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Community detection with Greedy 
Modularity disassembly strategy
Heru Cahya Rustamaji 1,5, Wisnu Ananta Kusuma 1,4*, Sri Nurdiati 2 & Irmanida Batubara 3,4

Community detection recognizes groups of densely connected nodes across networks, one of the 
fundamental procedures in network analysis. This research boosts the standard but locally optimized 
Greedy Modularity algorithm for community detection. We introduce innovative exploration 
techniques that include a variety of node and community disassembly strategies. These strategies 
include methods like non-triad creating, feeble, random as well as inadequate embeddedness for 
nodes, as well as low internal edge density, low triad participation ratio, weak, low conductance as 
well as random tactics for communities. We present a methodology that showcases the improvement 
in modularity across the wide variety of real-world and synthetic networks over the standard 
approaches. A detailed comparison against other well-known community detection algorithms further 
illustrates the better performance of our improved method. This study not only optimizes the process 
of community detection but also broadens the scope for a more nuanced and effective network 
analysis that may pave the way for more insights as to the dynamism and structures of its functioning 
by effectively addressing and overcoming the limitations that are inherently attached with the 
existing community detection algorithms.
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A complex system consists of many interrelated elements and has complex and unpredictable relationships. In 
a network of complex systems, nodes represent elements and the edges reflect their interrelationships. Complex 
systems can be found in various fields, such as social, transportation, and biological systems. Network analysis 
is a valuable tool for understanding and analyzing complex systems. By representing the elements of a system as 
nodes and their relationships as edges, we can identify patterns and structures within the system that may not 
be immediately apparent from the raw data. This can help us to better understand the behavior of the system 
and possibly make predictions about its future behavior.

In network science, the community is one of the essential concepts in understanding complex systems because 
many real-world networks, such as social networks, biological networks, and transportation networks, exhibit 
community structures. A community can be defined as a group partition of the nodes in a network. A group of 
nodes in a partition is more likely to be connected than the nodes in other node groups1. Thus, the density of 
nodes in one group will be high. Communities in complex systems can be formed owing to the solid relationships 
between the components within the group. This relationship can take the form of an interaction, cooperation, or 
dependency. The elements in these communities often share common characteristics and objectives.

A community in a social network represents a group of friends who interact regularly. These people share the 
same hobbies or interests, such as a music community or a group of people living in the same neighborhood or 
city. In biological networks, such as protein-protein interactions or metabolic networks, communities can rep-
resent groups of proteins or metabolites that are functionally related or involved in the same biological process. 
In transportation networks, communities can represent groups of locations or nodes that are more likely to be 
connected than nodes outside the group based on geographic proximity, travel patterns, or land use.

The quality of the community formed by the community detection algorithm is a modularity1. If the modu-
larity is high, it can be interpreted that community detection succeeded in grouping nodes into high-density 
communities that were functionally well-isolated. Conversely, suppose the resulting modularity is low. In this 
case, it can be interpreted that community detection was not successful in grouping nodes into high-density 
communities. The algorithm must determine how to partition the network in order to satisfy the desired com-
munity quality criteria. However, the network may have several partitions or non-optimal solutions.
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Modularity, which is a key metric, was not the only metric considered. Predictability, which is based on link 
prediction, is a critical metric. It measures how well the community structure of a network can be derived based 
on the connectivity pattern in network2. In addition, the intuitive notion that distinct communities should be 
well-separated from the rest of the network is manifested in separability, which is another important measure 
of community quality3. Modularity was chosen in this study because it provides a clear and measurable way to 
assess the strength of a community structures. Modularity is widely accepted and applied in network analysis 
because it captures the density of links within and between communities. This strongly indicate the extent to 
which a network can be clearly separated into different groups or communities.

Determining the community structure of a network that maximizes modularity is an NP-hard problem. Deter-
mining an optimal solution for large networks within a reasonable time period is computationally challenging. 
The time required to determine the best modularity on a polynomial scale is immeasurable4. Determining an 
optimal solution is often not feasible, particularly for large-scale networks. Heuristic algorithms are often used to 
obtain a good or near-optimal solution within a reasonable amount of time. Heuristic algorithms use shortcuts 
or rules of thumb to find a solution that is close to the optimal solution without guaranteeing that it is the best 
possible solution. These algorithms are designed to be computationally efficient.

An essential problem in network analysis is the optimization of community detection algorithms. In par-
ticular, the Greedy Modularity algorithm applied to solve this problem tends to be stuck in local optima, which 
constrains its efficiency. This leads to a significant reduction in modularity, which is, an indicative primary metric 
that addresses with the strength of the community structure in networks. The aim of our study was to address 
this critical issue by exploring ways to enhance the Greedy Modularity algorithm to avoid such local optima and 
enhance the overall modularity in the detected community structures. We propose a novel refinement approach 
for the Greedy Modularity algorithm that integrates the latest exploration strategies such as disassembly node 
techniques and community strategies. More importantly, this methodological improvement not only avoids the 
limitations of conventional Greedy Modularity, but also greatly enhances its performance in detecting more 
accurate and meaningful community structures in complex networks. Our approach can overcome the usual 
limitations of the algorithm and thus provides a robust and efficient solution for community detection in many 
types of networks. This contribution is poised to have a significant impact within the field of network analysis, 
pointing towards a new direction for future research as well as its application.

Related work
Previous studies have attempted to solve the community detection problem using different approaches. There 
are several approaches to community detection including mathematical models, networks, modularity, and 
evolutionary computing. Mathematical models are formal representations of a system that are described in 
terms of mathematical equations or algorithms, such as statistics5, matrix factorization6, and fuzzy7. The network 
approach is a strategy used to analyze and understand the structure and behavior of a network, such as local 
communities8, network embedding9, and cliques10. The modularity strategy optimizes community quality11, such 
as Louvain12, Leiden13, Girvan Newman14 , and Greedy modularity15. Evolutionary computational strategies are 
abstractions from the biological evolutionary theory used to create optimization procedures or methods. This 
strategy combines the concept of biological evolution with computer technology such as genetic algorithm16 
and particle swarm optimization17.

