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Self‑reported and tracked 
nighttime smartphone 
use and their association 
with overweight 
and cardiometabolic risk markers
Thea Otte Andersen  1*, Christoffer Sejling 2, Andreas Kryger Jensen 2, 
Agnete Skovlund Dissing 3, Elin Rosenbek Severinsen 1, Henning Johannes Drews 1, 
Thorkild I. A. Sørensen 1, Tibor V. Varga 1 & Naja Hulvej Rod 1

Nighttime smartphone use is associated with sleep problems, which in turn have a bidirectional 
association with overweight. We aim to investigate whether nighttime smartphone use and sleep 
are related to overweight and metabolic dysfunction in adult populations. We used data from three 
population samples (aged 16–89) from the SmartSleep Study, which included survey data (N = 29,838), 
high-resolution tracking data (N = 3446), follow-up data (N = 1768), and cardiometabolic risk markers 
(N = 242). Frequent self-reported nighttime smartphone use was associated with 51% higher odds 
(95% CI: 1.32; 1.70) of overweight compared with no use. Tracked nighttime smartphone use was 
also associated with overweight. Similar results were found for obesity as an outcome. No consistent 
associations were found between nighttime smartphone use and cardiometabolic risk markers in a 
small subsample of healthy young women. Poor sleep quality (vs. good sleep quality) was associated 
with overweight (OR = 1.19, 85% CI: 1.10; 1.28). Overall, frequent nighttime smartphone use was 
consistently associated with overweight and a higher BMI across diverse population samples. The 
bidirectional interplay between nighttime smartphone use, sleep, and overweight may create a 
vicious circle of metabolic dysfunction over time. Therefore, nighttime smartphone use may be a 
potential target point for public health interventions to reduce overweight at the population level.

The past decades have witnessed a steep increase in the prevalence of overweight and obesity among children, 
adolescents, and adults1. It has been estimated that 39% of adults worldwide are overweight and 13% are obese2. 
This trend is concerning, as overweight, obesity, and metabolic dysfunction are associated with an increased risk 
of developing diabetes, cardiovascular diseases, various types of cancer, and premature death3,4. Thus, identifying 
modifiable risk factors for overweight and obesity are essential for targeted preventive actions.

Sleep problems have been rising in parallel with the prevalence of overweight and obesity in adult 
populations5,6, and sleep and metabolism have been suggested to be linked in a bidirectional fashion7,8. Sleep 
plays a crucial role in physiological functioning, and sleep disruption may lead to metabolic dysregulation 
through the hyperactivation of the hypothalamic–pituitary–adrenal (HPA) axis, alterations in neuroendocrine 
responses, and changes in glucose metabolism9–11. Thus, sleep disruption may affect the control of blood glucose 
levels, decrease insulin sensitivity, impair β-cell function6, and thereby lead to metabolic dysfunction later in life. 
Observational studies have consistently shown that poor and short sleep is associated with higher body mass 
index (BMI), metabolic dysfunction, increased visceral adipose tissue, and elevated levels of cholesterol and 
triglycerides8,12–18. This is supported by evidence from experimental studies showing that sleep restriction led 
to changes in appetite-regulating hormones, increased caloric intake, weight changes, and alterations in glucose 
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metabolism19. At the same time, obesity and obesogenic behavior may contribute to disturbed sleep20,21, result-
ing in a bidirectional relationship.

The massive and increasing around-the-clock use of smartphones constitutes one of the most pronounced 
behavioral changes we are experiencing today. Nighttime smartphone use is particularly prevalent in adolescents 
and young adults22. Nighttime smartphone use refers to smartphone use during sleep hours and has been associ-
ated with poor sleep quality and shorter sleep duration22–24. Poor sleep has been shown to mediate the effects 
of nighttime smartphone use on obesity25. Bright light exposure from the smartphone screen is associated with 
reduced secretion of melatonin and disruption in the circadian rhythm26, which may alter energy metabolism, 
and thus be involved in the etiological mechanisms underlying obesity27–31. For instance, a reduction in melatonin 
may impair the regulation and circadian distribution of several physiological and behavioral processes involved 
in energy metabolism28.

A smaller Danish study utilized high-resolution smartphone tracking data among young adults to measure 
nighttime smartphone use and found that frequent nighttime smartphone use was associated with a higher self-
reported BMI32. Otherwise, the majority of empirical studies on this topic have been restricted to children or 
adolescents and used self-reported data on nighttime smartphone use25,33–38. These studies showed inconsistent 
results and may not be generalizable to adult populations. Moreover, several studies have investigated the asso-
ciation between overall smartphone use and overweight among adolescents or students35,39–43. Findings from 
these studies were more consistent, showing that higher overall smartphone use is associated with overweight. 
However, these findings may also not be generalized to adult populations. Furthermore, early adulthood is a 
critical period for lifelong weight trajectories, with an increased risk of excessive weight gain, and the develop-
ment of obesity and metabolic dysfunction in later adulthood44–46.

In this project, we aim to investigate the complex relationship between nighttime smartphone use, sleep 
disturbances, overweight, and metabolic dysfunction. We will comprehensively assess whether self-reported and 
tracked nighttime smartphone use and sleep quality are related to overweight and a higher BMI in the Danish 
adult population. Furthermore, we will investigate whether nighttime smartphone use is associated with changes 
in BMI approximately 18 months later. We will also assess the association between nighttime smartphone use 
and cardiometabolic risk markers in a smaller sample of young adults.

