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Risk prediction and interaction 
analysis using polygenic risk score 
of type 2 diabetes in a Korean 
population
Minsun Song 1,4, Soo Heon Kwak 2,4* & Jihyun Kim 3

Joint modelling of genetic and environmental risk factors can provide important information to 
predict the risk of type 2 diabetes (T2D). Therefore, to predict the genetic risk of T2D, we constructed 
a polygenic risk score (PRS) using genotype data of one Korean cohort, KARE (745 cases and 2549 
controls), and the genome-wide association study summary statistics of Biobank Japan. We evaluated 
the performance of PRS in an independent Korean cohort, HEXA (5684 cases and 35,703 controls). 
Individuals with T2D had a significantly higher mean PRS than controls (0.492 vs. − 0.078, p ≈ 0 ). PRS 
predicted the risk of T2D with an AUC of 0.658 (95% CI 0.651–0.666). We also evaluated interaction 
between PRS and waist circumference (WC) in the HEXA cohort. PRS exhibited a significant sub-
multiplicative interaction with WC (ORinteraction 0.991, 95% CI 0.987–0.995, pinteraction = 4.93 × 10–6) in 
T2D. The effect of WC on T2D decreased as PRS increased. The sex-specific analyses produced similar 
interaction results, revealing a decreased WC effect on T2D as the PRS increased. In conclusion, the 
risk of WC for T2D may differ depending on PRS and those with a high PRS might develop T2D with 
a lower WC threshold. Our findings are expected to improve risk prediction for T2D and facilitate the 
identification of individuals at an increased risk of T2D.

Type 2 diabetes (T2D) is a complex metabolic disorder associated with an increased risk of chronic vascular 
complications, including coronary artery disease, stroke, retinopathy, and chronic kidney disease. It is a foremost 
global public health concerns1. Its prevalence has continuously increased over the past few decades, particularly, 
in underdeveloped contries2.

T2D is characterized by a strong genetic predisposition with estimates of heritability at 25–72%3. Genome-
wide association studies (GWAS) have successfully identified more than 700 common genetic variants associated 
with the risk of T2D4–9. However, most of these common genetic variants discovered by GWAS have small effect 
sizes, and individually, have limited liability variance for T2D10. Thus, the polygenic risk score (PRS), which 
aggregates many genetic variants, has been used to quantify the genetic risk in an individual11.

Waist circumference (WC) reflects abdominal obesity and is a significant predictor of T2D12. It is a slightly 
better predictor of T2D than body mass index (BMI), which reflects overall adiposity13. Although WC and PRS 
are good predictors of T2D, the joint etiology of PRS and WC in T2D requires further elucidation. The PRS-WC 
interaction can provide important information for the joint modelling of genetic and environmental risk factors 
to predict T2D. Therefore, we aimed to construct a PRS for T2D using the Korean Association Resource (KARE) 
cohort and GWAS summary statistics of Biobank Japan7. We then evaluated the PRS for risk prediction of T2D 
and investigated whether the effect of PRS would depend on WC in an independent cohort, Health Examinees 
(HEXA) cohort.