However, many algorithms e used to achieve this maximum modularity provide suboptimal solutions. In 
addition, some algorithms generate small or large communities that may not be relevant to the actual context. 
Some algorithms, such as adding or removing nodes or edges, are less robust to network changes. These strategies 
produce different results when they are applied to a network for community detection. Each algorithm provides 
different community results and different modularity18.

One of the well-known algorithms and many references for solving community detection problems is the 
Greedy Modularity algorithm proposed by Newman15. This algorithm is a heuristic that searches for an optimal 
modularity value at each exploitation stage. This algorithm forms a community by combining two previously 
created communities to increase modularity. The iteration stops when there are no more communities to join 
to improve modularity. However, this algorithm can be trapped in a local optimum that is far from the global 
optimum. The Greedy Modularity algorithm focuses only on the best solution at each step, and is not the best 
solution for the entire problem. The algorithm may not be able to find communities with higher modularity than 
the solution it finds. Therefore, the modularity generated by the Greedy Modularity algorithm may not always 
be high, depending on the network conditions.

Several factors can lead to local optima for community detection. Modularity-based community detection 
methods may suffer from a resolution limit, which means that they may fail to detect small communities (e.g., 
cliques and triads) within larger communities19. Consequently, modularity-based methods tend to merge small 
communities into larger ones, resulting in loss of information about the network structure. Researchers have 
proposed various approaches to address the resolution limit problem, such as the use of generalized modularity 
density and z-score-based modularity. The generalized modularity density is a method that can detect communi-
ties of different sizes and shapes by considering the density of nodes in the network20. Z-score based modularity 
is another approach that can detect communities of different sizes by normalizing the modularity score21.

Another influential factor is weak community structures22. Researchers have proposed various approaches 
to address this issue, such as hidden community detection and weak supervision. Hidden communities refer to 
weak or disguised communities that are not easily detected using traditional community detection methods23. 
Weak supervision of community structures is another approach that can detect communities of different sizes 
and shapes by using the node2vec algorithm24. Communities with low embedding also contribute to difficulties 
in identifying communities25. This problem can be addressed using network embedding methods, which aim 
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to project nodes of the same community close to each other in a geometric space where they can be detected by 
standard data clustering algorithms26. However, it is essential to choose appropriate parameters for embedding 
techniques to achieve optimal performance.

Materials and methods
Dataset
In this study, real-world and synthetic datasets were used for the community detection. Real-world datasets were 
used: Zachary Karate Club, Dolphin, Les Miserable, Polbooks, Adjnoun, Football, information retrieval, hardware 
architecture, and a database. Meanwhile, we used the synthetic Lancichinetti–Fortunato–Radicchi (LFR) data-
set, whose characteristics mimic real-world networks, such as community structure and degree distribution27.

Methods
The Greedy Modularity algorithm
Consider an undirected graph G = (V ,E) with a set of vertices V and a set of edges E. Let n be the number of 
vertices in G, and m be the number of edges in G. Consider a graph G and let A be its adjacency matrix. Specifi-
cally, Aij represents the number of edges connecting nodes i and j. If nodes i and j are not connected, then Aij is 
equal to 0, denoted as (i, j) /∈ E.

The Greedy Modularity algorithm15 on G starts by creating n communities where each community consists 
of one node. In this case, let Ci be the community of node i ∈ V  . The second step combines the two communi-
ties with the highest increase in modularity using Formula 1 where eij is the edge in the network connecting a 
node in community i to a node in community j, and ai denotes the number of edges in community i. This step 
is performed until there are no more network partitions with a higher modularity.

Modularity was used to measure the community quality. The network modularity Q(S) is calculated as the sum 
of the modularity of each community, as expressed by Formula 2, where lc and kc denote the number of edges 
and vertex degrees in community c ∈ S , respectively. At the same time, L is the number of edges and vertices in 
the network as a whole.

Modularity was the primary strategic and central metric of our study. Modularity does not, on any account, 
stand as a measure of the density of links within communities versus each other versus between them. Instead, it 
stands as an underlying indicator of the structure and efficacy of a network. The significance of our research lies 
in its ability to reveal the nuances of community interaction and segregation, which is crucial for understanding 
and amplifying the underlying patterns and behaviors of these complex networks. We attempt to reflect on how 
our modified Greedy Modularity algorithm boosts modularity to detect efficient complex community structures. 
This is essential because high modularity reflects good communities and more precisely divided communities, 
leading to better real-world application and general views. Therefore, it is more than a metric but rather a per-
spective from which the quality and relevance of our algorithm outcomes are examined and evaluated. In this 
study, modularity was used to evaluate the superior performance of our improved Greedy Modularity algorithm 
over the current models, illustrating its enhanced ability to identify more coherent and meaningful community 
structures. This decision was motivated by our commitment to offer a complete and scientifically rigorous 
approach for detecting communities in complex networks.

Greedy Modularity was explored to achieve the highest modularity value in each iteration. However, it can be 
trapped at the local optimum therefore we required a correction step in the form of exploration. Exploration 
involves looking for alternatives to avoid local optima. The basic concept of this algorithm is to obtain a balance 
between exploration and exploitation28. The exploration carried out is release nodes, namely disassembly nodes 
in a community and disassembly community. Figure 1 illustrates node exploration. The community formed by 
the Greedy Modularity algorithm consists of two communities, blue and red. It can be seen that node 0 is a node 
with low embeddedness and is a weak node. Therefore, the node is removed from the blue community such 
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Figure 1.   Node exploration, node disassembly (a) Two communities are formed, blue and red (b) Node 0 is 
removed from the blue community (c) Node 0 joins the red community.
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that node 0 forms a new green community. In the next iteration, node 0 joins the red community, producing a 
community with better modularity.

Community exploration was performed by disassembling the communities (Fig. 2). The blue community is 
weak because it has a weak node, that is node number 0. The community is disassembled such that each node in 
the blue community becomes a community, which is exploited in the next iteration.