Materials and methods
The SmartSleep Study
We utilized data from the SmartSleep Study, established in 2018, to study patterns of nighttime smartphone use 
in adult populations. The SmartSleep Study consists of three samples: the Citizen Science Sample, the Population 
Sample, and the Clinical Sample, as depicted in Fig. 1. The samples are described in detail elsewhere47. Briefly, 
the three interconnected samples employ different recruitment strategies but share overlapping measurement 
methods to study various aspects of nighttime smartphone use, sleep, and health.

We used data from the Citizen Science Sample to investigate whether self-reported nighttime smartphone use 
was related to BMI and its changes over 18 months. Using a citizen science approach to recruit participants, we 
recruited a total of 25,135 Danish adults aged 16 years and above who provided survey information at baseline. 
The data collection has been described elsewhere22. Participants with no mobile phone (N = 61) were excluded 
leaving 25,074 individuals eligible for the analyses. Approximately 18 months later, a total of 1,885 participants 
(15% response rate) participated in a follow-up study. To investigate changes in BMI, we excluded participants 
with missing information on height or weight at baseline or follow-up (N = 117), leaving 1768 individuals eligible 
for the longitudinal analysis.

We used data from the Population Sample to investigate associations between self-reported and latent clusters 
of tracked nighttime smartphone use and BMI. The data collection has been described elsewhere47. Participants 
were asked to download the SmartSleep app (GitHub repository: https://​github.​com/​smart​sleep​ku), track their 
nighttime smartphone use for up to 14 nights, and complete a detailed survey integrated into the app. Up to two 
reminders were sent to non-responders. In total, 3222 adults aged 18–50 provided both survey and tracking 
data, while 1300 individuals provided only survey information. A total of 4522 (5% response rate) participated 
in this study.

We used data from the Clinical Sample to explore whether nighttime smartphone use was associated with car-
diometabolic risk markers, This sample was established to obtain clinical and biological measures associated with 
nighttime smartphone use in young female adults. A total of 245 women (11% response rate) signed informed 
consent and underwent a comprehensive health examination at Hvidovre Hospital, Copenhagen. The participants 
were also asked to download the SmartSleep app, track their nighttime smartphone use for up to 14 nights, and 
complete a survey. A total of 224 women provided both tracking and survey information, while 18 only provided 
survey information. Participants received DKK 500  (approx. € 67) as compensation for their participation in 
the study. This study was approved by the Regional Committee on Health Research Ethics (approval no: 67074).

The Danish Data Protection Agency approved all samples through the joint notification of The Faculty of 
Health and Medical Sciences at The University of Copenhagen (approval no. 514-0237/18-3000, 514-0288/19-
3000, and 514-0344/19-3000). All methods in this study were performed following relevant guidelines and 
regulations.

Data types and measurements
Self‑reported sleep quality
Sleep quality was assessed using the Danish translation of the sleep quality dimension of the validated Karolinska 
Sleep Questionnaire (KSQ)48. Sleep quality was measured based on four questions: difficulty falling asleep, dis-
turbed and restless sleep, repeated awakenings with difficulties falling asleep again, and premature awakenings. 

https://github.com/smartsleepku
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Each item was rated on a five-point Likert scale, ranging from 1 (never) to 5 (every night or almost every night). 
The four items were combined into a scale ranging from 1 to 5, reflecting the average frequency of symptoms 
related to poor sleep quality. A higher score indicates poorer sleep quality. Sleep quality was categorized based 
on quartiles (Q1, Q2, Q3, Q4) in each sample.

Self‑reported nighttime smartphone use
Self-reported nighttime smartphone use was assessed by asking how often the smartphone was used after sleep 
onset and before sleep offset within the past three months. The response options included “every night or 
almost every night,” “a few nights a week,” “a few nights a month,” and “never”. In the questionnaire, a definition  
of smartphone use was provided and referred to both short and long activations of the smartphone, from simply 
turning on the screen to long-term use of applications.

Clusters of nights with screen activity
The SmartSleep app continuously tracked all screen activations during the self-reported sleep period for up to 
14 nights. We collected high-resolution smartphone tracking data on smartphone use during the sleep period 
over repeated nights in all three samples. Utilizing 803,000 data points in 5927 individuals with high-resolution 
smartphone tracking data, we used non-parametric Functional Data Analysis49 to identify latent clusters of nights 
with screen activity that characterized distinct night usage patterns. The development of these night clusters is 
described elsewhere47. In brief, four night clusters were identified: (1) non-use, defined as no smartphone activity 
during the self-reported sleep period, (2) sleep onset use, defined as smartphone activity during the sleep period 
mainly confined to the period right after sleep onset (the beginning of the sleep period), (3) sleep offset use, 
defined as smartphone activity during the sleep period mainly confined to the period right before sleep offset 
(the end of the sleep period), and (4) continuous use, defined as continuous smartphone activity throughout 
the sleep period.