Results
The PRS constructed using KARE and Biobank Japan were evaluated in HEXA as follows.
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T2D risk prediction using PRS
The area under the receiver operating characteristic curve (AUC) of the PRS for predicting T2D was 0.658 
(95% confidence interval [CI]: 0.651–0.666) (Supplementary Fig. S1a). The mean and standard deviation (SD) 
of the PRS in cases and controls were 0.492 (0.981) and − 0.078 (0.980), respectively (p ≈ 0) (Supplementary 
Fig. S2a). Moreover, PRS was significantly associated with T2D (odds ratio [OR] 1.964, 95% CI 1.901–2.028, 
p ≈ 0) (Table 1). The prevalence of T2D in each quartile of PRS was 6.562%, 10.642%, 14.381%, and 23.350% 
from the lowest to the highest quartiles, respectively. T2D cases were distributed 11.946%, 19.370%, 26.179%, 
and 42.505% from the lowest to highest quartiles of PRS, respectively. Compared to the reference group of first 
quartile of PRS, which reflected low genetic susceptibility, each PRS quartile exhibited substantial increase in the 
risk of T2D (OR 1.744 [95% CI 1.572–1.935, p = 9.06 × 10–26], OR 2.608 [95% CI 2.361–2.882 p = 2.30 × 10–79], 
OR 5.132 [95% CI 4.667–5.644, p = 3.86 × 10–249], respectively) (Table 1). A monotonic relationship was observed 
between the PRS quartiles and risk of T2D (ptrend = 4.48 × 10–291). The high-risk group (top 5%–25% PRS) had a 
significantly elevated risk of T2D compared to the remaining population: the top 5% PRS had a 4.192-fold risk, 
and the top 10% PRS had a 3.596-fold risk (Table 2). Similar results regarding the performance of PRS in the 
KARE cohort are shown in Supplementary Tables S1 and S2 and Supplementary Figs. S1b and S2b.

PRS‑WC interaction
The results of the analyses of the main-effect-only model and the joint model are shown in Table 3. A larger WC 
was associated with an increased risk of T2D. We found a sub-multiplicative interaction between PRS and WC 
with respect to the risk of T2D (ORinteraction 0.991, 95% CI 0.987–0.995, pinteraction = 4.93 × 10–6). WC ≥ 90 cm in 
men and WC ≥ 85 cm in women is defined as abdominal obesity14. The risk of T2D associated with PRS differed 
when stratified by WC, and weaker associations were observed among individuals with abdominal obesity (Sup-
plementary Table S3). The effect size of the association between PRS and the risk of T2D in individuals those with 
and without abdominal obesity was OR 1.758 (95% CI 1.665–1.855, p ≈ 0) and OR 2.083 (95% CI 2.001–2.168, 
p ≈ 0), respectively. We found similar results, showing a significant sub-multiplicative interaction between PRS 
and WC in T2D development from the analyses for the KARE cohort (Supplementary Tables S3 and S4). How-
ever, no significant additive interaction was observed between abdominal obesity and dichotomized PRS, where 
the low and high genetic risk groups included individuals with a PRS less than the median PRS and with a PRS 
larger than or equal to the median PRS, respectively. In the corresponding analysis, there was a significant sub-
multiplicative interaction between abdominal obesity and dichotomized PRS. The estimated relative excess risk 
due to interaction (RERI) was 0.023 (95% CI − 0.298 to 0.349), while ORinteraction was 0.771 (95% CI 0.677–0.879).

Discrimination results
We examined the discrimination ability of the PRS stratified by abdominal obesity and observed that individu-
als with abdominal obesity were discriminated less by the PRS than individuals without abdominal obesity. 
The AUC of individuals with and without abdominal obesity was 0.630 (95% CI 0.616–0.643) and 0.679 (95% 

Table 1.   Association between polygenic risk score and risk of T2D. a OR from logistic regression models were 
adjusted for age, sex, and BMI. Q quartile, OR odds ratio, CI confidence interval, PRS polygenic risk score, BMI 
body mass index, T2D type 2 diabetes.

PRS Controls Cases ORa 95% CI P-value

PRS-ordinal

 Q1 (low risk) 9668 679 Ref

 Q2 9245 1101 1.744 (1.572–1.935) 9.06 × 10–26

 Q3 8859 1488 2.608 (2.361–2.882) 2.30 × 10–79

 Q4 (high risk) 7931 2416 5.132 (4.667–5.644) 3.86 × 10–249

P-trend = 4.48 × 10–291

PRS-continuous 35,703 5684 1.964 (1.901–2.028) 0

Table 2.   Risk in high polygenic risk score groups for T2D development. a OR from logistic regression models 
were adjusted for age, sex, and BMI. OR odds ratio, CI confidence interval, PRS polygenic risk score, BMI body 
mass index, T2D type 2 diabetes.

