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Modeling and analysis of the effect 
of optimal virus control 
on the spread of HFMD
Hui Wang 1*, Weihua Li 1, Lei Shi 2, Gaofang Chen 2 & Zhengwen Tu 3

A within-host and between-host hand, foot and mouth disease (HFMD) mathematical model is 
established and the affect of optimal control in its within-host part on HFMD transmission is studied. 
Through define two basic reproduction numbers, by using the fast-slow system analysis method of 
time scale, the global stabilities of the between-host (slow) system and within-host (fast) system are 
researched, respectively. An optimal control problem with drug-treatment control on coupled within-
host and between-host HFMD model is formulated and analysed theoretically. Finally, the purposed 
optimal control measures are applied to the actual HFMD epidemic analysis in Zhejiang Province, 
China from April 1, 2021 to June 30, 2021. The numerical results show that the drug control strategies 
can reduce the virus load per capita and can effectively prevent large-scale outbreaks of HFMD.

HFMD is an infectious disease that tends to occur among children, which threatens children’s physical and 
mental health, and even causes even causes death. The main pathogenic viruses are Coxsackie virus A16 (Cox 
A16) and enterovirus 71 (EV 71)1,2. HFMD occurs mostly in  Asia3–9. Recently, mathematical models based on 
compartmental structure are often used to analyse the transmission mechanism of HFMD. There were two types 
of dynamic mathematical models involving between and within hosts for HFMD. On the one hand, for between-
host models, the authors applied SIR model to analyse the actual outbreak of HFMD in some Asian  cities2,3. 
And then, SIR model in Refs.2,3 has been extended to many complex models that take into account more factors 
related to HFMD transmission, such as incubation  period10,11, isolation  measures12,13, viruses in contaminated 
 environments14–16, seasonal  factors15,17–19,  vaccination20,21, asymptomatic  infections11,18,22, stage  structure23 and 
so on. On the other hand, for within-host models, based on experimental data, the authors proposed a virus 
dynamics model to analyze the evolution of EV71 in human leiomyoma  cells24. Unfortunately, to the best of our 
knowledge, there are fewer studies on that jointly consider in-host and between-host dynamics modeling for 
HFMD. A natural question is: how does the within-host evolution of the pathogens impact the transmission of 
HFMD at the population-level? How does the evolution of pathogens in the host affect the spread of HFMD at 
the population level? The authors have provided a reference method to solve the above  problems25. The optimal 
control strategies were introduced into coupled within-host and between-host HIV model to discuss the affect 
of virus load per capita on the spread of HIV at the population  level25.

The optimal control theories have been successfully applied to HFMD mathematical models. The authors 
applied optimal control theories in between-host models to derive optimal control strategies with respect to 
treatment and quarantine  controls16,26. It is very interesting to extend the optimal control methods of Refs.16,26 
to study a coupled within-host and between-host HFMD model, especially optimal controls are only introduced 
into the within-host portion of the coupled model. Moreover, although the scholars studied the optimal control 
for HIV which is a different infectious diseases from  HFMD25, it is very interesting that its optimal control 
research methods, in which optimal control strategies were introduced into coupled within-host and between-
host HIV model, are extended to study the optimal control of HFMD. Therefore, it is possible to combine the 
research methods explored in Refs.16,25,26 and further expand it to the research of multi-scale optimal control of 
hand, foot and mouth disease.

This paper focuses on optimal control in multi-scale HFMD model, and its main contributions are listed as: 

1. To find out the law of the impact of the within-host virus load on HFMD transmission, a novel multi-scale 
HFMD model involving the within-host and between-host dynamics is proposed.
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2. The fast-slow analysis approach developed in Ref.27 is extended to study dynamic behaviors of the purposed 
multi-scale HFMD model. Note that for our model, at the between-host level, the combined impact of 
human-human and environment-human infections on the spread of HFMD, which brings new challenges 
to dynamics analysis.

3. The optimal control with drug-treatment control on the within-host part of the purposed multi-scale HFMD 
system is formulated, and analysed theoretically. In addition, the related optimal control strategies are applied 
to discuss the actual HFMD outbreak in Zhejiang Province, China from April 1, 2021 to June 30, 2021.

Model formulation
This paper considers two time scales of HFMD transmission: a slow time scale with respect to between-host 
dynamics and a fast time scale with respect to within-host dynamics. Hence, HFMD infection involves differ-
ent time scales. A multi-scale HFMD model that couples the between-host and within host dynamics will be 
presented.

On the slow time scale, we consider two main types of transmission: direct transmission (human to human) 
and indirect transmission (human to environmental virus), by referring to the modeling of HFMD in Refs.20,21. 
Besides, the modeling further introduces that for a infected individual, the transmission capacity to a susceptible 
individual and the rate of virus shedding to the living environment depend on the dynamic change of per capita 
virus load. The total population size N(t) is divided to susceptible S(t), exposed E(t), infected I(t), recovered R(t), 
and denote the total population size N(t) = S(t)+ E(t)+ I(t)+ R(t) . Similar to Refs.14,15, define that W(t) is 
the density of pathogen of the contaminated environments including door handles, towels, handkerchiefs, toys, 
utensils, bedding, underclothes and so on at time t. Then, the between-host model is  established as following:

where �, σ , ι, ς , �, η are all positive constants, and β(V) is increasing function with V (V is the average density 
of enterovirus in a host). γ (V) is the shedding rate that depends on viral load in a host. ξ is the clearance rate of 
enterovirus in the polluted environment. All the parameter definitions are listed in Table 1.