Clusters of individuals’ nighttime smartphone use
Each individual experiences a sequence of the four aforementioned night clusters that describe the different 
types of nights with screen activity. We utilized these sequences to cluster each individual into latent clusters 

Figure 1.   Flowchart of the three samples in the SmartSleep Study. 
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using a mixture of first order Markov models50. To identify the number of latent clusters of individuals, we used 
the Expectation–maximization (EM) algorithm51 using the seqHMM R package50. We identified the following 
four latent clusters of individuals: (1) the non-user, characterized by most non-use nights. (2) The sleep onset user, 
characterized by most nights of sleep onset use and some nights of non-use. (3) The sleep offset user, characterized 
by most nights of sleep offset use, and (4) the all-time user, characterized by having a mix of night clusters with 
sleep onset use, sleep offset use, and continuous use. We obtained posterior probabilities of belonging to each cluster 
for each individual, and individuals were assigned to the clusters according to the highest posterior probability. 
Thus, 39% of the participants were assigned to the non-user cluster, 21% of the participants were assigned to the 
sleep onset use cluster, 27% were assigned to the sleep offset user cluster, and 13% were assigned to the all-time 
user cluster. For more information about the four latent clusters of individuals’ nighttime smartphone use, please 
see Supplementary Text S1.

Body Mass Index (BMI)
In the Population Sample and Citizen Science Sample, self-reported weight was measured to the nearest kilogram, 
and self-reported height was measured to the nearest centimeter. BMI was calculated as weight in kilograms 
divided by height in meters squared. In the Clinical Sample, a professional measured weight and height at the 
health examination and calculated the same way as above. More information on how BMI was measured is 
given in Supplementary Table S1. Overweight and obesity were defined as BMI values ≥ 25 kg/m2 and ≥ 30 kg/
m2, respectively, according to the World Health Organization guidelines52.

Cardiometabolic risk markers
At the health examination in the Clinical Sample, waist and hip circumference as well as blood pressure were 
measured for all women. Plasma from non-fasting venous blood samples was collected using K2-EDTA (for 
HbA1c) and Li-heparin (for all other biomarkers) tubes. The samples were analyzed on the same day at the 
Department of Clinical Biochemistry at Copenhagen University Hospital Hvidovre (Cobas 8000, TOSOH HLC—
723 G8). The biomarkers measured from fresh plasma included triglycerides, high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), total 
cholesterol (TC), and glycated hemoglobin (HbA1c). See an overview of the cardiometabolic risk markers in 
Supplementary Table S1.

Covariates
Information on age, gender (male, female, other), educational level (primary school, upper secondary school, 
technical/vocational education, short-cycle higher education, medium-cycle higher education, long-cycle higher 
education, other education), and occupational status (student, employed, unemployed, long-term sick leave, 
outside labor market (retirement or early retirement), other occupation) was collected from the survey. In the 
Population Sample, we used information on biological sex (male, female) and age from the Central Person Regis-
ter (CPR) in Denmark. The Citizen Science Sample extracted follow-up time based on the time difference between 
baseline and follow-up response times. Physical activity was assessed by asking the participants to characterize 
their level of physical activity within the past year. The response options included “high-intensity training several 
times a week,” “exercise or heavy gardening for at least four hours a week,” “light exercise for at least four hours 
a week,” or “doing mainly sedentary activities.”

Statistical analysis
All analyses were undertaken using R 4.1.1. Weighting on age, sex, and geographical region in Denmark was 
performed using raking53 for the Baseline and Follow-up Citizen Science Sample and the Population Sample to 
achieve more representative population-based samples (Supplementary Table S2). No weighting was performed 
for the Clinical Sample as this sample was not established to be representative.

The missing survey data in each sample were imputed using multivariate imputation by chained equations 
(mice package in R, version 3.14.0)54. Random forest was employed for imputing all survey variables (N = 257), 
with 75 iterations, and 25 imputed copies were generated for each sample. The imputation of data for the Citizen 
Science Sample and the Population Sample incorporated the sampling weights to account for the complex survey 
design55. Convergence was visually inspected for randomly selected imputed datasets. All downstream analyses 
were undertaken in each of the 25 imputed datasets, and results were subsequently pooled using Rubin’s rule56. 
Confidence intervals for model parameters and P values for the statistical tests were obtained using Wald-type 
calculations.

To describe the samples, means and standard deviations (SD) were reported for continuous variables, and 
frequencies and percentages were reported for categorical variables.

We investigated the associations between sleep quality, self-reported and latent clusters of nighttime smart-
phone use, and BMI and cardiometabolic risk markers. Logistic regression models were fitted for overweight and 
obesity as outcomes, and odds ratios (OR) and 95% confidence intervals (95% CI) were reported (stats package 
in R, version 4.2.1). Age, gender/sex, educational level, and occupational status were identified as potential 
confounders and were adjusted for in all models. In the sleep quality model, we further adjusted for nighttime 
smartphone use. Results from the Citizen Science Sample and the Population Sample for the association between 
sleep quality, self-reported nighttime smartphone use, and overweight/obesity were pooled using inverse vari-
ance weighted fixed-effects meta-analysis (meta package in R, version 6.0-0), as we expected that the samples 
were estimating the same effect size as the samples were rather homogenous in terms of study populations, study 
designs, and measurements.
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When considering continuous variables as an outcome, we used linear regression models and the Generalized 
Additive Models for Location Scale and Shape (GAMLSS), a semi-parametric model which allows all distribution 
parameters to be modeled flexibly as functions of explanatory variables (gamlss package in R, version 5.4-3)57,58. 
The Box-Cox-Cole and Green (BCCG) model from the GAMLSS regression framework was used58. See Sup-
plementary Text S2 for further details on the analyses. All models were adjusted for age, gender/sex, educational 
level, and occupational status.