High PRS group Reference group ORa 95% CI P-value

Top 25% Remaining 75% 2.937 (2.758–3.126) 4.50 ×  10–249

Top 20% Remaining 80% 3.041 (2.848–3.248) 3.44 ×  10–242

Top 15% Remaining 85% 3.250 (3.028–3.487) 5.89 × 10–235

Top 10% Remaining 90% 3.596 (3.318–3.896) 4.94 × 10–214

Top 5% Remaining 95% 4.192 (3.776–4.652) 9.98 ×  10–160
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CI 0.670–0.688), respectively. The results for the KARE cohort were similar to those for HEXA cohort (Sup-
plementary Table S5).

We performed the prediction model using WC only and the WC was found to have an AUC of 0.694. Incor-
porating PRS with WC improved the AUC to 0.750. We evaluated the model incorporating age, sex, BMI, and 
WC, which showed an AUC of 0.747. The model with PRS added to age, sex, BMI, and WC had higher AUC 
(AUC = 0.794), than the model with age, sex, BMI, and WC. The results are provided in Supplementary Table S6.

Sex‑specific analysis
We performed interaction analyses and discrimination evaluations stratified by sex (Table 3 and Supplementary 
Table S5). Similar to the results of combined analysis, for men, WC was associated with an increased risk of T2D, 
PRS was associated with an increased risk of T2D, significant sub-multiplicative interaction between PRS and 
WC existed, and the discriminatory performance of PRS for individuals without abdominal obesity was better 
than that in individuals with abdominal obesity. For women, the results were similar to those for men.

Discussion
In this study, we constructed a PRS for T2D based on 1004 single nucleotide polymorphisms (SNPs) in 3294 
subjects in the KARE cohort using GWAS summary statistics of Biobank Japan7 and evaluated the PRS in 41,387 
subjects from the HEXA cohort. We found that one SD increase in PRS was significantly associated with a 
1.964-fold increased risk of T2D. The diagnostic accuracy of the PRS based on the AUC was 0.658. When PRS 
was divided into quartiles, individuals in the highest-risk group had a 5.132-fold increased risk compared to 
those in the lowest risk group. There was a significant multiplicative interaction between PRS and WC and PRS 
had a greater effect in individuals without abdominal obesity than in those with abdominal obesity. Overall, our 
study shows the potential utility of the PRS to stratify high-risk individuals with T2D for requiring preventive 
measures in the Korean population.

As our study showed, PRS has a great potential to identify and stratify individuals with risk of diseases, predict 
the risk of disease, and contribute to precision medicine. Because of the importance of PRS, many methods for 
computing PRS have been developed. The methods include clumping-and-thresholding (CT) (PRSice215), Bayes-
ian approaches (LDpred16 or LDpred217, PRS-CS18, SBayesR19), and a penalized regression method (Lassosum20). 
CT relies on clumping and p-value thresholding to select SNPs for PRS construction. To infer the posterior mean 
effects of SNPs in Bayesian methods, LDpred16 and LDpred217, assign a point-normal prior to SNP effect sizes, 
PRS-CS18 uses a continuous shrinkage prior on SNP effect sizes, and SBayesR19 utilizes a prior that consists of 
a point mass at zero along with a mixture of normal distributions. Lassosum20 uses lasso to select SNPs and 
construct PRS from GWAS summary statistics. Our PRS model constructed by one of the most commonly used 
PRS methods, PRSice215, showed a significant association with T2D.

Table 3.   Results under the main-effect-only models and under the joint effect model incorporating interaction 
between PRS and WC for combined and sex-stratified analyses. The main-effect-only model for WC included 
covariates and WC. The main-effect-only model for PRS included covariates and PRS. The joint effect model 
incorporating interaction included covariates, WC, PRS, and the interaction term between PRS and WC. For 
the combined analysis, covariates were age, BMI, and sex. For sex-stratified analyses, the covariates were age 
and BMI. The WC was measured three times, and the average value was used. OR odds ratio, CI confidence 
interval, PRS polygenic risk score, WC waist circumference, BMI body mass index.