The Greedy Modularity algorithm comprises three steps. The first part is the community initialization. In 
other words, each node is made into a community. If there are n nodes, then n communities are formed. The 
second part is the exploitation stage, which combines nodes that can potentially increase modularity iteratively. 
This phase was a greedy algorithm. The third part is the exploration stage, which comprises of two alternatives. 
The first is disassembling the nodes in a selected community to become a community. The second alternative is 
a disassembly community, that disassembles a community and each node into a community. After disassembling 
the node, it returns to the second stage, recombining the split nodes and communities to increase the modularity. 
The possibility of exploration and exploitation in each iteration was expressed as a percentage.

We have developed various algorithms for node and community disassembly. The purpose of these strate-
gies is to improve Greedy Modularity. The datasets used are real-world standard benchmark datasets that are 
publicly accessible and generate synthetic data that are often used in research on community detection research.

Node disassembly strategy
The node disassembly strategy is implemented such that nodes in the network that have the potential to move 
communities are disassembled from the community to which they belong. There are four strategies for disas-
sembly nodes: the disassembly of random nodes, weak nodes, nodes with low embeddedness, and disassembly 
nodes that do not form triads.

The strategy of disassembling random nodes is performed by randomly selecting nodes with two or more 
nodes in one of the communities (|C| > 1) . The selected node v∗ is then transformed into a single community. 
Finally, each connected component of the rest iss transformed into a community, as described in Algorithm 1.

The main steps of time consumption in Algorithm 1 are the random selection of a community and formation 
of new communities from the connected components. The corresponding time complexity for the initial selection 
of a worst-case community C∗ from graph G based on the condition |C| > 1 is O(n), where each node forms its 
community, presupposing n total nodes. The subsequent operations are O(1) processes composed of a random 
selection of the v∗ node from C∗ and creation of a single-node community. However, the critical step of forming 
new communities from the remaining connected components after removing v∗ from C∗ yields the worst-case 
complexity of O(k), where k denotes the number of nodes in C∗ . With k ≪ n , the algorithm can be estimated as 
O(n). The algorithmic steps are simple and require basic code implementation. Its primary operation is to select 
a random community and then a node within it, which is computationally inexpensive (O(1)).

Algorithm 1.   The algorithm disassembly random nodes.

The strategy for disassembling weak nodes in a weak community is given by Eq. (3). In a strong community, 
each node has an internal degree greater than the external degree. If there is a node in a community that has an 
internal degree kinti (C) less than or equal to the external degree kexti (C) , the community is weak1. Automatically, 
a weak node weakens a community. The first step of the algorithm is to compute the internal and external degrees 
of each node v ∈ V  . The next step is to determine which node v∗ in the community has an external degree greater 
than the internal degree. For the selected node to be in the formed community, we added the condition that 

Figure 2.   Community exploration, community disassembly (a) two communities are formed, blue and red (b) 
the blue community is disassembled, and each node becomes a community.
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the internal degree of the node is ≥ 2 . The chosen node v∗ is then transformed into a single community. Finally, 
each connected element of the rest is transformed into a community. The procedure is described in Algorithm 2.

The algorithm for disassembling the weak nodes in a weak community displays an interesting complexity 
profile. One part of the algorithm that incurs its most significant computational burden O(nd), involves iterat-
ing over every node (n) and examining each of its incident edges out of a maximum of any node in the graph 
(d). Thus, a detailed examination should be used to exactly identify the internal and external degrees of every 
node—an especially vital step in identifying weak nodes—those whose internal connectivity within their com-
munity is outweighed by their external connections. A significant strength of this algorithm is that it explicitly 
attacks and dismantles weak nodes among communities. Considering only those nodes of the network whose 
internal degree is smaller than or equal to that of its external, one effectively finds sections of the network that 
may disrupt the connectivity or overall integrity of the community structure. It is most applicable in networks 
where the failure of weak links or nodes significantly undermines the network’s robustness and functionality.

Algorithm 2.   Weak node disassembly algorithm on weak community.

The strategy for disassembling nodes with low embeddedness values is expressed in Eq. (4). Embeddedness 
measures the integration of nodes into a network community. The lower a node’s embeddedness in a community, 
the fewer links or connections it has with other nodes. Nodes with a lower embeddedness can be used to identify 
more vulnerable communities. The lower the embeddedness of a node in the community, the lower the degree 
kv ratio of neighboring nodes in one community compared to all neighbors29. The first step of the algorithm is to 
compute the embeddedness of each node v ∈ V  . The next step is to form a single community at node v∗ , that has 
the lowest embeddedness. Each connected component of the remaining nodes is converted into a community, 
as described in Algorithm 3.

Disassembly nodes with low embeddedness algorithms incur significantly in the embeddedness calcula-
tion of every node by checking the degree to which nodes exhibit in their communities against the number of 
interactions that exist for them. Finally, this calculation is performed for each node present in a community, and 
it shows some complexity of O(nk) where n is the number of nodes and k is the average number of neighbors 
per node. The other steps involve identifying a node with minimum embeddedness and reassignment into a 
new community. The utility of the algorithm lies in removing nodes with low embeddedness from their current 
communities and placing them in new communities, where they provide a better contribution of behavior more 
efficiently for modularity. Such strategic reassignment is expected to enhance the overall cohesion and modularity 
information of the network, establishing a systematic way to optimize community structures and improve upon 
the representational accuracy of the network, particularly the context within which the network integration of 
communities as well as clear delineation is essential.

(3)i ∈ C, kiint(C) ≤ kei xt(C)

(4)f (v,C) =
kCv
kv
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Algorithm 3.   The algorithm disassembly nodes with low embeddedness.

Disassembly nodes that do not form a triad. A triad consists of three nodes that are connected to an edge in 
a community or network, as expressed in Eq. (5). Triads can show strong associations between nodes in a com-
munity and are used to identify communities by identifying the subgraphs that constitute a triad. The first step 
of this algorithm is to form a subgraph for each community with |C| > 4 and select nodes that do not constitute 
a triad. The next step is to create a single community at node v∗ , which is a node that does not form a triad. Each 
connected component of the remaining nodes was converted into a community as specified in Algorithm 4.