On the fast time scale, the modeling mainly refers to the research results in Ref.24. Based on the experimental 
analysis of HFMD pathogenic virus in a cell culture environment, let T be the average density of target (unin-
fected)  cells24, TE be the average density of ecliptic cells, TI be the average density of virus-producing cells or 
infectious cells, and V be the average density of enterovirus. In order to simplify the theoretical analysis later, 
similar to the modeling  methods24,25, we do not distinguish between the types of enteroviruses. It always assume 
that V represents the average load of various viruses in infected individuals, mean while the transmission abil-
ity of infected individuals is often related to the virus load level in the human individuals. Then, the following 
HFMD virus model is established:

(1)































































dS

dt
= �− β(V)SI − σSW − ιS + ηR,

dE

dt
= β(V)SI + σSW − (ς + ι)E,

dI

dt
= ςE − (�+ ι)I ,

dR

dt
= �I − (η + ι)R,

dW

dt
= γ (V)I − ξW ,

Table 1.  Biological meaning of parameters.

Parameter Meaning

� Recruitment rate

β(V) Transmission rate from I(t) to S(t)

σ Transmission rate from W(t) to S(t)

ι Natural leaving rate

η Rate from R(t) to S(t)

1/ς Average incubation period

� Recovery rate of I(t)

γ (V) Shedding rate that depends on viral load within a host

ξ Clearance rate of pathogens W(t)

�T Recruitment rate of target cells

d Cell infection mortality

µ Natural cell mortality

p Rate of virus particles per infected cell

β̃ Transmission rate of cells from V(t) to T(t)

c Mortality rate of enterovirus
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where g(T) represents the cell recruitment rate function depended on T, ζ represents the conversion rate from 
TE to TI and other parameter definitions are listed in Table 1. Note that for the system (Eq. 2), TE can completely 
convert into TI . Hence, for simplicity, the second equation of the system (Eq. 2) can be removed through simple 
changes, which does not affect its dynamic behavior of the model. Consider  the evolution of cells and viruses 
in an individual in a short period of time, and let g(T) = � , where � is a positive constant and assume that the 
natural cell mortality is a positive constant µ . Then, by modifying the model (Eq. 2), the within-host dynamics 
of an average infected individual for HFMD are described by

where ǫ denotes the ratio of the fast time scale to the slow time scale, and  0 < ǫ ≪ 1.

Remark 1 The obvious difference between the between-host model (Eq. 1) and the model in Refs.16,26 is that 
the transmission rate β(V) and the shedding rate γ (V) are variable functions of the virus load per capita V(t), 
while those in previous studies are usually constants or only periodic functions of time t. Therefore, it brings 
new challenges to theoretical analysis and numerical experiments.

Remark 2 The within model (Eq. 3) without time scale parameter ǫ is a very classic virus dynamic  model28. 
Therefore, the dynamic behaviors of the model (Eq. 3) are very easy to be analysed based on previous studies, 
which is conducive to study the coupling model of Eqs. (1) and (3).

Analysis of the disease dynamics
Because the systems (Eq. 1) and (Eq. 3) present different time scales, their dynamic behaviors would be analysed 
by using the fast-slow system analysis method in Ref.27. The coupling model of Eqs. (1) and (3) can be divided 
into a fast system and a slow system.

The fast system
The system (Eq. 3) is not affected by the system (Eq. 1), so the dynamics of the system (Eq. 3) can be discussed 
separately. The system (Eq. 3) always has a disease-free equilibrium

By using the next generation matrix method in Ref.29, the basic reproduction number for the system (Eq. 3) 
is calculated as

Moreover, if Rv > 1 , then the system (Eq. 3) has a unique positive equilibrium

Lemma 1 Ŵ is a positively invariant set of the system (Eq. 3), where

Proof When the state variables of the system (Eq. 3) are all equal to 0, the derivative of each variable is greater 
than or equal to 0. Hence, we obtain that T(t) ≥ 0,TI (t) ≥ 0,V(t) ≥ 0 . Let NT (t) = T(t)+ TI (t) , we obtain 
NT (t) ≥ 0 . From the system (Eq. 3), the total size NT (t) satisfies the following equation

(2)
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dTI

dt
= ζTE − dTI ,

dV

dt
= pTI − cV ,

(3)
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(
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According to the comparison theorem and let ψ(0) be the initial condition of the system (Eq. 3), if ψ(0) ∈ Ŵ , 
then it can be obtained that NT ≤ �T

µ
.

Moreover, if ψ(0) ∈ Ŵ , then for the last equation of the system (Eq. 3), we have

Similarly, we have V(t) ≤
p�T

µc  . Therefore, Ŵ is a positively invariant set of the system (Eq. 3).   �

Theorem 1 If Rv < 1 , then the disease-free equilibrium F0 of the system (Eq. 3) is globally asymptotically stable.