Model OR 95% CI P-value

All (n = 41,387)

 Main-effect-only model

  WC 1.044 (1.038–1.051) 1.42 × 10–42

  PRS 1.964 (1.901–2.028) 0

 Joint effect model incorporating interaction

  Interaction between WC and PRS 0.991 (0.987–0.995) 4.93 × 10–6

Men (n = 13,553)

 Main-effect-only model

  WC 1.048 (1.038–1.058) 2.19 × 10–21

  PRS 1.939 (1.848–2.035) 2.81 × 10–160

 Joint effect model incorporating interaction

  Interaction between WC and PRS 0.985 (0.979–0.991) 4.41 × 10–6

Women (n = 27,834)

 Main-effect-only model

  WC 1.041 (1.032–1.049) 9.14 × 10–22

  PRS 1.980 (1.895–2.068) 1.62 × 10–206

 Joint effect model incorporating interaction

  Interaction between WC and PRS 0.993 (0.987–0.998) 0.007
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We showed that PRS was a strong risk factor for T2D, with an OR of 1.964. However, the diagnostic accu-
racy of PRS was only moderate, with an AUC of 0.658. For assessing diagnostic accuracy, an AUC above 0.70 is 
considered acceptable. It should be taken into account that no other clinical or environmental risk factors were 
included in the risk model. The PRS-only model would be similar to predicting someone’s risk of T2D only 
with PRS without any clinical information. It is fair to speculate that the AUC would have increased when other 
clinical risk factors, including age, sex, BMI, and WC, were included in the model.

There are arguments that adding PRS to clinical risk factors does not improve AUC. This is based on the fact 
that clinical risk model, including fasting glucose and hemoglobin A1c (HbA1c), already achieves AUC that 
reaches 0.9021. The PRS is considered to aid risk stratification and, therefore, identify high-risk individuals22. Our 
results showed that the OR for T2D in the highest PRS quartile was 5.132-fold higher than that in the lowest PRS 
quartile. Similarly, individuals with PRS in top 5% had 4.192-fold increased risk compared to those with PRS in 
the remaining 95%. As much as 34% individuals with the PRS in the top 5% had T2D. These individuals should 
be targeted for preventive measures and earlier screening.

We investigated the multiplicative and additive interactions between PRS and WC, a non-genetic risk factor 
for T2D. WC reflects abdominal obesity and is a well-known risk factor for T2D. As expected, WC was a signifi-
cant predictor of T2D in both the cohorts. Although we did not find evidence of a significant additive interac-
tion between abdominal obesity and PRS status, we observed a significant negative multiplicative interaction 
between PRS and WC. The genetic effect estimate of PRS was larger in individuals without abdominal obesity 
(smaller WC) than those with abdominal obesity (larger WC). Many of the T2D genetic risk loci are associated 
with decreased beta-cell function23. It is speculated that individuals with abdominal obesity have a higher envi-
ronmental risk of T2D and the relative effect of PRS would be modest. However, for those without abdominal 
obesity and lower environmental risk of T2D, genetic risk as reflected in PRS would exert larger effect. This 
finding also suggests that non-obese individuals with T2D may have a higher genetic risk of T2D. In addition, 
when stratified by abdominal obesity, the discriminatory performance of PRS in terms of AUC increased for 
individuals without abdominal obesity compared to that for individuals with abdominal obesity. That finding 
implies that PRS is more important risk predictor of T2D in individuals without abdominal obesity.