This algorithm was applied to strengthen the community structure within the networks by removing non-
participating triad forming nodes. According to this definition, triads are a set of three interrelated nodes and are 
very useful in indicating strong intra-community relationships. This algorithm pass through every node in the 
community carefully and executes a combinatorial analysis that considers all possible triadic combinations. In a 
community of n nodes, this gives an O(n3) level of computational complexity, considering that multiple checks 
have been exhaustively placed on triad formation. This deeper scrutiny is critical for correctly identifying nodes 
with weaker community connections, which in turn allows the community structure to reflect more accurately, 
meaningfully and strongly expressed relationships between nodes. It is only this algorithm that is most useful in 
complex network analyses where the strength and clarity of community connections are necessary.

Algorithm 4.   The algorithm disassembly nodes that don’t form a triad.

The community disassembly strategy
Five community disassembly strategies were used: random communities, weak communities, communities with 
low internal side densities, communities with low triad participation ratios, and communities with low conduct-
ance. The random strategy selects one of the communities formed in the network that has two or more nodes 
(|C| > 1) , and performs disassembly so that each node in that community becomes a separate community. This 
method is described in Algorithm 5.

As described in Algorithm 5, the random community disassembly algorithm is simple yet effective for reor-
ganizing communities in various networks. This algorithm starts by randomly choosing a community C∗ from 
graph G, with the restriction that C∗ has more than a single node (|C| > 1) . It then proceeds to iterate each node 
v in C∗ , to reassign every node such that they have their communities. The computational complexity of this 
algorithm is O(n), which is linear to the number of nodes in the selected community C∗ . This linear complex-
ity arises from the single-pass iteration over each of the nodes in C∗ , free of any nested or complex operations, 
thereby making the algorithm highly efficient, particularly for communities with fewer node counts. The primary 
benefit of the present algorithmic approach is its simplicity and rapid execution, such that it is the foremost con-
tender during the initial analyses. It also enables the disbanding of a community in individual nodes such that 
each node is re-evaluated for community affiliation and boosts the modularity of a network. This aspect finds 
better use when the initial community assignments are either suboptimal or uncertain.

(5)Triad =
{

u : u ∈ S,
{

(v,w) : v,w ∈ S, (u, v) ∈ E, (u,w) ∈ E, (v,w) ∈ E
}

�= ∅

}
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Algorithm 5.   Random community disassembly algorithm.

A weak community is interpreted as one that is unstable and easily divided. In a social network, a weak 
community may lack social cohesion, a shared sense of purpose or values, or effective communication and 
collaboration among its members. The weak community is stated in 6 by relaxing the presence of nodes 
i ∈ C, kinti (C) ≤ kexti (C) . The strategy of disassembling a weak community starts by creating a subgraph based 
on each community in G, and then computing the inside edge of each community and calculating the outside 
edge of the subgraph with respect to G. Choose the community with the smallest difference between the inner 
and outer edges. Disassembly was then performed such that each node in the community became a separate 
community. This strategy is described in Algorithm 6.

This algorithm contemplates the restructuring of networks through the disbanding of so-called weak com-
munities, featuring a more significant number of external edges than internal ones. Mostly from the edge com-
putations performed within every community, the complexity of the algorithm is O(m+ n) , where m and n 
are the numbers of edges and nodes, respectively. It is increased by the linear complexity from the selection of 
the weakest community, as well as the disassembly of its nodes, given an overall complexity that is beyond the 
linear but far below the quadratic for most network structures. The disassembly of these communities causes 
each node to join more cohesive communities iteratively, thereby enhancing the modularity of the network in 
general. This minimalist approach not only smoothes the network structure but also allows a strategic improve-
ment in modularity by means of reallocation of the nodes to appropriate communities.

Algorithm 6.   Weak community disassembly algorithm.

Select a community with a low internal edge density (Eq. 7), where ms is the number of edges in the com-
munity and ns is the number of vertices in the community. Communities with a low internal edge density in 
the network have few relationships or edges. In this case, the internal edge density indicates the closeness of the 
relationships between nodes in a community. Communities with low internal density indicate that the relation-
ships between nodes in the community are less stable. Communities with high internal edge density are more 
stable because they have more connections between nodes, making it more difficult for them to be affected by 
network changes. The first step of this method is to create a subgraph based on each community in G and then 
calculate the density of the subgraph. Communities with the lowest density were selected for this study. Decom-
position wass then performed so that each node in the community became a separate community. This strategy 
is described in Algorithm 7.

This algorithm strategically disassembles communities within a network that exhibits a low internal edge 
density. This measure is pivotal in evaluating community stability because it reflects the intensity of inter-node 
connections within itself. It begins by creating a subgraph for each community and calculating its density, an 
operation whose complexity depends essentially on the number of nodes and edges in each community, usually 
equal to O(m+ n) . The next step involved identifying the community with the lowest density. Linear complexity 
was identified based on the total number of communities. Subsequently, the selected community is disbanded 
after being transformed into an independent community for every node. The advantage of this algorithm is that 
it helps increase modularity in networks. The nodes break away from weaker communities. Therefore, nodes 
can affiliate or form more integrated communities, thereby increasing the potential overall modularity of the 
network. This approach strengthens the network not only by resolving the weaker parts but also by aiding in 
reorganizing communities systematically, which is especially important for networks where the toughness and 
integration of communities pose contributing factors.

(6)kinti (C) >
∑

(i∈C)

kexti (C)
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Algorithm 7.   The algorithm disassembly the community with low internal edge density.