Proof Consider the following Lyapunov function

Take the derivative of L(T ,TI ,V) along the trajectory line of the system (Eq. 3) as

It is obvious that dLdt = 0 if and only if ψ(t) = F0 . According to the Lasalle invariance principle, one has that 
F0 of the system (Eq. 3) is globally asymptotically stable as Rv < 1 . This completes the proof.   �

Next, when ψ(0)  = F0 , we have the following result.

Theorem 2 Assume that ψ(0)  = F0 of the system (Eq. 3) holds. If Rv > 1 , then the positive equilibrium F∗ of the 
system (3) is globally asymptotically stable.

Proof Define the following Lyapunov function

U has the time derivative along the de-trajectory line of the system (Eq. 3) as

dU
dt = 0 if and only if ψ(t) = F0 . Similarly, we obtain that F∗ of the system (Eq. 3) is globally asymptotically stable 
as Rv > 1 . This completes the proof.   �

Remark 3 There is little difference between the system (Eq. 3) and the classical virus dynamic model in Ref.28. 
Therefore, for simplicity, the detailed derivation processes related to Lyapunov functions L(T ,TI ,V) in Theorem 1 
and U(T ,TI ,V) in Theorem 2 are omitted, which can be refer to Ref.28.

The slow system
The between-host system (Eq. 1) is on a far slower time scale than the within-host system (Eq. 3). If the state 
variables of the within-host system (Eq. 3) can quickly stabilize to an equilibrium state, then we can discuss the 
dynamics of the between-host system (Eq. 1) based on the steady state of the within-host system (Eq. 3). In fact, 
the average duration of an infected HFMD individual’s viral load in an unstable state is slightly less than 1 day 
in Ref.24, which is short time. Next, we only study the dynamic behaviors of the system (Eq. 1) with the case 
that the Rv > 1 with respect to the system (Eq. 3) (For the case Rv < 1 , the disease can not spread in the hosts). 
Hence, for the system (Eq. 1), letting β(V) = β(V∗) and γ (V) = γ (V∗) , where V∗ = m(Rv−1)

k  , if Rv > 1 , then 
from the system (Eq. 1), we have

(5)
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=
1

ǫ
(�T − µT − (µ+ d)TI )

=
1

ǫ
(�− µNT − dTI )
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1
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Then, for between-host system (Eq. 1), it only needs to discuss dynamics of system (Eq. 7).

Lemma 2 X is a positively invariant set of the system (Eq. 7), where

Proof It is easy to verify this conclusion as the similar proof process to Lemma 1. Its proof is omitted here.
It is obvious that the system (Eq. 7) has a disease-free equilibrium

By using the calculation method in Ref.29, the basic reproduction number for the system (7) is

  �

Theorem 3 The disease-free equilibrium E0 of the system (Eq. 7) is globally asymptotically stable as Rh < 1 and it 
is unstable as Rh > 1.

Proof According to the proof process of Theorem 2 in Ref.29, it is clearly that E0 is stable (unstable) as Rh < 1 
( Rh > 1).

Next, we will prove that E0 is globally attractive. According to Lemma 2, X is a positively invariant set for 
the system (7). For the system (Eq. 7) with the initial value ϕ(0) ∈ X , there exists any positive constant ε1 > 0 
such that one has that

Hence, for all t ≥ 0 , if Rh < 1 , then it follows from the system (Eq. 7) that

Let u = (u1, u2, u3)
T , it can obtain the auxiliary system

where

Let s(J) be the maximum real part of all the eigenvalue for J. According to the proof process of Theorem 2 in 
Ref.29, if Rh < 1 , which means that s(J) < 0 , then s(J) < 0 for a small enough positive constant ε1 . According to 
the comparison theorem, as t → ∞ , it follows that

(7)
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= �− β(V∗)SI − σSW − ιS + ηR,

dE

dt
= β(V∗)SI + σSW − (ς + ι)E,

dI

dt
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�γ (V∗)
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σςγ (V∗)S0
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+ ε1, for t ≥ 0.

(9)
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.

(E, I ,W)T ≤ (u1, u2, u3)
T → 0.
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From above equation, we also easily obtain that R → 0 and S → S0 =
�
ι
 . That is, E0 is globally asymptotically 

stable as Rh < 1 . This completes the proof.   �

Next, we will prove that the system (Eq. 7) is uniformly persist. Denote

It is clear that X0 and ∂X0 are all positively invariant sets. Then, drawing on the relevant research works of 
Refs.30,31, we give the following conclusion.

Theorem 4 If Rh > 1 , then the system (Eq. 7) is uniformly weakly persistent. That is, if Rh > 1 , then there exists 
δ > 0 such that the solution ϕ(t) of the system (Eq. 7) with any initial value ϕ(0) ∈ X0 satisfies lim sup

t→+∞
(E, I ,W) > δ.