The strengths of our study include the following. First, we used GWAS summary statistics derived from 
Japanese whose ancestry are relatively close. Second, we used two large independent cohorts to train and validate 
the PRS model. Lastly, we investigated the interaction between PRS and WC, a key environmental factor of T2D. 
However, this study has certain limitations. The main analysis in this study was based on case–control logistic 
regression as there was insufficient longitudinal follow-up information in the HEXA cohort. It would have been 
more interesting if we had been able to predict incident T2D cases using PRS. Also, we did not compare PRS 
using GWAS summary statistics with and without inclusion of BMI as a covariate.

In summary, this study suggests that PRS can be utilized as a screening strategy for genetically high-risk T2D 
group. In addition, there is a sub-multiplicative interaction between WC and PRS in T2D and these findings 
provide the joint etiology of PRS and WC in T2D. Future studies with larger sample size are needed to replicate 
our findings and examine the characteristics at the extreme end of the PRS distribution in terms of the interac-
tion effect between WC and PRS.

Methods
Study population
As a two-stage study, we used two Korean cohorts as a training set to develop genome-wide PRS in the first stage 
and a test set to evaluate the effectiveness of T2D PRS and perform interaction analysis in the second stage; 
KARE and HEXA cohorts, respectively. Both cohorts are currently assessed as part of the Korean Genome and 
Epidemiology Study24. We performed the analysis using the data of individuals who had complete information on 
genetic variations, phenotype, WC, and covariates such as age, sex, and BMI. We used 3294 individuals (745 cases 
and 2549 controls) from the KARE cohort (age: 40–69 years), which were collected in 2001 from residents in the 
urban community of Ansan City and the rural community of Anseong City. From the HEXA, which recruited 
participants aged 40–79 years, 41,387 individuals (5684 cases and 35,703 controls) were used. All studies were 
approved by the Institutional Review Board of Sookmyung Women’s University. The baseline characteristics of 
the study population in each cohort are summarized in Table 4. The data are publicly available by submission 
of the application form to Korea Disease Control and Prevention Agency (KDCA) (https://​bioba​nk.​nih.​go.​kr).

T2D definition
T2D cases were defined if any one of the following was present: (1) fasting plasma glucose (FPG) ≥ 126 mg/dL, 
(2) HbA1c level ≥ 6.5%, (3) use of anti-diabetic medications, or (4) history of diagnosed diabetes. In the KARE 
study, participants had data on 2-h postprandial blood glucose level measurements and the inclusion criteria for 
T2D cases included 2-h postprandial blood glucose level ≥ 200 mg/dL. Similarly, prediabetes and nondiabetic 
healthy subjects were defined sequentially and the criteria are presented in Supplementary Table S7. Nondiabetic 
controls were defined as a subject such that FPG < 100 mg/dL, no medical history of diagnosed T2D, and 2-h 
postprandial blood glucose level < 140 mg/dL.

Genotyping
Genomic DNA was extracted from the peripheral blood samples of participants. Genotyping was conducted 
using Korea Biobank arrays (KoreanChip), which was designed by the Center for Genome Science at the Korea 
National Institutes of Health. The KoreanChip contains approximately 833,535 SNPs that are specific to the 
Korean population. The locations of the genes were assigned through the National Center for Biotechnology 
Information Human Gene Build 37 (hg19). SHAPEIT v2-IMPUTE v2 was used for imputation analysis of 

https://biobank.nih.go.kr
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genotype data with 1000 Genomes Phase 3 data as a reference panel24. Detailed information on the KoreanChip 
has been reported in a previously published article25.