Choose a community with a low triad participation ratio (Eq. 8) where u, v, and w are vertices; E is an edge; 
and nS denotes the number of vertices in the community. The Triad Participation Ratio (TPR) is a metric used to 
measure the participation of nodes in triads in a social network. The TPR measures how often a node is involved 
in a triad, which is the basic unit in a social network consisting of three nodes and three relationships. In the 
community context, TPR determines how nodes in a community are involved in triads and affects the stability of 
the community. Nodes with a high TPR tend to have many connections with other nodes in the community and 
play an active role in the formation of triads. This community makes it more stable and less affected by changes 
in the network. Conversely, nodes with a low TPR tend to have fewer connections with other nodes in the com-
munity and play a less active role in the triad formation. This makes communities more vulnerable to changes 
in the network and is less stable. The lower the triad participation ratio, the lower the density, cohesiveness, and 
grouping30. The strategy is to create a subgraph based on each community in G, then count the number of nodes 
that form a triangle, and divide it by the number of nodes in that community to produce a triangle participation 
ratio score. The community with the smallest score was selected. Next, disassembly is performed such that each 
node in the community becomes a separate community, as shown in Algorithm 8.

The computational process of this algorithm implementation begins with the construction of subgraphs to 
enumerate the nodes that participate in the triads for every community. This enumeration is particularly complex 
given the density and efficiency of the triangle counting algorithm, which at most can be computationally heavy 
but always, in general, not above O(n3) for sparse networks. Most importantly, the algorithm leverages the concept 
of triad participation to improve and reinforce the community structure in a network, signifying that tightly 
and highly linked sets of nodes are important properties of an efficient and viable network topological structure.

Algorithm 8.   The algorithm disassembly the community with a low triad participation ratio.

Choose a community with high conductance as given in Eq. (9) where mout is the number of edges leaving 
the community and mc is the number of edges inside the community. Conductance measures how well a com-
munity is isolated from nodes and connections outside the community. Communities with high conductance 
have many nodes and relationships connected to the outside, resulting in a more open and heterogeneous com-
munity. A community has more diverse characteristics and goals and weaker connections between nodes within 

(7)f (S) =
ms

(

ns(ns−1)
2

)

(8)f (S) =
|
{

u : u ∈ S,
{
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the community. Consequently, communities with high conductance tend to be more unstable and perform 
worse in terms of maintaining engagement and cohesion. The lower the conductance, the more well-established 
a community is, and it serves nearly perfectly in ordering communities from the most separable to the least 
separable30. First, a subgraph is created based on each community in G, then the inside and outside edges in the 
community are calculted, and the conductance score is computed based on Eq. (9). The community with the 
highest conductance score was selected for this study. Next, disassembly was performed such that each node in 
the community became a separate community as specified in Algorithm 9.

This opens up network modularity through the disassembly of communities with high conductance. The 
primary basis for the computational complexity of this algorithm is the creation of subgraphs based on every 
community and, subsequently, the computation of conductance scores. The complexity of forming subgraphs and 
tracing the internal and external edges in each community scale is O(m+ n) , where m represents the number of 
edges. By contrast, n represents the number of nodes. This process is iterated over C communities and hence has 
an overall complexity of O(C ∗ (m+ n)) . The calculation of conductance, which is the ratio of external to total 
edges, has a linear complexity with regard to the line count. Upon identifying the community with the largest 
conductance, this algorithm deconstructs this community by changing each node into a singleton community 
that will require extra complexity O(n). The strategic manner in which the algorithm handles communities with 
high conductance enhances the modularity of a network. In this manner, the algorithm effectively rearranges the 
network targeting communities with many external connections and weak internal connections to strengthen 
intra-community ties and delineate boundaries more clearly. Such reorganization increases the overall network 
cohesion and may potentially enhance the modularity score. Thus, it represents a robust and stable network 
architecture. This is a critical algorithm that refines the modular architecture of a network to emphasize the 
network stability and internal community strength.

Algorithm 9.   The algorithm disassemble the community with high conductance.

Evaluation
Modularity evaluation is used to evaluate the quality of community detection in a network and how well a com-
munity detection algorithm can separate the network into several homogeneous parts. In addition, modularity 
can be used to compare the community detection results of different algorithms to select the most appropriate 
algorithm.

Normalized mutual information (NMI) is used to determine the amount of information related to two 
variables, which is normalized to a value between 0 and 1. The NMI is expressed in Eq. (10) where PUV (i, j) 
represents the probability of the value pair of communities U and V, and log PUV (i,j)

PU (i)PV (j)
 represents the logarithm 

of the ratio between the joint probability of communities U and V and the product of the probabilities of each 
community. Logarithmic values were used to measure the amount of information shared by the two variables. 
NMI is a normalized version of the mutual information obtained by dividing it by both the community entropy 
−
∑R

i=1 PU (i)logPU (i) and −
∑R

i=1 PV (i)logPV (i) , which is used to facilitate comparisons between two different 
groupings. This can be used to compare the correlation between two distributions with different numbers of 
elements. Values close to 1 indicate a strong correlation between two variables, whereas values close to 0 indicate 
a weak correlation.

(9)f (S) =
mout

2 ∗mc +mout



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4694  | https://doi.org/10.1038/s41598-024-55190-7

www.nature.com/scientificreports/

For the external evaluation, the comparison algorithms were AGDL31, Fluid32, Belief33, CPM34, Chinese 
Whispers35, DER36, Eigenvector37, EM38, Genetics Algorithm16, Girvan Newman14, Greedy Modularity15, 
Kcut39, Label Propagation40, Leiden13, Louvain12, Markov Clustering41, RBER Pots, RB Pots42[33], Significance43, 
Spinglass42, Surprise44, Walktrap45, Head tail46, LSWL+47, Paris, dan Regularized spectral48 using the library 
CDLIB49,50 dan Networkx51.