P r o o f  L e t  G∂ = {ϕ(0) ∈ ∂X0 : ϕ(t) ∈ ∂X0, ∀t ≥ 0}.  F i r s t ,  w e  p r o v e  t h a t 
G∂ = {(S, 0, 0, 0, 0) ∈ ∂X0 : S ≥ 0} � G′

∂ .   �

It is obvious that G′
∂ ⊆ G∂ , and thus, it only needs to prove G∂ ⊆ G′

∂ . Suppose that G∂  ⊆ G′
∂ , then arbitrary 

solution ϕ(t) of the system (Eq. 7) with the initial value ϕ(0) ∈ ∂X0 satisfies

From the system (Eq. 7), at least one of E(t), I(t), R(t) and W(t) is not zero. Without loss of generality, assume 
that E(t) = 0, I(t) = 0,R(t) = 0 , but W(t) > 0 . For the system (Eq. 7), it derives that for ∀t > 0,

Obviously, it follows from Eq. (11) that ϕ(t)  ∈ ∂X0, t > 0 , which contradicts the hypothetical condition 
ϕ(t) ∈ G∂ . For other cases, the similar contradictory conclusions can also be obtained. Therefore, one has that 
G∂ ⊆ G′

∂ . Moreover, it follows from G∂ = G′
∂ that G∂ only has the disease-free equilibrium E0(S0, 0, 0, 0, 0) , mean-

while E0 is a compact and isolate invariant for ϕ(0) ∈ G∂.
Denote Ws(E0) is the stable manifold of E0 . Next, we prove that Ws(E0) ∩ X0 = ∅ if Rh > 1 . We only need to 

prove that there exists a constant ε > 0 such that if Rh > 1 , then one has

where D is a distance function in X0 , �t(ϕ(0)) is an arbitrary solution of the system (Eq. 7), and ϕ(0) ∈ X0 . 
If it is assumed that the above conclusion are not true, then there must exist ε̄ > 0,T > 0 such that 
D(�t(ϕ(0)),E0)

∞ < ε̄ , for t > T  . In this case, for t > T  , one has �
ι
− ε̄ ≤ S(t) ≤ �

ι
+ ε̄ , 0 ≤ E(t) ≤ ε̄ , 

0 ≤ I(t) ≤ ε̄ , 0 ≤ R(t) ≤ ε̄ and 0 ≤ W(t) ≤ ε̄ . Hence, for all t ≥ 0 , if Rh < 1 , then by the system (Eq. 7), we have

Letting u = (u1, u2, u3)
T , we get the following auxiliary system

Denote s(J̃) be the maximum real part of all the eigenvalue for J̃ . It should note that the auxiliary system 
u̇ = J̃u satisfies all the necessary conditions of Theorem 2 in Ref.29. Then, according to Theorem 2 in Ref.29, 
Rh > 1 yields s(J̃) < 0 . Hence, there exists a small enough ε̄ such that s(J + ε̄) < 0 . According to the comparison 
theorem, when t → ∞ , it follows that

X0 = {(S,E, I ,R,W) ∈ X : E > 0, I > 0,R > 0,W > 0},

∂X0 = X\X0.

ϕ(t) ∈ G∂ and ϕ(t) �∈ G′
∂ .

(11)E(t) = e−(ς+ι)t

[

E(0)+

∫ t
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β(V∗)S(u)I(u)+ σS(u)W(u)]du
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0
ςE(u)du
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∫ t
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γ (V∗)I(u)du
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> 0.

D(�t(ϕ(0)),E0)
∞ ≥ ε,
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u̇ = (J̃ + ε̄M1)u.
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which contracts with our assumption. Hence, Ws(E0) ∩ X0 = ∅ as Rh > 1 . Thus, the system (Eq. 7) is uniformly 
weakly persistent. This completes the proof.

Optimal control
This section will discuss optimal control of multi-scale HFMD model and the affect of optimal control in its 
within-host part on HFMD transmission. Unlike the previous researches [16,26], in which the optimal controls 
were only introduced into between-host model, we discuss the optimal control strategies in a coupled within-host 
and between-host model for HFMD, especially optimal controls are only introduced into the within-host part of 
the coupled model. In addition, the schloars have analysed the effects of six different drug treatments including 
reduning, tanreqing, xiyanping, yanhuning, ribavirin, and combining Bhavelin and Renzen on HFMD virus 
in human  body32,33. Their research results showed that different drug treatments have different effects, and the 
more expensive the drug results in the better the treatment effect, i.e., the more expensive the drug is conducive 
to controlling the spread of the virus in the human body. Then, the coupled model by combing between-host 
model (Eq. 1) and within-host model (Eq. 3) is as follow:

By getting the ideas from the optimal control researches for a multi-scale HIV model in Ref.25, under the 
influence of drug treatment, two control functions u1(t) and u2(t) are introduced into the coupled system (Eq. 16):

where the control functions u1(t) and u2(t) are bounded lebesgue integrable and represent the effects of drugs on 
inhibiting virus transmission and virus elimination, respectively. In addition, the coefficient 1− u1(t) represents 
the drug effect that reduces transmission of healthy cells to infected cell as a result of interaction with the virus, 
while the coefficient 1+ u2(t) gives the another effect drug that increases the clearance of virion. The upper 
bounds of u1(t) and u2(t) show that the affects of the virus transmission and virus clearance. Specially, when 
u1(t) = 0 and u2(t) = 0 , the related drugs are not inhibition virus transmission and not enhance virus removal. 
Naturally, each control incurs some cost, such as effective treatments usually require the existence and support of 
a costly public health infrastructure. Thus, we use the relative cost for the controls as the following quadratic term:

