07E+00 6.05E−01 2.15E−08

Min 9.72E−11 1.33E−09 1.61E+01 2.09E−08

Max 9.72E−11 4.14E+00 1.80E+01 8.46E−08

F7

Mean 3.57E+00 −1.33E−15 −1.33E−15 2.22E−15

Std 0.00E+00 0.00E+00 0.00E+00 8.17E−31

Min 3.57E+00 −1.33E−15 −1.33E−15 2.22E−15

Max 3.57E+00 −1.33E−15 −1.33E−15 2.22E−15

F8

Mean 6.28E−05 3.88E−05 1.33E−41 1.48E−17

Std 9.86E−06 1.50E−04 4.75E−41 5.73E−17

Min 5.10E−05 0.00E+00 8.60E−67 1.02E−39

Max 8.19E−05 5.83E−04 1.84E−40 2.22E−16
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to make it easier for the algorithm to escape from the local optimum when dealing with optimization problems, 
especially multi-modal function problems. Third, COGBSO and BSO, GBSO, ADMBSO, GDBSO, SSA, MSCA, 
MSWOA, AOA and QANA algorithms are compared and analyzed in this paper.

The results show that for most benchmark functions in 10, 20, and 30 dimensions, the COGBSO algorithm 
has the best performance. Experiments proved the superior performance of COGBSO compared to previous BSO 
improved algorithms and enables the goal of helping the algorithm to jump out of a local optimum quickly. As 
one of the first algorithms inspired by human’s behaviors, COGBSO demonstrates its great potential in dealing 
with complex optimization problems. Meanwhile, the chaotic difference step strategy in the COGBSO algorithm 
and the application of opposition-based learning theory can stimulate us to propose more novel strategies to 
adapt to more complex problems arriving in quick succession. In the future, the COGBSO will be applied to 
applications of high dimension and large scale.

Future research directions include proposing an adaptive mechanism to adjust parameters, assisting the 
algorithm to intelligently choose when to use the chaotic difference step and opposition-based population strat-
egy, reducing the space-time complexity of the algorithm, and applying the COGBSO algorithm to practical 
engineering optimization problems.

Table 7.  Comparison between different swarm intelligence algorithms on 20-D problems. Optimal mean 
values are in bold.