For participants in the Citizen Science Sample with follow-up information (N = 1768), we explored whether 
the self-reported nighttime smartphone use was associated with changes in BMI over 18 months using GAMLSS 
models. Changes in BMI (in kg/m2) were calculated as the mean difference in BMI between baseline and follow-
up. We accounted for individual differences in follow-up time by adjusting for follow-up time and including an 
interaction between nighttime smartphone use and follow-up time. Furthermore, all models were adjusted for 
age, gender/sex, educational level, and occupational status.

Sensitivity analysis
We assume that physical activity was a variable on the causal pathway from nighttime smartphone use to BMI 
and metabolic dysfunction. However, as the measures were reported at the same point in time, we could not 
determine whether physical activity may be a confounding variable. Thus, in a sensitivity analysis, we further 
adjusted for physical activity to assess whether physical activity confounded the association between nighttime 
smartphone use and overweight.

Results
Population characteristics
In the Baseline Citizen Science Sample, those with more frequent self-reported nighttime smartphone use were 
younger, more likely to be female and students than individuals with no nighttime smartphone use (Table 1). 
No differences were seen in follow-up time across self-reported nighttime smartphone use. In the Population 
Sample, similar characteristics were found as more women and students had more frequent self-reported night-
time smartphone use (Supplementary Table S3). In the Clinical Sample, the majority of the women were students, 
and approximately one in ten women (12%) used their smartphones every night or almost every night (Sup-
plementary Table S4).

Table 1.   Characteristics of the study population stratified on self-reported nighttime smartphone use among 
25,074 in the Baseline Citizen Science Sample. 

Total
N = 25,074

Frequency of self-reported nighttime smartphone use

Never
N = 10,475 (42%)

A few nights a month
N = 10,174 (40%)

A few nights a week
N = 3206 (13%)

Every night or almost 
every night
N = 1219 (5%)

Age, mean (SD) 42.9 (15.3) 48.7 (14.6) 39.8 (14.2) 35.9 (14.2) 36.7 (15.2)

Gender, N (%)

 Female 15,464 (62) 5848 (56) 6628 (65) 2150 (67) 838 (69)

 Male 9564 (38) 4611 (44) 3529 (35) 1047 (33) 377 (31)

 Other 46 (0) 16 (0.2) 17 (0.2) 9 (0.3) 4 (0.3)

Educational level, N (%)

 Primary school 1796 (7) 600 (6) 681 (7) 346 (11) 169 (14)

 Upper secondary school 2777 (11) 698 (7) 1283 (13) 191 (10) 191 (16)

 Technical/Vocational education 3494 (14) 1749 (17) 1270 (13) 323 (19) 152 (13)

 Short-cycle higher education 1964 (8) 941 (9) 723 (7) 224 (7) 76 (6)

 Medium-cycle higher educa-
tion 7937 (32) 3480 (33) 3231 (32) 906 (28) 320 (26)

 Long-cycle higher education 6566 (26) 2754 (26) 2778 (27) 753 (24) 281 (23)

 Other 540 (2) 253 (2) 208 (2) 49 (2) 30 (3)

Occupational level, N (%)

 Student 4148 (17) 887 (5) 1975 (19) 948 (30) 338 (28)

 Employed 16,275 (65) 7064 (62) 6794 (67) 1790 (56) 627(51)

 Unemployed 671 (3) 241 (3) 267 (3) 111 (4) 52 (4)

 Long-term sick leave 352 (1) 115 (1) 138 (1) 71 (2) 28 (2)

 Outside labor market 2764 (11) 1,835 (25) 664 (7) 167 (5) 98 (8)

 Other 864 (3) 333 (3) 336 (3) 119 (4) 76 (6)

Follow-up time, year (SD) 1.49 (1.46–1.53) 1.48 (1.46–1.53) 1.49 (1.47–1.53) 1.49 (1.46–1.53) 1.49 (1.47–1.53)
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Sleep and overweight
We found that individuals with the poorest sleep quality (Q4) were associated with 19% higher odds (OR = 1.19, 
95%CI: 1.10; 1.28) of overweight compared with individuals with good sleep quality (Q1) in the pooled analysis 
(Fig. 2). Similar results were found in the association between sleep quality and obesity (Supplementary Table S5).

Nighttime smartphone use and overweight
We found that frequent self-reported nighttime smartphone use (every night or almost every night) was associ-
ated with 49% higher odds (OR: 1.49, 95% CI: 1.31; 1.70) of overweight in the Citizen Science Sample and 61% 
higher odds (OR: 1.61, 95% CI: 1.22; 2.13) of overweight in the Population Sample compared to no nighttime 
smartphone use (Fig. 3). In the pooled analysis, we found that frequent nighttime smartphone use was associated 
with 51% higher odds (OR: 1.51, 95% CI: 1.32; 1.70) of overweight compared to no nighttime smartphone use.

Similar associations were found for the latent clusters of tracked nighttime smartphone use in the Population 
Sample, with the sleep offset user (OR: 1.20, 95% CI: 0.99; 1.45) and all-time user (OR: 1.41, 95% CI: 1.11; 1.80) 
showing higher odds of overweight compared to the non-user cluster (Fig. 4).

In the Clinical Sample, which included a small sample of healthy young women (N = 242), only a few par-
ticipants were overweight (BMI ≥ 25 kg/m2), and thus, we did not explore the association between nighttime 
smartphone use and overweight and obesity in this sample.

When exploring the association between self-reported and tracked nighttime smartphone use and obesity 
(BMI ≥ 30 kg/m2), we found similar patterns with higher odds of obesity with more frequent nighttime smart-
phone use (Supplementary Table S6).