(E, I ,W)T ≥ (u1, u2, u3)
T → ∞,

(16)
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dW

dt
= γ (V)I − ξW ,

dT

dt
=

1

ǫ
[�T − β̃VT − µT],

dTI

dt
=

1

ǫ
[β̃VT − (µ+ d)TI ],

dV

dt
=

1

ǫ
[pTI − cV ].

(17)



















































































































dS

dt
= �− β(V)SI − σSW − ιS + ηR,

dE

dt
= β(V)SI + σSW − (ς + ι)E,

dI

dt
= ςE − (�+ ι)I ,

dR

dt
= �I − (η + ι)R,

dW

dt
= γ (V)I − ξW ,

dT

dt
=

1

ǫ
[�T − β̃(1− u1(t))VT − µT],

dTI

dt
=

1

ǫ
[β̃(1− u1(t))VT − (µ+ d)TI ],

dV

dt
=

1

ǫ
[pTI − c(1+ u2(t))V ],

1

2
[B1u

2
1(t)+ B2u

2
2(t)],
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where Bi is the cost weight for the control ui , i = 1, 2 . Next, similar to Refs.34,35, define the total cost objective 
functional for the system (Eq. 17) with the goal of minimizing free virus and infected individuals as follow:

where A1 and A2 are the cost weights of exposed and infected individuals, respectively. tf  is the final time. Here, 
our goal is to seek an optimal control (u∗1(t), u

∗
2(t)), t ∈ [0, tf ] such that

with G = {(u1(t), u2(t)) : ui(t) is lebesgue integrable, 0 ≤ ui(t) ≤ 1, t ∈ [0, tf ]}, i = 1, 2 is the admissible control 
set. Referring to Theorem 4.1 of Ref.35, the following conclusion is provided.

Theorem 5 There exists an optimal control (u∗1(t), u
∗
2(t)), t ∈ [0, tf ] such that J(u∗1(t), u

∗
2(t)) subjects to the control 

the system (17) with nonnegative initial conditions.

Proof For the system (Eq. 17), define the following the Hamilton function

where �i , i = 1, . . . , 8 , satisfy

with transversely conditions �i(tf ) = 0, i = 1, 2, . . . , 8. To obtain the characterization of the optimal control, it 
gives the following equations:

It follows from Eq. (19) that

By solving Eq. (20), it derives

Combing Eq. (21) and the conditions 0 ≤ ui(t) ≤ 1, t ∈ [0, tf }, i = 1, 2 , the obtained optimal control is

(18)J(u1(t), u2(t)) :=

∫ tf

0

[

A1E(t)+ A2I(t)+
B1

2
u21(t)+

B2

2
u22(t)

]

dt,

J(u∗1(t), u
∗
2(t)) = min{J(u1(t), u2(t)) : (u1(t), u2(t)) ∈ G },

H =A1E(t)+ A2I(t)+
B1

2
u21(t)+

B2

2
u22(t)

+ �1
dS

dt
+ �2

dE

dt
+ �3

dI

dt
+ �4

dR

dt
+ �5

dW

dt
+ �6

dT

dt
+ �7

dTI

dt
+ �8

dV

dt
,

�
′
1 =−

∂H

∂S
= (�1 − �2)(β(V)I + σW)+ �1ι,

�
′
2 =−

∂H

∂E
= �2(ς + ι)− �3ι,

�
′
3 =−

∂H

∂I
= −(�1 − �2)β(V)S + �3(�+ ι)− �4�− �5γ (V),

�
′
4 =−

∂H

∂R
= −�1η + �4(η + ι),

�
′
5 =−

∂H

∂W
= (�1 − �2)σS + �5ξ ,

�
′
6 =−

∂H

∂T
= �6

1

ǫ
[β̃(1− u1(t))V + µ] − �7

1

ǫ
β̃(1− u1(t))V ,

�
′
7 =−

∂H

∂TI
= �7

1

ǫ
(µ+ d)− �8

1

ǫ
p,

�
′
8 =−

∂H

∂V
= �1

∂β(V)

∂V
SI − �2

∂β(V)

∂V
SI − �5

∂γ (V)

∂V
I + �6

1

ǫ
β̃(1− u1(t))T

− �7
1

ǫ
β̃(1− u1(t))T + �8

1

ǫ
(1+ u2(t)),

(19)
∂H

∂ui
= 0, i = 1, 2.

(20)











B1u1(t)+ �6
1

ǫ
β̃VT − �7

1

ǫ
β̃VT = 0,

B2u2(t)+ �8
1

ǫ
cV = 0.