BFs SSA MSWOA MSCA COGBSO

F9

Mean 6.86E−09 0.00E+00 0.00E+00 1.31E−03

Std 1.93E−09 0.00E+00 0.00E+00 5.09E−03

Min 3.43E−09 0.00E+00 0.00E+00 0.00E+00

Max 1.02E−08 0.00E+00 0.00E+00 1.97E−02

F10

Mean 1.99E+01 1.27E+01 1.56E+01 1.05E+01

Std 2.31E−10 3.61E+00 4.23E+00 3.94E+00

Min 1.99E+01 1.89E+01 5.64E+00 2.89E+00

Max 1.99E+01 9.95E+00 2.39E+01 1.89E+01

F11

Mean 1.92E−04 7.90E−32 5.63E−31 3.70E−36

Std 2.04E−05 8.88E−32 2.13E−30 7.08E−36

Min 1.68E−04 6.40E−32 2.25E−37 1.34E−46

Max 2.32E−04 9.40E−32 8.26E−30 2.15E−35

F12

Mean 1.00E+00 7.10E−15 3.75E−22 2.72E−16

Std 4.60E−16 1.02E−16 1.05E−21 4.11E−16

Min 1.00E+00 4.77E−17 1.80E−38 2.28E−17

Max 1.00E+00 1.98E−14 3.75E−21 1.59E−15

F13

Mean 3.05E−56 0.00E+00 1.35E−182 1.58E−211

Std 4.14E−56 0.00E+00 0.00E+00 0.00E+00

Min 3.90E−58 0.00E+00 3.36E−193 2.32E−223

Max 1.55E−55 0.00E+00 2.03E−181 2.01E−210

F14

Mean 1.97E−04 7.90E−223 7.98E−40 8.69E−34

Std 1.90E−05 0.00E+00 2.99E−39 1.55E−33

Min 1.66E−04 4.40E−223 4.33E−55 5.97E−35

Max 2.25E−04 8.90E−223 1.16E−38 6.28E−33

F15

Mean 1.92E−12 5.11E−01 1.37E+01 1.04E−30

Std 6.77E−19 7.96E−01 2.75E+00 1.12E−30

Min 1.92E−12 6.11E−03 4.15E+00 0.00E+00

Max 1.92E−12 1.81E+00 1.60E+01 4.19E−30
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BFs SSA MSWOA MSCA COGBSO