In a sensitivity analysis, we further adjusted for physical activity in the association between self-reported and 
tracked nighttime smartphone use and overweight in the Population Sample. (Supplementary Table S7). The 
estimates did not change markedly. Thus, we expect that physical activity did not influence our results.

Nighttime smartphone use and BMI
Frequent self-reported nighttime smartphone use was associated with higher BMI across all three samples 
(Table 2). Using the smartphone every night or almost every night was associated with 0.65 (β = 0.65, 95% CI: 
0.40; 0.89) point higher BMI in the Citizen Science Sample, 0.86 (β = 0.86, 95% CI: 0.32; 1.41) point higher BMI in 
the Population Sample, and 2.37 (β = 2.37, 95% CI: 0.64; 4.62) points higher BMI in the Clinical Sample compared 
to no nighttime smartphone use. For the latent clusters of tracked nighttime smartphone use in the Population 
Sample, the sleep onset user (β = 0.15, 95% CI: − 0.24; 0.54), the sleep offset user (β = 0.44, 95% CI: 0.07; 0.81), 
and the all-time user (β = 0.31, 95% CI: − 0.17; 0.78) were associated with higher BMI compared to the non-user 
cluster. In the Clinical Sample, the association between the latent clusters of tracked nighttime smartphone use 
and BMI was less consistent.

Figure 2.   Associations between sleep quality and overweight1 in the Population Sample (N = 4522) and 
the Citizen Science Sample (N = 25,074) and pooled2 in a fixed-effect meta-analysis. 1Outcome variable: 
overweight defined as BMI ≥ 25. 2Estimates pooled across the Citizen Science Sample and the Population Sample. 
Logistic regression models adjusted for age, gender/sex, educational level, occupational status, and nighttime 
smartphone use were applied. Models were weighted by sample weights for Population Sample and Citizen 
Science Sample. Fixed effect inverse variance weighted meta-analysis:Heterogeneity: Q2: I2 = 0%, Cochrane’s Q 
p = 0.56, Q3: I2 = 0%, Cochrane’s Q p = 0.61, Q4: I2 = 0%, Cochrane’s Q p = 0.66.
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Nighttime smartphone use and changes in BMI
Table 3 shows the longitudinal changes in BMI over 18 months in the Citizen Science Follow-up Sample. On aver-
age, the mean differences in BMI for women and men were 0.32 kg/m2 and 0.13 kg/m2, respectively. We found 
that frequent self-reported nighttime smartphone use (every night or almost every night) was associated with 
a 0.24-point higher BMI change (β = 0.24, 95% CI: − 0.02; 0.50) compared to the BMI change in the reference 
group. However, the 95% confidence intervals overlapped the null.

Self‑reported and tracked nighttime smartphone use and cardiometabolic risk markers
Table 4 shows the cross-sectional associations of nighttime smartphone use with cardiometabolic risk markers in 
a small clinical sample of healthy young women. For the reference group with no self-reported nighttime smart-
phone use, the average level for each cardiometabolic risk marker was within the normal range. We found that 
both systolic blood pressure (A few times a week: β = 1.68, 95% CI; − 2.93; 6.29 and Every night or almost every 
night: β = 1.62, 95% CI: − 3.80; 7.05) and diastolic blood pressure (A few nights a week: β = 2.36, 95%CI: − 1.16; 
5.88 and every night or almost every night: β = 1.25, 95%CI: − 2.90; 5.41) were higher for those with frequent 

Figure 3.   Associations between self-reported nighttime smartphone use and overweight1 in the Population 
Sample (N = 4522), the Citizen Science Sample (N = 25,074), and pooled2 in a fixed effect meta-analysis. 
1Outcome variable: overweight defined as BMI ≥ 25. 2Estimates pooled across the Citizen Science Sample and the 
Population Sample. Logistic regression models adjusted for age, gender/sex, educational level, and occupational 
status were applied. Models were weighted by sample weights for Population Sample and Citizen Science Sample. 
Fixed effect inverse variance weighted meta-analysis: Heterogeneity: A few times a month: I2 = 0%, Cochrane’s Q 
p = 0.93, A few times a week: I2 = 0%, Cochrane’s Q p = 0.67, Every night or almost every night: I2 = 0%, Cochrane’s 
Q p = 0.62.

Figure 4.   Associations between latent clusters of nighttime smartphone use and overweight in the Population 
Sample (N = 3222). 1Outcome variable: Overweight defined as BMI ≥ 25. Logistic regression models were 
adjusted for age, gender/sex, educational level, and occupational status. Weighted by sample weights for 
Population Sample. 
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nighttime smartphone use compared to those with no nighttime smartphone use, although the confidence inter-
vals were overlapping the null. Systolic and diastolic blood pressure was also higher in latent clusters of tracked 
nighttime smartphone use compared to the non-user cluster, but the confidence intervals overlapped the null.

We found no clear associations between nighttime smartphone use and cardiometabolic risk markers of waist-
hip ratio, total cholesterol, LDL-C, VLDL-C, HDL-C, triglycerides, or HbA1c, except for slightly lower levels of 
total cholesterol and LDL-C in the sleep onset cluster compared to the non-user cluster.