(21)















u1(t) =
(�7 − �6)β̃VT

B1ǫ
� û1(t),

u2(t) =
�8cV

B2ǫ
� û2(t).
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This completes the proof.   �

Remark 4 From the Eq. (21) and the expressions of �′7, �′8 , it knows that û1(t), û2(t) not only explicitly contain 
relevant state variables within the host such as V, T but also implicit relevant state variables between the hosts 
such as S, I. This means that the obtained optimal controls û∗1(t), û

∗
2(t) may contain the relationship between 

the microscopic virus load per capita and the macroscopic number of infected humans, and thus, this is condu-
cive to analyse the affect of virus load per capita on the spread of HFMD at the population level in subsequent 
numerical experiments.

Numerical results
In this section, numerical simulations are given to confirm the our theoretical results and simulate the effect of 
virus load per capita on the spread of HFMD.

Numerical verification of theoretical results
First, fix the parameter values in Table 2. If we choose β̃ = 0.01 , then we obtain that the within-host system 
(Eq. 3) has a disease-free equilibrium F0 = (1, 0, 0) and it calculates Rv = 0.7822 . Then, Fig. 1 shows that F0 is 
globally asymptotically stable. If we choose β = 0.03 , then we obtain that the within-host system (Eq. 3) has a 















u∗1(t) = max

�

min
�

û1(t), 1
�

, 0

�

, t ∈ [0, tf ],

u∗2(t) = max

�

min
�

û2(t), 1
�

, 0

�

, t ∈ [0, tf ].

Table 2.  Constant parameter values.

Parameters Value References

� 22 Assumption

σ 4× 10
−6 2,18

ι 2.1× 10
−3 Assumption

η 1.2× 10
−3 2,18

ς 0.25 2,18

� 0.1176 2,18

�T 1.72× 10
−5 24

µ 8.6× 10
−7 24

d 6.22 24

p 738.9 24

c 1.46 24

ǫ 0.12 Assumption

T
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

T*

× 10-3

0

0.5

1

1.5

2

2.5

3

3.5

4

F0

T
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

V

0

0.5

1

1.5

2

2.5

3

3.5

4

F0

(a) (b)

Figure 1.  Plane phase diagram for the fast system (Eq. 3), in which F0 is the disease-free equilibrium. (a) 
T − T

∗ plane; (b) T − V  plane.
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positive equilibrium F∗ = (0.4261, 0.0222, 11.2223) and it calculates Rv = 2.3467 . According to Theorem 1, Fig. 2 
shows that F∗ is globally asymptotically stable. In addition, Fig. 3 also indicates that the average viral load V(T) 
within reach steady state rapidly, and the time required is about one day.

For the system (Eq. 1), we discuss the slow system (Eq. 7). Similar to the methods in Ref.36, set

where the parameters rW  and r̃W  are virus transmission rate and virus shedding rate, respectively. KW 
is the threshold of the viral load in a host may need to cross in order to transmit the infection. If we take 
rW = 3.5× 107, r̃W = 0.46,KW = 5 and use the V∗ from Fig. 2, then by simple calculation, it follows that 
Rh = 1.4581 . Figure 4 shows that the system (Eq. 7) is uniformly persistent, which means HFMD is persistent.

The effect of virus load per capita on HFMD transmission
The affect of virus load per capita on the spread of HFMD will be discussed. That is, assuming that the medical 
authorities can quickly reduce the virus load per capita to a lower level, even if the virus cannot be eliminated 
immediately, we analyse the impact of this measure on the HFMD transmission. In addition, note that the basic 
reproduction number is the key threshold for evaluating the spread of the epidemic. It is clear that Rh decreases 
as Rv decreases by comparing the expressions of Rh and Rv . If we continuously change β̃ for 0.013 to 0.03 and 
fix the other parameter values same as in Figs. 2 and 4, then the relationship between the two basic reproduc-
tion numbers Rh and Rv is indicated in Fig. 5. Figure 5 illustrates that when 1 < Rv < 1.633 , we have Rh < 1 . 
This implies that during the infection period, as long as the per capita viral load is controlled at a low level 
even if it cannot be eliminated immediately, the disease will become extinct. In addition, if we choose β̃ = 0.02 
( Rh = 0.9167,Rv = 1.5644 ), then Fig. 6a shows the state variable I(t) of the slow system (Eq. 1) tends to 0, 
meanwhile the state variable V(t) of the fast system (Eq. 3) tends to be a constant greater than 0. From the above 
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Figure 2.  Plane phase diagram for the fast system (Eq. 3), in which F∗ is the positive equilibrium. (a) T − T
∗ 

plane; (b) T − V  plane.
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Figure 4.  Simulations of the slow system (Eq. 1). (a) The state variables S(t), R(t); (b) The state variables 
E(t), I(t); (c) The state variables W(t).
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Figure 5.  The relationship between the two basic reproduction numbers Rh,Rv (take Rh = f (Rv)).
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discussion, it comes to a very important conclusion: although there are no targeted drugs for HFMD, we can 
actively treat HFMD and control the viral load per capita to a lower value, which can also eliminate the disease.