F1

Mean 5.84E−09 1.13E−77 5.16E−74 5.40E−78

Std 1.03E−09 1.35E−77 2.00E−73 1.06E−77

Min 4.31E−09 1.22E−78 7.04E−75 5.03E−80

Max 7.57E−09 3.45E−77 7.74E−73 3.45E−77

F2

Mean 5.59E+03 1.02E−78 6.09E−76 3.47E−79

Std 3.07E+03 1.34E−78 2.36E−75 8.70E−79

Min 1.62E+03 1.55E−79 2.03E−84 7.15E−83

Max 1.07E+04 5.36E−78 9.13E−75 3.27E−78

F3

Mean 1.26E+01 5.61E−67 1.35E−58 2.25E−67

Std 1.78E+01 9.67E−67 5.24E−58 6.44E−67

Min 6.52E−03 3.40E−69 4.27E−67 8.86E−72

Max 6.16E+01 3.41E−66 2.03E−57 2.41E−66

F4

Mean 2.66E+01 3.73E−77 3.53E−75 3.18E−77

Std 2.03E+01 1.33E−77 1.36E−74 8.82E−77

Min 9.68E+00 1.64E−78 8.74E−82 8.31E−80

Max 9.09E+01 1.02E−76 5.27E−74 3.48E−76

F5

Mean 5.62E−04 0.00E+00 2.33E−54 2.01E−58

Std 6.51E−05 0.00E+00 9.03E−54 5.05E−58

Min 4.58E−04 0.00E+00 2.39E−56 8.26E−62

Max 6.74E−04 0.00E+00 3.50E−53 1.99E−57

F6

Mean 1.48E−10 1.07E+00 2.68E+01 6.36E−06

Std 4.13E−18 2.32E+00 7.93E−01 9.87E−06

Min 1.48E−10 3.05E−09 2.58E+01 5.41E−07

Max 1.48E−10 7.76E+00 2.80E+01 2.83E−05

F7

Mean 3.57E+00 − 4.44E−16 − 4.44E−16 3.35E−15

Std 1.23E−05 0.00E+00 0.00E+00 9.17E−16

Min 3.57E+00 −4.44E−16 −4.44E−16 3.11E−15

Max 3.57E+00 −4.44E−16 −4.44E−16 6.66E−15

F8

Mean 1.18E−04 9.10E−05 2.52E−56 1.11E−16

Std 1.23E−05 2.37E−04 9.69E−56 2.33E−16

Min 1.00E−04 0.00E+00 3.43E−70 4.77E−43

Max 1.47E−04 8.91E−04 3.75E−55 6.11E−16

F9

Mean 1.31E−08 0.00E+00 0.00E+00 8.21E−04

Std 3.30E−09 0.00E+00 0.00E+00 3.18E−03

Min 9.17E−09 0.00E+00 0.00E+00 0.00E+00

Max 2.06E−08 0.00E+00 0.00E+00 1.23E−02

F10

Mean 2.98E+01 1.83E+01 1.93E+01 1.70E+01

Std 4.52E−10 6.10E+00 6.84E+00 5.51E+00

Min 2.98E+01 9.95E+00 1.09E+01 9.95E+00

Max 2.98E+01 2.29E+01 2.79E+01 2.79E+01

F11

Mean 3.51E−04 1.14E−34 1.12E−39 7.95E−40

Std 3.69E−05 3.73E−34 4.31E−39 3.08E−39

Min 2.88E−04 9.40E−35 7.64E−48 2.69E−47

Max 4.34E−04 1.40E−33 1.67E−38 1.19E−38

F12

Mean 1.00E+00 4.90E−15 2.46E−24 4.67E−15

Std 2.30E−16 0.00E+00 9.52E−24 2.74E−15

Min 1.00E+00 4.90E−15 4.72E−34 7.76E−16

Max 1.00E+00 4.90E−15 3.69E−23 1.08E−14

F13

Mean 6.25E−55 0.00E+00 0.00E+00 2.33E−203

Std 7.53E−55 0.00E+00 0.00E+00 0.00E+00

Min 7.62E−56 0.00E+00 0.00E+00 1.43E−218

Max 2.86E−54 0.00E+00 0.00E+00 2.66E−202

F14

Mean 3.77E−04 1.20E−272 2.31E−49 1.83E−42

Std 4.96E−05 0.00E+00 8.95E−49 4.60E−42

Min 3.12E−04 9.40E−273 7.87E−58 8.36E−45

Max 4.60E−04 1.40E−272 3.47E−48 1.82E−41
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Table 8.  Comparison between different swarm intelligence algorithms on 30-D problems. Optimal mean 
values are in bold.