Polygenic risk scores
PRSs were derived for KARE samples using the imputed genotype data of KARE samples and GWAS summary 
statistics of Biobank Japan7 as weights by PRSice215 software. The PRS of an individual i is defined as follows:

where Xij is the dosage, expected number of alternative alleles in the j-th SNP for an individual i, and M is the 
number of SNPs computed in PRS. Wj is the weight of the j-th SNP, which is the log OR of its association with 
T2D obtained from GWAS summary statistics of the discovery set. We used Biobank Japan7 as the discovery set. 
PRSs were calculated using P-value thresholds of ≤ 5× 10

−8 , ≤ 5.005× 10
−5 ,  ≤ 1.0005× 10

−4 ,… , ≤ 0.5 in 
steps of 5× 10

−5 , and the full model including all SNPs ( ≤ 1 ) with LD pruning parameters of r2 = 0.1 over 1000-
kb windows. The exclusion criteria for SNPs for both Biobank Japan and KARE, which were used for constructing 
PRS, were as follows: imputation info score < 0.9, minor allele frequency < 0.01 for the discovery and target sets, 
which correspond to Biobank Japan and KARE, respectively. The explained variance (Nagelkerke pseudo-R2 ) 
was derived from a logistic regression model in which PRS was a predictor while controlling for the covariates, 
compared to a logistic regression model with covariates only. The PRS achieving the maximal explained variance 
was selected. In our analysis, age, BMI, and sex were considered as covariates and the selected PRS consisted 
of the 1004 SNPs with P-value threshold of 0.0003 (Supplementary Table S8). To evaluate the PRS constructed 
from KARE, PRSs were computed using the selected 1004 SNPs for HEXA samples by multiplying the dosage 
of each SNP by the log of OR from GWAS summary statistics of Biobank Japan7. The PRS scores standardized 
to a mean of 0 and a variance of 1 were used for all analyses.

Interaction analysis
We investigated multiplicative and additive interactions. Multiplicative interaction was evaluated by performing a 
likelihood ratio test from the fitting of the logistic regression models both with and without the interaction term. 
Additive interaction between abdominal obesity and dichotomized PRS was assessed by RERI. Particularly, we 
dichotomized PRS at the median of the PRS and compared individuals above or equal to the median to those 
below the median. RERI is expressed using the following formula: RERI = RR11 − RR01 − RR10 + 1, where RR is 
the relative risk; the reference group consisted of individuals with lower 50% of the T2D genetic risk and with-
out abdominal obesity; RR01 represented individuals with lower 50% of T2D genetic risk and with abdominal 
obesity; RR10 represented individuals with upper 50% of T2D genetic risk and without abdominal obesity; and 
RR11 represented individuals with upper 50% of T2D genetic risk and with abdominal obesity.

PRSi =

M∑

j=1

WjXij

Table 4.   Baseline characteristics of the HEXA and KARE cohorts. The mean and standard deviation are 
shown for continuous variables, and counts and proportions are shown for categorical variables. Ansan and 
Anseong are the urban and rural communities, respectively. For the KARE cohort, WC was measured three 
times, and the average value was used. BMI body mass index, WC waist circumference.

HEXA cohort

Cases (n = 5684) Controls (n = 35,703) P-value

Age, years 57.901 (7.364) 52.474 (7.929) 0

BMI, kg/m2 25.072 (3.081) 23.473 (2.741) 3.67 × 10–304

WC, cm 85.384 (8.475) 79.369 (8.392) 0

Sex 1.19 × 10–166

 Male 2766 (0.487) 10,787 (0.302)

 Female 2918 (0.513) 24,916 (0.698)

KARE cohort

Cases (n = 745) Controls (n = 2549) P-value

Age, years 54.587 (8.558) 49.729 (7.916) 3.67 × 10–42

BMI, kg/m2 25.678 (3.194) 24.123 (2.870) 2.08 × 10–33

WC, cm 86.668 (7.978) 80.750 (8.336) 3.79 × 10–62

Sex 0.001

 Male 392 (0.526) 1170 (0.459)

 Female 353 (0.474) 1379 (0.541)

0.011
Residence area

 Anseong 393 (0.528) 1208 (0.474)

 Ansan 352 (0.472) 1341 (0.526)
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Data availability
The data analyzed in the study are available by submission of an application form to KDCA (https://​bioba​nk.​
nih.​go.​kr).
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