Discussion
We aimed to investigate the complex relationship between nighttime smartphone use, sleep, and overweight and 
cardiometabolic risk markers, by combining different measures of nighttime smartphone use and cardiometa-
bolic measures in three population samples. We found that poor sleep quality was associated with overweight. 
Moreover, self-reported frequent nighttime smartphone use was associated with overweight, obesity, and a higher 
average BMI across all samples. Furthermore, we identified four distinct latent clusters of nighttime smartphone 
use using high-resolution smartphone tracking data. We found that clusters characterized by nighttime smart-
phone use were associated with overweight, obesity, and a higher BMI in the Population Sample. However, these 
associations between latent clusters of nighttime smartphone use and BMI were not replicated in the smaller 
Clinical Sample, which only included healthy young women.

Only a few previous studies have addressed the association between nighttime smartphone use and 
overweight32–34,38, but these studies only included adolescents or students and were cross-sectional in design. 
Nevertheless, in line with findings from these studies and our hypothesis, we found a consistent association 

Table 2.   Associations between self-reported and tracked nighttime smartphone use and Body Mass Index 
(BMI) in the three samples. All models in the Citizen Science Sample and Population Sample were adjusted 
for gender/sex, educational level, and occupational status. All models in the Clinical Sample were adjusted for 
age, educational level (categorized as primary school or other; upper secondary school; technical/vocational 
education/short-cycle higher education; medium-cycle higher education; long-cycle higher education), and 
occupational status (categorized as student; employed; other). Models were weighted by sample weights for 
Population Sample and Citizen Science Sample. Generalized Additive Models for Location Scale and Shape 
(GAMLSS) models were applied for the analyses. β, mean difference; 95% CI, 95% confidence interval. a Latent 
clusters of nighttime smartphone use: Population Sample: N = 3222, Clinical Sample: N = 224. No smartphone 
tracking data were collected in the Baseline Citizen Science Sample.

Citizen science sample
N = 25,074

Population sample
N = 4522a

Clinical sample
N = 242a

BMI (kg/m2)

β (95%CI) β (95%CI) β (95%CI)

Self-reported nighttime smartphone use

 Never Ref. Ref. Ref.

 A few nights a month 0.41 (0.29; 0.52) 0.33 (0.03; 0.64) 0.15 (− 1.39; 1.69)

 A few nights a week 0.66 (0.50; 0.83) 0.61 (0.23; 0.99) 0.34 (− 1.30; 1.98)

 Every night or almost every night 0.65 (0.40; 0.89) 0.86 (0.32; 1.41) 2.37 (0.44; 4.62)

Latent clusters of tracked nighttime smartphone use

 Non-users – Ref. Ref.

 Sleep onset users – 0.15 (− 0.24; 0.54) − 0.51 (− 1.81; 0.79)

 Sleep offset users – 0.44 (0.07; 0.81) 0.07 (− 1.26; 1.39)

 All-time users – 0.31 (− 0.17; 0.78) 0.02 (− 1.45; 1.49)

Table 3.   Changes in Body Mass Index (BMI) over 18 months among 1768 participants in the Follow-up 
Citizen Science Sample.  Models were weighted by sample weights for Follow-up Citizen Science Sample. 
Generalized Additive Models for Location Scale and Shape (GAMLSS) models adjusted for gender, age, 
educational level, occupational status, and follow-up time were applied. An interaction between nighttime 
smartphone use and follow-up time was included in the model. β, mean difference; 95% CI, 95% confidence 
interval. a Difference between BMI at baseline and BMI at follow-up. b For reference group: Average BMI 
change: 0.14 kg/m2.

Changes in BMIa

β kg/m2 (95% CI)

Self-reported nighttime smartphone use at baseline

 Neverb Ref.

 A few nights a month 0.03 (− 0.10; 0.15)

 A few nights a week 0.18 (− 0.01; 0.37)

 Every night or almost every night 0.24 (− 0.02; 0.50)
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between nighttime smartphone use and overweight and obesity across population samples from the general 
adult population in Denmark.

Nighttime smartphone use may lead to weight gain and the eventual development of obesity via various 
mechanisms. First, nighttime smartphone use may impact the secretion of melatonin, a hormone involved in 
regulating the circadian rhythm, energy metabolism, gut microbiota, and inflammation29–31. Sleep problems may 
also mediate the relationship between nighttime smartphone use and overweight. We showed that poor sleep 
quality was associated with overweight, which aligns with numerous studies showing that short sleep duration 
and poor sleep quality are associated with behavioral, metabolic, and endocrine changes that lead to weight gain 
and subsequently obesity9,16,18,19,21,59. At the same time, nighttime smartphone use has been linked to poor and 
disturbed sleep22,24. Other mechanisms explaining the link between nighttime smartphone use and overweight 
may include reduced physical activity and increased energy intake due to daytime tiredness and fatigue21,37. These 
findings indicate that nighttime smartphone use may negatively impact metabolism and BMI. Thus, nighttime 
smartphone use may be a potential target point for preventive interventions to reduce overweight and obesity at 
the population level. Future intervention studies may also benefit from investigating whether specific smartphone 
apps (i.e., social media, streaming, gaming, or news), as well as different exposures of light intensity used during 
sleep hours may influence the relationship between nighttime smartphone use and overweight.