Optimal control of the actual epidemic application
This section numerically discuss the influences of optimal control of drug therapy in human body on HFMD 
transmission at the between-host level, by using relevant HFMD data of Zhejiang Province, China. Only children 
under 5 years old are considered, as they are the group with the highest risk of the  disease1–3. Note that HFMD 
transmission is influenced by climate and population  concentration12,13,15,19. In addition, our between-host model 
is an autonomous differential equation with constant coefficients. The numerical experiment needs to avoid 
the influence of periodic (climate factors) or sudden (change in children’s concentration) objective factors. 
Therefore, in order to avoid above objective factors, we choose the period from April 1, 2021 to June 30, 2021 
when climatic conditions and children’s aggregation have little change. Furthermore, it should be noted that the 
period from onset to recovery of HFMD is extremely short, which is generally within 10 days. Therefore, the 
time period (April 1 to June 30) contains multiple popular waves, which is enough for us to observe the fitting 
effect of our model.

Data fitting
The daily newly reported HFMD cases are obtianed from Health Commission of Zhejiang Province (HCZP)37, 
and temographic information is acquired from Zhejiang Provincial Bureau of Statistics (ZPBS)38. Accord-
ing to the experimental data of HFMD virus dynamics model in Ref.26, the units of V(t),TI (t) and V(t) are 
cells/10−5ml, cells/10−5ml and virus − numbers/10−5ml , respectively. According to Refs.26,37,38 and getting 
W(0) = 120 from Refs.14,15 we set the initial conditions of the system (Eq. 16) and the system (Eq. 17) as

Some parameters related to HFMD, such as the recovery rate � , the natural cell mortality µ and so on, are 
from the previous research papers, some of which can also be seen in Table 2. Similar to the approach in Ref.39, 
combining the related research results in Refs.32,33, we can reasonably assume that

where kβ and kγ need to be estimated. In addition, all the unknown parameters kβ , kγ , σ are estimated by using 
our proposed algorithm based on BP neural network in Refs.20,21. The parameter estimation process based on 
BP neural network is described as: 

1. BP neural network is designed as a three-layer structure of input layer, middle layer and output layer. The 
input vector is the daily reported HFMD cases in Zhejiang Province, China, from April 1, 2021 to June 30, 
2021. The output vector consists of σ , kβ , kγ.

2. Train data: The numbers of neurons in the input layer, the middle layer and the output element are 91, 200 
and 3, respectively. Then, based on Latin hypercube sampling technology, model (Eq. 16) is used to generate 
2000 groups of training data for training.

3. Estimate parameters: Substituting the daily reported HFMD cases in Zhejiang Province, China, from April 
1, 2021 to June 30, 2021 the trained BP neural network to evaluate the unknown parameters σ , kβ , kγ . Then, 
all the parameter values are listed in Table 3. It should noted that some parameter values Table 3 are different 

(22)(S(0),E(0), I(0),R(0),W(0),T(0),TI (0), v(0)) =(2.95× 106, 125, 95, 96, 120, 10, 0.02, 0).
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from that in Table 2. Tables 2 and 3 have different roles in our paper. Table 2 is mainly to show the correct-
ness of theoretical results related to system stability. Therefore, some parameter values are artificially set or 
derived from previous studies, such as �, σ , kβ , kγ and so on. However, Table 3 is a fitting of actual epidemic 
data from specific areas of primary sources, which is intended to demonstrate the effectiveness of optimal 
control. Therefore, some parameters in the two tables are quite different, which is normal.

Based on the parameter values in Table 3 and the initial conditions (Eq. 22), Figure 7 shows the numerical 
simulation of the system (Eq. 16) on the number of HFMD cases in Zhejiang Province, China, from April 1, 2021 
to June 30, 2021. Figure 7 also indicates that the number of new HFMD cases has been on the rise during this 
period. HFMD is a self-limiting disease that can be cured without medication. Therefore, many infected people 
fail to seek medical treatment in time or do not seek medical treatment. In the next subsection, we will use the 
fitting curve in Figure 1 to analyse the impact of drug treatment prevention and control on the transmission of 
HFMD.

Remark 5 The detailed process of estimating unknown parameters by the algorithm based on BP neural network 
is cumbersome, and can be seen in Refs.20,21. Therefore, it is omitted here.

Simulation optimization control
This subsection analyses the control measures for timely drug treatment in a short period of time. To this purpose, 
combining the model (Eq. 17) with the fitting curve of Figure 7 is discussed, i.e., the influences of the optimal 
controls in within-host of the system (Eq. 17) are on the infected number I(t) in between-host part of the system 
(Eq. 17). To facilitate analysis, the following assumptions are needed:

Table 3.  Constant parameter values.

Parameters Value (per day) References

� 1859 38

ι 7.12× 10
−4 38

η 1.2× 10
−3 2,18

ς 0.25 2,18

� 0.1176 2,18

�T 1.72× 10
−5 24

µ 8.6× 10
−7 24

d 6.22 24

p 738.9 24

c 1.46 24

ǫ 0.12 Assumption

σ 4× 10
−6 Estimation

kβ 1.83× 10
−8 Estimation

kγ 3.57× 10
−9 Estimation
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Figure 7.  The system (Eq. 16) fits the reported HFMD data in Zhejiang Province, China, from April 1, 2021 to 
June 30, 2021.
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(H1) During the implementation of optimal control, every infected patient can receive timely treatment. This 
can be ensured through the joint efforts of public health authorities, child-related authorities and guardians of 
children.