BFs SSA MSWOA MSCA COGBSO

F15

Mean 2.94E−12 1.39E+00 2.38E+01 1.54E−29

Std 8.86E−19 1.27E+00 1.12E+00 1.76E−29

Min 2.94E−12 1.44E−02 2.20E+01 1.43E−30

Max 2.94E−12 3.42E+00 2.62E+01 6.54E−29

 BFs BSO GBSO ADMBSO GDBSO COGBSO

 F1
Mean 1.18E+08 3.10E+03 3.10E+03 1.41E+03 3.63E+03

Std 1.97E+08 2.52E+03 2.52E+03 1.76E+03 4.25E+03

 F3
Mean 8.92E+04 7.28E+04 3.94E+04 7.98E+04 3.32E+02

Std 2.41E+04 1.88E+04 8.52E+03 1.25E+04 6.19E+01

 F4
Mean 5.88E+02 4.98E+02 4.98E+02 4.90E+02 5.06E+02

Std 5.67E+01 1.37E+01 1.32E+01 1.79E+01 1.17E+01

 F5
Mean 6.82E+02 7.05E+02 5.60E+02 7.03E+02 5.48E+02

Std 3.06E+01 1.62E+01 2.43E+01 1.71E+01 1.72E+01

 F6
Mean 6.53E+02 6.00E+02 6.00E+02 6.01E+02 6.00E+02

Std 7.45E+00 1.47E−01 4.37E−02 3.04E−01 5.47E−02

 F7
Mean 1.12E+03 9.42E+02 7.95E+02 9.45E+02 8.13E+02

Std 5.79E+01 1.18E+01 1.70E+01 1.38E+01 6.60E+01

 F8
Mean 9.34E+02 1.00E+03 8.62E+02 1.01E+03 8.39E+02

Std 2.53E+01 1.72E+01 1.82E+01 1.14E+01 9.46E+00

 F9
Mean 3.73E+03 9.02E+02 9.00E+02 9.29E+02 9.04E+02

Std 5.33E+02 2.10E+00 7.51E−01 7.64E+01 5.83E+00

 F10
Mean 4.91E+03 8.55E+03 5.09E+03 8.59E+03 8.07E+03

Std 5.22E+02 4.17E+02 4.20E+02 2.52E+02 2.93E+02

 F11
Mean 1.38E+03 1.23E+03 1.17E+03 1.24E+03 1.17E+03

Std 1.61E+02 3.39E+01 3.48E+01 2.68E+01 2.53E+01

 F12
Mean 1.92E+07 1.08E+05 9.14E+04 8.91E+04 3.87E+04

Std 1.89E+07 8.19E+04 7.16E+04 4.40E+04 1.84E+04

 F13
Mean 3.79E+04 1.65E+04 1.53E+04 1.17E+04 1.04E+04

Std 9.42E+03 1.33E+04 1.19E+04 1.16E+04 1.65E+04

 F14
Mean 1.81E+05 4.92E+04 1.34E+04 1.41E+04 2.41E+03

Std 2.16E+05 4.79E+04 2.17E+04 9.31E+03 9.15E+02

 F15
Mean 3.17E+04 8.32E+03 5.10E+03 5.84E+03 4.92E+03

Std 1.83E+04 7.09E+03 2.48E+03 3.72E+03 3.25E+03

 F16
Mean 3.18E+03 3.25E+03 2.76E+03 3.25E+03 2.14E+03

Std 2.55E+02 3.18E+02 3.02E+02 1.99E+02 1.63E+02

 F17
Mean 2.36E+03 2.38E+03 2.05E+03 2.26E+03 1.85E+03

Std 3.51E+02 1.23E+02 1.60E+02 2.18E+02 7.56E+01

 F18
Mean 4.01E+05 2.10E+06 2.10E+05 1.33E+06 7.93E+04

Std 3.11E+05 9.49E+05 1.34E+05 8.40E+05 2.39E+04

 F19
Mean 6.96E+05 1.35E+04 9.53E+03 8.77E+03 4.09E+03

Std 4.15E+05 1.23E+04 7.62E+03 9.27E+03 2.08E+03

F20
Mean 2.70E+03 2.77E+03 2.43E+03 2.63E+03 2.16E+03

Std 2.39E+02 1.21E+02 1.24E+02 1.90E+02 6.30E+01

 F21
Mean 2.51E+03 2.50E+03 2.36E+03 2.50E+03 2.34E+03

Std 3.03E+01 1.49E+01 1.86E+01 1.79E+01 1.32E+01

 F22
Mean 6.72E+03 3.02E+03 2.86E+03 3.06E+03 2.30E+03

Std 1.17E+03 2.28E+03 1.76E+03 2.40E+03 7.77E−01
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Table 9.  Comparison of COGBSO with BSO variants for CEC 2018 test functions with D = 30. Optimal mean 
values are in bold.