Contrary to our hypothesis, we did not find significant changes in BMI over 18 months associated with 
self-reported nighttime smartphone use. Similarly, a recent study among adolescents did not find associations 
between nighttime smartphone use and changes in weight during a two-year follow-up period36. These find-
ings may question the causality of the observed cross-sectional associations between nighttime smartphone use 
and overweight/obesity observed in this and other studies. Nevertheless, it is important to mention that night-
time smartphone use was measured at a random time in people’s lives (maybe after e.g., ten years of nighttime 

Table 4.   Associations between self-reported nighttime smartphone use (N = 242) and clusters of tracked 
nighttime smartphone use (N = 224) and cardiometabolic risk markers among young women in the Clinical 
Sample.  Linear regression models adjusted for age, educational level (categorized as primary school or other; 
upper secondary school; technical/vocational education/short-cycle higher education; medium-cycle higher 
education; long-cycle higher education), and occupational status (categorized as student; employed; other) 
were applied. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; 
VLDL-C, very low-density lipoprotein cholesterol; HbA1C, glycated hemoglobin; BP, blood pressure; ref, 
reference group; β, mean difference; 95% CI, 95% confidence intervals.

Self-reported nighttime smartphone use

Never (Ref.)
N = 27 (11%)

A few nights a month
N = 120 (50%)

A few nights a week
N = 66 (27%)

Every night or almost every night
N = 29 (12%)

Mean (SD) β (95% CI) β (95% CI) β (95% CI)

Waist-hip ratio 0.8 (0) 0.01 (− 0.01; 0.03) 0.01 (− 0.02; 0.03) 0.01 (− 0.01; 0.04)

Blood pressure (BP), mmHg

 Systolic BP 115.9 (9.6) 0.16 (− 4.16; 4.48) 1.68 (− 2.93; 6.29) 1.62 (− 3.80; 7.05)

 Diastolic BP 71.3 (7.2) 1.18 (− 2.12; 4.48) 2.36 (− 1.16; 5.88) 1.25 (− 2.90; 5.41)

Lipid biomarkers, mmol/L

 Total cholesterol 4.2 (0.6) 0.06 (− 0.22; 0.35) 0.02 (− 0.29; 0.32) − 0.03 (− 0.39; 0.33)

 HDL-C 1.7 (0.4) 0.05 (− 0.10; 0.20) − 0.01 (− 0.17; 0.16) − 0.05 (− 0.24; 0.14)

 LDL-C 2.0 (0.5) − 0.03 (− 0.27; 0.22) − 0.00 (− 0.27; 0.26) − 0.03 (− 0.33; 0.28)

 VLDL-C 0.4 (0.2) 0.02 (− 0.08; 0.12) 0.01 (− 0.09; 0.12) 0.02 (− 0.10; 0.15)

 Triglycerides 0.9 (0.4) 0.04 (− 0.18; 0.27) 0.02(− 0.22; 0.26) 0.03 (− 0.25; 0.32)

 HbA1c 31.6 (3.2) 0.87 (− 0.62; 2.37) 0.58 (− 1.04; 2.21) 0.82 (− 1.12; 2.76)

Latent clusters of tracked nighttime smartphone use

Non-user (ref.)
N = 74 (33%)

Sleep onset user
N = 57 (25%)

Sleep offset user
N = 55 (25%)

All-time user
N = 38 (17%)

Mean (SD) β (95% CI) β 95% CI) β (95% CI)

Waist-hip ratio 0.8 (0.1) − 0.01 (− 0.03; 0.01) 0.01 (− 0.01; 0.03) − 0.01 (− 0.03; 0.01)

Blood pressure (BP), mmHg

 Systolic BP 115.7 (10.1) 2.08 (− 1.58; 5.75) 1.68 (− 2.04; 5.41) 2.22 (− 1.93; 6.36)

 Diastolic BP 72.3 (7.1) 0.74 (− 2.02; 3.51) 1.22 (− 1.59; 4.03) 2.22 (− 0.91; 5.35)

Lipid biomarkers, mmol/L

 Total cholesterol 4.4 (0.6) − 0.41 (− 0.64; − 0.17) − 0.24 (− 0.49; − 0.00) − 0.23 (− 0.50; 0.04)

 HDL-C 1.8 (0.4) − 0.10 (− 0.23; 0.03) − 0.03 (− 0.16; 0.09) − 0.11 (− 0.25; 0.04)

 LDL-C 2.2 (0.5) − 0.24 (− 0.45; − 0.04) − 0.20 (− 0.41; 0.01) − 0.10 (− 0.33; 0.14)

 VLDL-C 0.4 (0.2) − 0.04 (− 0.12; 0.05) 0.01 (− 0.07; 0.10) − 0.01 (− 0.10; 0.09)

 Triglycerides 1.0 (0.5) − 0.10 (− 0.30; 0.09) 0.00 (− 0.19; 0.19) − 0.04 (− 0.26; 0.17)

 HbA1c 31.7 (2.8) 0.86 (− 0.38; 2.09) − 0.21 (− 1.45; 1.04) 1.48 (− 0.09; 2.87)
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smartphone use), and the associated metabolic dysfunction may therefore already have been established. Also, 
the 18-month period may be relatively short to investigate clinically significant weight changes. We suggest that 
future studies investigate the temporal association between nighttime smartphone use and changes in BMI over 
a longer period (and preferable from initiation of use) to elucidate the longitudinal effects of nighttime smart-
phone use on metabolic dysfunction.