Results and discussion
Results on real‑world datasets
Disassembly Greedy Modularity (DGM) is an extension of the Greedy Modularity algorithm with the addition of 
an exploration strategy. If the maximum number of iterations in Greedy Modularity is n− 1 , then in DGM, it is 
expressed as pn iterations. The higher the value of p, the greater the potential to obtain a community with better 
modularity; however, this causes the computation time to increase linearly for p. In each iteration, the possibil-
ity of greedy exploitation and exploration of the node community disassembly may occur, which is expressed 
as a percentage. In Fig.  3, the higher the number of iterations, the higher the potential to increase modularity, 
which is indicated by the yellow line. The blue line indicates the modularity value for each iteration. Modularity 
decreases when exploration occurs but increases again when exploitation occurs. The modularity used was the 
maximum modularity achieved across all the iterations.

Based on the exploratory strategy, all strategies in the DGM have increased modularity compared with the 
Greedy Modularity algorithm. The disassembly node and community strategy had a probability of 5 per cent in 
each iteration. A combination of five community and four node disassembly strategies resulted in 20 strategies. 
(Table 1). Compared with the Greedy Modularity algorithm, all combinations of strategies in the DGM can 
increase modularity. The best-combined strategy provides the greatest increase in the modularity. These com-
binations disassemble weak communities with random or low embeddedness nodes, disassemble low triangle 
partition ratio communities with non-triad nodes, and disassemble low internal edge density communities with 
low embeddedness nodes.

In Zachary’s karate club, there are two groups: the group that follows the president and the group that fol-
lows the instructor, which is considered the reference or ground truth. However, based on the network topology 
structure, the community detection algorithm can identify more than two communities. Greedy Modularity 
can form three communities, whereas DGM can form four communities. The Zachary Karate Club obtained a 
modularity score of 0.3582, which was lower than that of the Greedy Modularity (0.3886) and DGM (0.4198). 
Greedy Modularity and DGM can reveal hidden communities or sub-communities that are not visible in factional 
groups. In the Greedy Modularity and DGM results, the blue and cyan communities are sub-communities against 
the blue communities in the ground truth. The red and green communities in the DGM were sub-communities 
relative to the red communities in the ground truth. At the node level, node eight is outside the red community 
in the ground truth and inside the red community in the Greedy Modularity and DGM. Node nine is inside the 
red community on the ground truth and outside the red community on the Greedy Modularity (Fig. 4).

The internal community density, which describes the density of a community in a network, has also increased. 
Density can be expressed as the number of edges in a community divided by the maximum number of edges that 

(10)NMI(U ,V) =
2
∑R

i=1

∑C
j=1 PUV (i, j)log

PUV (i,j)
PU (i)PV (j)

−
∑R

i=1 PU (i)logPU (i)−
∑R

i=1 PV (i)logPV (i)

Figure 3.   The value of the modularity of the DGM algorithm on the Zachary dataset (n=34), c=30.
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can occur in it. In the DGM, the density increased to 0.4508, whereas in the ground truth and greedy methods, it 
was 0.2463 and 0.3466, respectively, and the scaled density increased. However, an increase in modularity does 
not necessarily mean that other internal evaluations also increase because the number of communities increases, 
causing the average number of nodes in the community to decrease.

We also used several other datasets for the experiment, all of which experienced an increase in modularity 
compared with the Greedy Modularity algorithm. The highest increase in modularity is presented in Table 2.

We compared the performance of this DGM algorithm with those of 25 other algorithms, and the results are 
listed in Table 3 . It can be observed that the algorithm did not excel in all datasets. With the addition of explora-
tion to Greedy Modularity, there was a significant improvement in almost all real-world datasets. Four of them 
were ranked first, namely Karate, Dolphins, Les Miserables, and Polbooks, which were ranked 10th, 8th, 6th, and 
11th, respectively, in the Greedy Modularity algorithm. The other two, Adjnoun and Football, were ranked 4th 
and 8th, respectively, which were previously ranked 6th and 12th in the Greedy Modularity algorithm. This also 
occurs in information retrieval, hardware architect, and database datasets. This shows that both community and 
node disassembly significantly contribute to improving the modularity in community detection. DGM is one of 
the most stable algorithms in the top rankings, along with Spinglass, Leiden, Louvain, and RB Pots.

To address the above concerns related to the dataset size and diversity, we followed a holistic approach that 
encompasses multiple datasets displaying several characteristics to represent networks. It includes both scale-
free networks, which are characterized by their degree distributions that have heavy tails, and random networks, 
which have a more uniform distribution of connections. Our explicit purpose in selecting these varied network 
types was to offer a broad representation of the possible variations in network characteristics. The results of our 
study revealed a consistent increase in modularity for these types of networks, providing additional support for 
the effectiveness and robustness of our community detection algorithm. Moreover, the fact that this performance 

Table 1.   Modularity in each combination of strategies in Zachary’s dataset.

Disassembly community strategy Disassembly node strategy Modularity

Random commmunity Random node 0.4188

Random community Weak node 0.4188

Random community Non triad node 0.4020

Random community Low embeddedness node 0.4172

Weak community Random node 0.4198

Weak community Weak node 0.4062

Weak community Non triad node 0.3974

Weak community Low embeddedness node 0.4198

High conductance community Random node 0.4174

High conductance community Weak node 0.3974

High conductance community Non triad node 0.3974

High conductance community Low embeddedness node 0.3974

Low triangle participation ratio community Random node 0.4172

Low triangle participation ratio community Weak node 0.3974

Low triangle participation ratio community Non triad node 0.4198

Low triangle participation ratio community Low embeddedness node 0.4020

Low internal edge density community Random node 0.4110

Low internal edge density community Weak node 0.4188

Low internal edge density community Non triad node 0.4062

Low internal edge density community Low embeddedness node 0.4198

Figure 4.   Visualization of community detection on (a) Zachary faction ground truth (b) Greedy Modularity (c) 
DGM.
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is consistent across various network models implies the general relevance of our findings beyond the constraints 
set by the network size. This ensures that our results reflect a vast array of real-world network structures and 
behaviors embedded in the diversity of network types included in our analysis. This methodological approach 
highlights our commitment towards a comprehensive and inclusive research design that seeks to staff free not 
only the robustness of its findings but also their generalizability across different kinds of network structures.