(H2) Under the corresponding treatment costs, the average viral load of an infected patient can be controlled 
to the optimal control solution obtained by the system (17).

Under the conditions ( H1 ) and ( H2 ), it will solve the optimal problem in optimal control section. Based on the 
researches on HFMD in Chinese mainland has been conducted in recent  years32,33, the economic loss caused by 
latent individuals and infection to society is about 10 yuan, or 20 yuan, respectively, and the cost of positive treat-
ment for HFMD infection is about 200 yuan. Thus, set A1 = 10,A2 = 20,B1 = 200/2 = 100,B2 = 200/2 = 100 . 
It should be noted that, the optimal control method adopted is the terminal time optimization control in the opti-
mal control of infectious disease dynamic system. The biological meaning is that the terminal time t must be less 
than the average recovery time of the infected person 1/ς = 4 . Therefore, we set tf = 3 days for object function 
(Eq. 18). In the previous researches on the fast-slow system of infectious diseases in Refs.24,27,39, the value of ǫ have 
usually been taken the ratio of the average duration of an infected person’s viral load in an unstable state to the 
average duration of the infection period, because the infected person is constant when the viral load is in a stable 
state. According to Ref.26, the average duration of an infected HFMD individual’s viral load in an unstable state is 
slightly less than 1 day and the average duration of the infection HFMD period is about 8.5 days. Therefore, we let 
ǫ = 1

8.5 = 0.12 . Take the parameter values in Table 3 and the initial conditions (Eq. 22) for the system (Eq. 17). 
Note that u1(t) and u2(t) affect the ability of infected cells to spread with respect to the rate β̃ and the intensity of 
virus clearance with respect to the rate c, respectively. Thus, in order to analyze the influence of optimal control 
on the ability of infected cells, the intensity of virus clearance, and the whole disease transmission, we only need 
to discuss that the influence of u1(t) and u2(t) on total cost objective function (Eq. 18). Figure 8 shows that the 
optimal u∗1(t), u

∗
2(t) are a decreasing trend, meanwhile u∗1(3) = 0.0149, u∗2(t) = 0.5518 , which means the effects 

of optimal controls with respect to virus load per capita are first strong and then weak (seeing Fig. 9). Figure 9 
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indicates that the virus load per capita V(t) of the system (Eq. 17) with optimal controls is lower than that without 
optimal controls. The lower virus load in an infected individual implies the less transmission capacity, which 
is illustrated in Fig. 10. Moreover, Fig. 10 indicates the comparison between the of infected number I(t) under 
optimal controls with respect to the system (Eq. 16) at different implemented times t = 10, 30, 50, 70 and that 
without optimal controls with respect to the system (Eq. 17), meanwhile also reflects two phenomena: 

1. The number of newly infected individuals under optimal control is lower than those without optimal control.
2. When the number of newly infected individuals continues to rise, the earlier the control measure is imple-

mented, the smaller the total number of infected persons, that is, the earlier the control measure is imple-
mented, the more conducive it is to reduce the spread of the disease.

In summary, the drug control strategies reducing the virus load per capita can effectively prevent large-scale 
outbreaks of HFMD.

Discussion
In this paper, a multi-scale HFMD model was proposed. It notes that the previous studies were independent 
analysis of between-host and within-host dynamics for the spread of HFMD. We constructed the relation between 
between-host system and within-host system by establishing the transmission rate of human-human β and the 
rate of virus shedding from the host to the external environment γ as a function of the viral load in a host V(t), 
which brings new challenge problems. Due to the dynamical processes of the within-host and between-host 
develop at different time scale, by using the fast-slow analysis method, some stability analyses were provided 
for the proposed model. Through define two basic reproduction number Rv (for fast system) and Rh (for slow 
system), we investigated the global stabilities of positive equilibrium and boundary equilibrium for fast system, 
and the global stability of boundary equilibrium and uniform persistence for the slow system.

When we discussed the affect of virus load per capita on the spread of HFMD, we have found an interesting 
result: during the infection period, as long as the per capita viral load is controlled at a low level even if it cannot 
be eliminated immediately, the disease will become extinct (see the analysis of Fig. 5), which provides a favora-
ble basis for the prevention and control of HFMD. In addition, the optimal control on the within-host part of 
the purposed multi-scale HFMD system was formulated, and its related theories have been rigorously proven. 
Furthermore, the optimal control measure was applied to the actual HFMD epidemic analysis in Zhejiang Prov-
ince, China, and thus, an important conclusion was obtained: when the number of newly infected individuals 
continues to rise, the earlier implementation of optimal control would help reduce the spread of disease.

Data availability
The datasets analysed during the current study are not publicly available due to that the data from real-time 
reporting on infectious diseases can only be used for scientific research and must not be reproduced, but are 
available from the corresponding author on reasonable request.
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