Another possible explanation for our findings relates to reverse causality. Evidence suggests that individuals 
with obesity report more sleep problems than those without obesity8,21, and individuals experiencing sleep prob-
lems may use their smartphones during the sleep period to counteract their sleep problems or combat insomnia. 
Mechanisms linking obesity to sleep problems include several obesity-related factors that may interfere with 
normal sleep quality and sleep duration14,20,60. Indeed, increased visceral adipose tissue may play a role in the 
pathogenesis of poor sleep due to elevated levels of pro-inflammatory cytokines that may disrupt the circadian 
rhythm21. High consumption of carbohydrates, particularly in the evening, may also negatively impact sleep21. 
Thus, the bidirectional interplay between nighttime smartphone use, sleep, and overweight may create a vicious 
circle of metabolic dysfunction over time.

We generally found no strong associations between nighttime smartphone use and cardiometabolic risk 
markers. We only investigated these associations in a small study sample of healthy young women, so the general 
lack of associations is unsurprising. We suggest that future studies include clinical cardiometabolic measures in 
a larger and more representative adult study population concerning gender, age, and health.

Strengths and limitations
The present study included data from three diverse samples, which allowed us to robustly validate and compare 
findings across samples in a triangulation framework61. Also, we explored nighttime smartphone use using self-
reported and tracked measures, which have previously been found to be only moderately correlated, indicating 
potential underreporting in self-reported smartphone use compared to tracked smartphone use62. Addition-
ally, using latent clusters of nighttime smartphone use based on high-resolution smartphone tracking data, we 
identified distinctive characteristics representing different dynamical patterns of nighttime smartphone use. 
Furthermore, we assessed metabolic dysfunction using various cardiometabolic risk markers including BMI, 
anthropometrics, and clinical biomarkers. Other strengths of the present study include the longitudinal study 
design to assess changes in BMI, multiple imputation of survey data to reduce bias introduced by missingness, 
and raked-weighting methodology to increase the representativeness of the study samples.

The present study also has several limitations. First, we could not make any causal conclusions based on our 
analytic design. Although we found consistent associations between nighttime smartphone use and overweight/
obesity, we could not ascertain whether metabolic dysfunction is caused by nighttime smartphone use, vice versa, 
or by a common underlying cause. In the longitudinal analyses evaluating changes in BMI within 18 months, the 
two time points may be suboptimal for longitudinal assessments as it is cumbersome to differentiate between 
true change and measurement error.

In the present study, misclassification may be a potential source of bias, as we use survey data to assess self-
reported nighttime smartphone use and BMI. Thus, there may be a risk of recall or social desirability bias, where 
participants may either under or over-report their nighttime smartphone use, height, and weight. Nevertheless, 
we applied different approaches to measure exposure and outcome, allowing us to triangulate evidence across 
study samples with potentially different sources of misclassification. For example, in the Clinical Sample where 
BMI was measured by professionals, we found similar associations between frequent nighttime smartphone use 
and BMI as in the two study samples, in which BMI was self-reported. In the Population Sample, we found similar 
associations between BMI and both self-reported and latent clusters of nighttime smartphone use, respectively. 
These findings may indicate that differential misclassification is of little concern.

In the Clinical Sample, cardiometabolic biomarkers were measured from non-fasting blood samples, which 
is recommended to use as the clinical standard in Denmark63. Previously, non-fasting lipid profiles have been 
perceived as less accurate measurements than fasting lipid profiles when assessing cardiovascular risk, thus 
leading to potential misclassification of cardiovascular risk64,65. However, several population-based prospective 
studies have provided evidence to use non-fasting lipid profiles, as they have shown similar cardiovascular risk 
assessments compared to fasting lipid profiles63. Thus, using non-fasting lipid profiles may not explain the lack 
of associations between nighttime smartphone use and cardiometabolic risk markers.

The study samples reflect selected populations and may not represent the general population. Even though the 
Population Sample and the Clinical Sample were randomly drawn from the general population to ensure repre-
sentativeness, they are challenged by a relatively low level of participation. The same issue with representativeness 
is also a concern in the Citizen Science Sample, as it is a self-selected sample22. We have previously performed 
sociodemographic comparisons between each study sample in the SmartSleep Study and the general adult popu-
lation to address the concern47. We found that more females, middle-aged individuals, and individuals with a 
higher educational level were more likely to participate in the SmartSleep Study. In the Citizen Science Sample, 
only 15% of the participants participated in the follow-up study. Thus, loss of follow-up may also impact our 
results. We found that more women and slightly older participants were more likely to participate in the follow-
up study. As women tend to have more frequent nighttime smartphone use and older participants tend to have 
less frequent nighttime smartphone use, this may have impacted our results in different directions. Nevertheless, 
the lack of association between nighttime smartphone use and changes in BMI suggests that loss of follow-up is 
of lesser concern. Due to the study design, a few night workers were included in the study populations (N < 1%). 
We find it unlikely that the inclusion of this group impacted our results.

We assigned individuals to a specific latent cluster based on their maximum posterior probabilities to ease 
the interpretability of the findings. However, we thereby reduced the complexity of the latent cluster assignment 
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composition. Instead, future studies may benefit from using compositional data analysis methods to include the 
posterior probabilities of individuals partially belonging to several latent classes as compositional covariates in 
the models66.

Conclusion
We found that frequent nighttime smartphone use is associated with overweight, obesity, and higher BMI across 
diverse population samples. Assuming a causal basis for these associations, nighttime smartphone use may 
negatively impact metabolism and weight. Thus, nighttime smartphone use may be a potential target point for 
public health interventions to reduce overweight and obesity at population levels. Nevertheless, larger longitu-
dinal studies using cardiometabolic risk markers are warranted to elucidate the complex relationship between 
nighttime smartphone use, sleep, overweight, and cardiometabolic dysfunction.
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