A comparison of the results of community detection using NMI can be seen. In the Karate dataset, community 
generated by the DGM algorithm was the same as that generated by the Spinglass algorithm. Closer to both in a 
row are the Eigenvectors, Leiden, Louvain, and RB Pots, which have an NMI above 0.9. Figure 5 shows the NMI 
visualization of the community detection algorithms.

In generally, we computed the NMI for different datasets (Table 4). Although the similarity of the results 
between datasets and algorithms varies, the DGM is sufficiently stable to have similarities with Spinglass, as 

Table 2.   The best combination of strategies across multiple reference data sets.

Dataset Nodes Disassembly community strategy Disassembly node strategy Modularity

Karate 34 Weak community Random node 0.4198

Dolphins 62 Random community Random node 0.5258

Lesmis 77 Random community Weak node 0.5600

Polbooks 105 Random community Weak node 0.5269

Adjnoun 112 Random community Random node 0.3038

Football 115 High conductance community Weak node 0.6006

Information retrieval (IR) 418 Weak community Random node 0.6375

Hardware & Architecture (HA) 626 High conductance community Random node 0.8309

Database (DB) 1006 High conductance community Non triad node 0.7196

Table 3.   Modularity comparison and ranking with 26 community detection algorithms for multiple datasets.

Method

Modularityrank

Karate Dolphins Les Miserable Polbooks Adjnoun Football Inf. Retrieval H/W Architect. Database

Spinglass 0.4201 0.5252 0.5594 0.5255 0.3091 0.6035 0.6481 0.8363 0.7532

DGM 0.4201 0.5261 0.5601 0.5271 0.3044 0.6018 0.6385 0.8316 0.7206

Leiden 0.4193 0.5243 0.5601 0.5271 0.3082 0.6051 0.6472 0.8412 0.7551

Louvain 0.4193 0.5243 0.5585 0.5274 0.3005 0.6051 0.6424 0.8345 0.7474

RB Pots 0.4193 0.5243 0.5601 0.5271 0.3082 0.6051 0.6463 0.8411 0.7533

RBER Pots 0.4066 0.48612 0.38118 0.5168 0.12416 0.6034 0.6366 0.8364 0.7435

Girvan Newman 0.4017 0.5206 0.41616 0.5177 0.00920 0.55015 0.13724 0.70814 0.1722

Eigenvector 0.3938 0.49110 0.5327 0.46717 0.2438 0.49318 0.55910 0.7979 N/A

Genetics Algorithm 0.3939 0.43716 0.50611 0.42421 0.18613 0.44220 0.4417 0.54618 0.46516

Greedy Modularity 0.38910 0.5068 0.5566 0.49511 0.2776 0.58012 0.6307 0.8247 0.7147

Surprise 0.38511 0.45613 0.48112 0.47214 0.18912 0.6019 0.54011 0.77112 0.65211

Chinese Whispers 0.37212 0.45614 0.47913 0.48712 0.00022 0.6027 0.49113 0.79610 0.7099

Paris 0.37212 0.38020 0.31421 0.43720 0.11517 0.51017 0.24122 0.43522 0.07223

Belief 0.37214 0.39518 0.37719 0.5216 −0.07026 0.57313 0.6258 0.78911 0.710

Regularized 
spectral 0.37214 0.36522 0.23222 0.44419 0.19210 0.37522 0.23523 0.2624 0.27919

DER 0.36016 0.38519 0.32120 0.45518 0.19211 0.40021 0.3918 0.46820 0.41418

Markov Clustering 0.36016 0.45515 0.41517 0.5149 0.08619 0.6019 0.44116 0.67216 0.54415

Walktrap 0.35318 0.48911 0.52110 0.50710 0.2169 0.6036 0.6019 0.8188 0.7138

Fluid 0.34319 0.5087 0.5249 0.47115 0.2607 0.51116 0.5412 0.51219 0.56514

Label Propagation 0.32520 0.4999 0.5278 0.48113 0.00022 0.58311 0.48215 0.7313 0.64912

Head Tail 0.26421 0.26224 0.15024 0.16823 0.18114 0.18723 0.2720 0.28123 0.23321

Significance 0.19122 0.35523 0.46215 0.39122 0.18115 0.56814 0.4914 0.67315 0.59813

EM 0.17623 0.41017 0.46614 0.47016 −0.04625 0.47319 0.35119 0.59217 0.43617

AGDL 0.07924 0.37521 0.15223 0.04424 0.09818 0.16724 0.26821 0.46321 0.25120

Kcut 0.00625 0.01125 0.02125 0.01425 0.00521 0.00525 0.00025 0.00125 0.00025

CPM -0.05026 −0.02126 −0.02426 −0.01426 −0.01624 −0.00926 -0.00426 -0.00326 -0.00224
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Figure 5.   NMI and F1 Score visualization with heatmap.

Table 4.   NMI between DGM and other methods, for multiple datasets.

Methods Karate Dolphins Les Mis Polbooks Adjnoun Football Inf. Retrieval H/W Architect. Database