 BFs BSO GBSO ADMBSO GDBSO COGBSO

 F23
Mean 3.36E+03 2.85E+03 2.72E+03 2.86E+03 2.69E+03

Std 1.93E+02 1.06E+01 2.79E+01 2.32E+01 2.01E+01

 F24
Mean 3.54E+03 3.02E+03 2.89E+03 3.02E+03 2.87E+03

Std 1.52E+02 1.74E+01 1.46E+01 2.20E+01 6.06E+00

 F25
Mean 2.96E+03 2.89E+03 2.89E+03 2.89E+03 2.89E+03

Std 2.65E+01 4.44E−01 1.70E−01 1.72E+00 1.60E+00

 F26
Mean 8.25E+03 5.68E+03 4.50E+03 5.54E+03 4.14E+03

Std 8.40E+02 1.35E+02 3.00E+02 3.61E+02 1.57E+02

 F27
Mean 3.95E+03 3.21E+03 3.21E+03 3.22E+03 3.22E+03

Std 2.00E+02 1.48E+01 1.51E+01 1.67E+01 1.17E+01

 F28
Mean 3.45E+03 3.21E+03 3.20E+03 3.21E+03 3.21E+03

Std 7.32E+01 2.42E+01 3.95E+01 3.55E+01 2.21E+01

 F29
Mean 4.45E+03 4.14E+03 4.12E+03 4.02E+03 3.53E+03

Std 2.33E+02 1.16E+02 3.01E+02 2.43E+02 1.17E+02

 F30
Mean 3.32E+06 1.04E+04 1.25E+04 1.26E+04 6.88E+03

Std 3.57E+06 4.36E+03 8.70E+03 6.07E+03 1.03E+03

 BFs COGBSO SSA MSWOA MSCA AOA QANA

 F1
Mean 3.63E+03 6.96E+03 9.50E+03 1.26E+04 4.02E+10 1.00E+02

Std 4.25E+03 6.83E+03 2.90E+03 2.10E+04 6.12E+09 1.02E−14

 F3
Mean 3.32E+02 1.46E+04 9.10E+03 6.81E+03 7.38E+04 3.00E+02

Std 6.19E+01 4.54E+03 4.22E+03 7.44E+03 7.93E+03 4.71E−08

 F4
Mean 5.06E+02 4.98E+02 3.34E+02 4.73E+02 8.61E+03 4.07E+02

Std 1.17E+01 1.51E+01 4.81E+01 2.81E+01 3.01E+03 2.01E+01

 F5
Mean 5.48E+02 6.58E+02 6.08E+02 7.01E+02 7.98E+02 6.05E+02

Std 1.72E+01 7.66E+01 4.93E+01 2.14E+01 3.22E+01 2.75E+01

 F6
Mean 6.00E+02 6.29E+02 6.01E+02 6.01E+02 6.64E+02 6.00E+02

Std 5.47E−02 7.56E+00 6.04E−01 5.54E−01 8.18E+00 3.20E−01

 F7
Mean 8.13E+02 8.82E+02 8.08E+02 1.18E+03 1.31E+03 8.29E+02

Std 6.60E+01 4.78E+01 2.94E+01 4.60E+01 5.96E+01 2.92E+01

 F8
Mean 8.39E+02 9.44E+02 1.10E+03 1.06E+03 1.03E+03 8.94E+02

Std 9.46E+00 3.01E+01 3.69E+01 1.76E+01 2.95E+01 2.75E+01

 F9
Mean 9.04E+02 3.86E+03 9.93E+02 9.28E+02 5.55E+03 1.18E+03

Std 5.83E+00 1.69E+03 1.38E+02 1.87E+02 7.95E+02 4.91E+02

 F10
Mean 8.07E+03 4.89E+03 7.76E+03 8.19E+03 6.58E+03 3.38E+03

Std 2.93E+02 9.26E+02 8.34E+02 5.47E+02 4.95E+02 6.18E+02

 F11
Mean 1.17E+03 1.36E+03 1.08E+03 1.37E+03 3.36E+03 1.18E+03

Std 2.53E+01 9.70E+01 2.05E+01 3.14E+01 1.52E+03 3.48E+03

 F12
Mean 3.87E+04 2.76E+07 5.15E+04 1.25E+05 6.77E+09 3.32E+03

Std 1.84E+04 3.58E+07 2.58E+04 3.98E+05 1.75E+09 1.92E+03

 F13
Mean 1.04E+04 1.51E+05 1.98E+04 3.03E+04 4.36E+04 1.38E+03

Std 1.65E+04 8.53E+04 1.31E+04 1.68E+04 4.01E+04 4.02E+01

 F14
Mean 2.41E+03 2.44E+04 2.39E+04 2.26E+04 4.85E+04 1.47E+03

Std 9.15E+02 2.41E+04 9.40E+02 1.42E+04 3.60E+04 2.14E+01

 F15
Mean 4.92E+03 5.94E+04 5.18E+03 6.60E+03 2.47E+04 1.53E+03

Std 3.25E+03 4.67E+04 7.38E+03 6.53E+03 1.10E+04 4.28E+00

 F16
Mean 2.14E+03 2.75E+03 3.78E+03 3.70E+03 3.65E+03 2.31E+03

Std 1.63E+02 3.82E+02 3.82E+02 2.73E+02 4.49E+02 2.64E+02

 F17
Mean 1.85E+03 2.12E+03 2.89E+03 2.60E+03 2.59E+03 1.86E+03

Std 7.56E+01 1.88E+02 2.42E+02 1.72E+02 3.08E+02 7.25E+01
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Table 10.  Comparison of COGBSO with latest competitive algorithms for CEC 2018 test functions with D = 
30. Optimal mean values are in bold.