AGDL 0.1567 0.4858 0.2270 0.1068 0.0952 0.1357 0.2468 0.5193 0.285

Fluid 0.5175 0.8045 0.7806 0.5565 0.2715 0.5461 0.4092 0.5561 0.3113

Belief 0.6873 0.5344 0.4084 0.8068 0.1426 0.7274 0.7559 0.7328 0.4961

CPM 0.5449 0.5197 0.5792 0.4114 0.6233 0.5679 0.5116 0.5166 0.4901

Chinese Whispers 0.5878 0.5873 0.681 0.7396 0 0.9173 0.5874 0.7527 0.6673

DER 0.5856 0.5501 0.4007 0.6258 0.1797 0.5119 0.2564 0.3098 0.2096

Eigenvector 0.8965 0.7573 0.8084 0.645 0.3668 0.7208 0.5639 0.8021 N/A

EM 0.5655 0.6187 0.5511 0.6641 0.0999 0.6149 0.1842 0.3971 0.2171

Genetics Algorithm 0.8437 0.6764 0.7392 0.6721 0.4022 0.669 0.5627 0.6722 0.5551

Girvan Newman 0.8321 0.7628 0.7691 0.8489 0.0888 0.8598 0.3189 0.7235 0.332

Greedy Modularity 0.6341 0.8435 0.7962 0.8235 0.555 0.8029 0.6827 0.9144 0.7694

Kcut 0.3034 0.1623 0.1517 0.1016 0.0636 0.1058 0.0129 0.0215 0.0018

Label Propagation 0.5422 0.7669 0.6914 0.7096 0 0.8731 0.5637 0.7123 0.6402

Leiden 0.9233 0.7978 1 1 0.6465 0.9043 0.7529 0.913 0.7272

Louvain 0.9233 0.7978 0.9301 0.8513 0.553 0.9043 0.7089 0.8778 0.7423

Markov Clustering 0.5856 0.7822 0.6327 0.811 0.3141 0.8585 0.6083 0.6943 0.6178

RBER Pots 0.865 0.6866 0.6874 0.8025 0.4427 0.9078 0.6854 0.8764 0.7213

RB Pots 0.9233 0.7978 1 1 0.6465 0.9043 0.669 0.8994 0.7133

Significance 0.6519 0.5893 0.7184 0.5808 0.5865 0.8349 0.6014 0.6592 0.6042

Spinglass 1 0.9599 0.9532 0.8345 0.8233 0.8866 0.7573 0.8458 0.7172

Surprise 0.8592 0.6393 0.7019 0.6654 0.5463 0.8585 0.6183 0.7254 0.6249

Walktrap 0.762 0.7495 0.7283 0.8512 0.4974 0.8873 0.6609 0.8098 0.665

Head tail 0.5449 0.5197 0.5792 0.4114 0.6233 0.5911 0.5116 0.5166 0.4905

Paris 0.5878 0.5644 0.6766 0.6148 0.5944 0.751 0.3108 0.4682 0.1558

Regularized spectral 0.6873 0.4919 0.4406 0.5815 0.1603 0.458 0.2608 0.179 0.2285
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shown by the NMI value > 0.8 for each dataset. The DGM results also differ from those of the original algorithm, 
Greedy Modularity, with a similarity level varying between 0.5550 and 0.8435.

In our analysis, we used the F1 Score combined with Normalized Mutual Information (NMI) to compare 
the communities formed by various algorithms, and then another comparison against metadata is often used as 
a proxy for the ground truth (Fig. 5). In accordance with the NMI results, our Disassembly Greedy Modularity 
(DGM) algorithm shows closer co-linearity with the SpinGlass and Girvan–Newman algorithms but less correla-
tion with the metadata-based ground truth. Therefore, one of the reasons for such a difference in classification 
has been rendered possible owing to the inherent ambiguity that lies in the relationship between metadata and 
the actual structural ground truth of networks. We identified two primary reasons for the failure to find a divi-
sion that correlates well with metadata: (i) the relevance of metadata to network structure and (ii) the detected 
communities and metadata capturing potentially different aspects structure of the network52. Moreover, most 
real-life networks are generally complex, meaning that their nodes have multisource metadata, further creat-
ing havoc in data evaluation. It compels a misinformed perspective that there is a single community detection 
algorithm existing on the market that performs the best over others in all possible partitions, as advertised in53.

Most of the disassembly strategies employed in this study are related to the degree of a node; generally, higher 
internal degrees of a node have a greater influence on the community. In other cases, such nodes may be vital 
to a community and as a result, they are called community centers54,55. In other cases, it may mean placing the 
node on the periphery or outside the community owing to its higher external degree. This understanding has 
resulted in the development of strategies that may differentiate between internal and external degrees of nodes. 
By differentiating these degrees, our approach is capable of enabling nuanced identification and analysis of 
communities within networks.

Results on synthetic datasets
Synthetic dataset, using LFR, node degrees, and community size distributed by power law, with different expo-
nential values for community degree and size γ and β , respectively. The most important parameter for community 
detection was µ . This parameter controls the number of edges between communities. If µ = 0, all links go to the 
nodes in the same community. Otherwise, if µ = 1 all links go to nodes in different communities. µ is above 0.5 
external links between communities are larger than internal links. In this study we attempted to vary µ between 
0.1 and 0.4, with 250 nodes, γ = 3, and β = 1.5 (Fig. 6).

On synthetic data sets, the DGM algorithm also significantly increases the modularity value compared to 
the Greedy Modularity algorithm (Table 5) . Within different variations of µ , it experienced an increase in rank 
from 1-6 to 1-3.

Computational complexity
One iteration for the greedy algorithm requires O(n+m) , and similarly for the community and node disas-
sembly algorithms. However this algorithm required cn iterations. Therefore, the overall time complexity of this 
algorithm was O(m+ n)(n) . Because the number of edges in the graph is greater than the number of nodes, the 
maximum complexity is O(mn).

Conclusions and future works
The research shows that the DGM community detection algorithm can provide better results than the greedy 
algorithm, as calculated from its modularity, compared with some existing community detection algorithms.

The complexity of the algorithm is still quadratic with the number of vertices and linear with the number of 
iterations. It remains a challenge for this algorithm to solve big data. However, research is still open to improv-
ing the complexity such that it can be made close to linear by changing the data structure. Furthermore, better 
strategies can be developed, both for node and community disassembly, such that fewer iterations are required 
to produce better modularity. This algorithm can be used to solve real problems, such as community detection 
in the field of bioinformatics, namely clustering essential proteins in cancer and examining functional associa-
tions with the resulting communities.

Figure 6.   Visualisasi.
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Data availability
Publicly available datasets were analyzed in this study. The real world dataset can be accessed from http://​
www-​perso​nal.​umich.​edu/​~mejn/​netda​ta/ and https://​github.​com/​vliva​shkin/​commu​nity-​graphs. LFR synthetic 
dataset generated via the networkx library available at https://​netwo​rkx.​org/.
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