 BFs COGBSO SSA MSWOA MSCA AOA QANA

 F18
Mean 7.93E+04 6.13E+05 1.66E+05 3.43E+05 1.03E+06 5.44E+03

Std 2.39E+04 5.17E+05 1.75E+05 1.44E+05 9.97E+05 4.89E+03

 F19
Mean 4.09E+03 1.35E+06 4.92E+03 2.28E+04 1.09E+06 1.97E+03

Std 2.08E+03 1.01E+06 2.94E+03 3.11E+04 7.90E+04 1.29E+02

 F20
Mean 2.16E+03 2.54E+03 2.92E+03 2.68E+03 2.69E+03 2.23E+03

Std 6.30E+01 2.03E+02 1.67E+02 8.97E+01 1.67E+02 1.14E+02

 F21
Mean 2.34E+03 2.43E+03 2.62E+03 2.56E+03 2.57E+03 2.17E+03

Std 1.32E+01 2.18E+01 4.91E+01 1.93E+01 5.09E+01 2.64E+01

 F22
Mean 2.30E+03 2.30E+03 2.30E+03 2.74E+03 7.84E+03 2.31E+03

Std 7.77E−01 1.68E−05 6.64E−01 2.55E+02 9.46E+02 3.01E+01

 F23
Mean 2.69E+03 2.77E+03 2.62E+03 2.81E+03 3.33E+03 2.51E+03

Std 2.01E+01 3.63E+01 2.06E+01 2.50E+01 1.12E+02 1.66E+01

 F24
Mean 2.87E+03 2.94E+03 2.89E+03 2.96E+03 3.60E+03 2.60E+03

Std 6.06E+00 3.33E+01 1.04E+01 1.36E+01 1.53E+02 0.00E+00

 F25
Mean 2.89E+03 2.90E+03 2.89E+03 2.97E+03 4.38E+03 2.70E+03

Std 1.60E+00 1.46E+01 1.01E+00 1.11E+00 4.95E+02 0.00E+00

 F26
Mean 4.14E+03 4.52E+03 4.23E+03 4.86E+03 9.22E+03 2.80E+03

Std 1.57E+02 1.22E+03 3.77E+02 2.06E+02 8.82E+02 0.00E+00

 F27
Mean 3.22E+03 3.24E+03 3.20E+03 3.23E+03 4.09E+03 2.93E+03

Std 1.17E+01 1.43E+01 1.45E+01 1.44E+01 2.38E+02 7.14E+01

 F28
Mean 3.21E+03 3.25E+03 3.22E+03 3.27E+03 5.68E+03 3.00E+03

Std 2.21E+01 1.49E+01 2.95E+01 2.21E+01 5.65E+02 0.00E+00

 F29
Mean 3.53E+03 3.95E+03 3.50E+03 4.07E+03 5.52E+03 3.10E+03

Std 1.17E+02 2.47E+02 1.07E+02 1.93E+02 6.89E+02 0.00E+00

 F30
Mean 6.88E+03 7.03E+06 1.62E+04 8.93E+03 6.01E+07 3.96E+03

Std 1.03E+03 4.30E+06 1.07E+03 3.61E+03 1.76E+08 8.49E+01
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Figure 5.  The convergence curves of four typical benchmark functions on 10-D problems.
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Figure 6.  The convergence curves of four typical benchmark functions on 20-D problems.
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Figure 7.  The convergence curves of four typical benchmark functions on 30-D problems.
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Figure 8.  Boxplots between algorithms on F1, F3, F10, F11.

Table 11.  Friedman’s test results for each algorithm.

Algorithm BSO GBSO ADMBSO GDBSO COGBSO

Ranking 4.6 3.0667 2.8 2.6 1.9333

Table 12.  Wilcoxon statistical test results of COGBSO.

Algorithm p-value R+ R−

BSO 0.000655 120 0

GBSO 0.000655 120 0

ADMBSO 0.000982 105 0

GDBSO 0.006319 96 9
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