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Spectrum analysis of digital UPWM 
signals generated from random 
modulating signals
Konstantinos Kaleris 1,2*, Emmanouil Psarakis 3 & John Mourjopoulos 1

This work studies the spectrum of discrete-time Uniform-sampling pulse width modulation (UPWM) 
signals originating from stochastic input signals. It demonstrates that for ergodic input sequences of 
independent and identically distributed random variables, the Discrete Fourier Transform (DFT) of the 
UPWM signals can be directly estimated from the input signal’s statistics. Consequently, it is shown 
that if the input signal can be modeled as such a random sequence, only statistical information of 
the sequence is required for the accurate estimation of the DFT of the UPWM signal. This is achieved 
here by proving that the DFT estimators obtained by observation of the input sequence within a time 
window are consistent estimators of the DFT coefficients of the underlying random process. Moreover, 
for signals whose generalized probability density functions can be expressed as functions of a small 
number of parameters, the DFT coefficients can be estimated or even calculated via closed-form 
expressions with linear complexity. Examples are given for input signals derived from symmetric and 
asymmetric distributions. The results are validated by comparison with evaluations of the UPWM 
signal’s DFT via the Fast Fourier Transform (FFT). The proposed method provides a mathematical 
framework for the analysis and design of UPWM systems whose inputs have known statistical 
properties.

Pulse Width Modulation (PWM) encodes signal information in the duty cycle of rectangular pulses. Hence, 
PWM signals constitute sequences of rectangular pulses with fixed amplitude and a duty cycle that depends 
on the instant amplitude of the modulating signal. PWM is widely adopted in telecommunications, signal pro-
cessing, audio technology and power systems, among others, as it provides significant benefits over traditional 
analog implementations. In telecommunications it is used for efficient signal coding and transmission, i.e., in 
burst-mode RF  transmitters1–3 and Power Line Communication (PLC)  systems4. In audio technology, it is used in 
class-D amplifiers for high-efficiency signal  amplification5–7 and for efficient digital-to-analog conversion of audio 
 streams8. It is also adopted in a wide range of electrical engineering applications such as power  electronics9,10, 
Wireless Power Transmission (WPT)  systems11,12, electric motor  control13,14 and others. Uniform-sampling PWM 
(UPWM) is mainly used in digital PWM systems and computational analysis and processing of PWM signals. 
In UPWM, a discrete-time and quantized modulating signal with k-bit resolution results to PWM pulses with a 
k-bit quantized width, accounting for the different signal amplitudes. Due to its digital nature, UPWM is utilized 
in computational simulations while, under conditions, it can be used to approximate analog Natural-Sampling 
PWM (NPWM)  signals15 with satisfactory  accuracy6,15–17. Specifically, the UPWM signal tends to the respec-
tive NPWM signal with (a) decreasing UWPM quantization step and signal amplitude and (b) with increasing 
UPWM oversampling factor, namely the use of a UPWM carrier frequency that is a multiple of the minimum 
required carrier frequency, as presented in “Deterministic input sequences” section.

PWM systems generally suffer from out-of-band modulation products, with well-known hazards that mainly 
lie in the damage of components due to overheating, non-linear behavior, noise through electromagnetic inter-
ference (EMI) etc.18–20. For example, in PWM-based switch mode power supplies and class-D amplifiers, power 
signal delivery is usually done through a low-pass filter that removes the excessive high-frequency  energy18,21 at 
the expense of increased cost, weight and dimensions of the  system22. Filterless implementations i.e., of Class-D 
amplifiers have also been proposed, in which the amplified PWM signal is directly delivered on the load, namely 
the  loudspeaker22,23. For the design and implementation of such PWM systems, the precise estimation of the 
PWM frequency spectra, and especially the out-of-band modulation products, is critical.
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The estimation or calculation of the PWM frequency spectra from the input signal has been a matter of 
research since decades and several solutions have been proposed. One of the pioneering works published in 1933 
by  Bennet24, described modulation products via the double Fourier Series method. Bennet’s method is limited 
to modulating signals including a small number of frequencies, which is nevertheless useful in applications 
such as power electronics. In 2003, Song et al.15 and later Deslauriers et al., Deng et al., Kostic et al. and Tanovic 
et al.25–28, presented general methods for the calculation of modulation products of PWM signals generated by 
arbitrary analog modulating signals, in the form of infinite sums. The frequency spectra of digital PWM schemes 
have also been studied in various works i.e., by Floros et al.6 and Vogel et al.2,29. In another approach, PWM-
coded signals have been probabilistically modeled in the time-domain and evaluated in terms of stationarity, 
autocorrelation and power spectral  density30. Estimation of the PWM power spectrum using classical spectral 
estimation techniques, such as the Bartlett and Welch methods, has been proposed for the case of Random PWM 
(RPWM)  signals31,32, namely sequences of PWM pulses with dither. Moreover, in the past 20 years it has been 
shown that various types of UPWM input signals can be modeled via their statistical characteristics as sequences 
of independent and identically distributed (i.i.d.) random variables (RVs). Apart from the sinusoidal signals 
that follow the arcsine distribution, speech signals modeled as sequences of truncated Laplacian  RVs33–35, music 
 signals36, sonar  signals37 and of course, noise signals modeled via the Gaussian or truncated Gaussian distribu-
tion, are common examples where statistical signal modeling has led to significant benefits and advancements 
in the analysis and digital signal processing.

In this work, and under the assumption of statistically modeled input signals, we focus on the relation between 
the input signal statistics and the frequency spectrum of the resulting digital UPWM signal. Ultimately, we 
develop a novel mathematical framework for the description of UPWM systems solely based on statistical infor-
mation of the input signals. For this purpose, input or modulating signal refers to a sequence of i.i.d RVs, UPWM 
spectra refers to the RVs obtained via discrete Fourier transform (DFT) of the UPWM signal and statistical 
characteristics of the modulating signal refers to the mean, variance and higher order moments of the underly-
ing distribution of the input sequence, also mentioned as amplitude distribution or, simply, distribution. Here, 
it is shown for the first time that the expected values of the DFT coefficients of a UPWM signal can be precisely 
estimated from the statistics of the input sequence, having a zero value on the out-of-band side frequencies and 
a generally non-zero value on the carrier harmonic frequencies. The analysis reveals that odd carrier harmonics 
directly relate to even input distribution moments and even harmonics relate to odd input distribution moments. 
Importantly, for input signal distributions whose moments can be expressed in terms of a few parameters e.g., 
the variance, closed-form formulas are derived for the estimation of the true values of the DFT coefficients, a fact 
that significantly facilitates and accelerates computations of PWM frequency spectra. The findings are validated 
by comparison with computational evaluations of the DFT coefficients for various UPWM test signals. Finally, 
application of the presented DFT analysis on a real speech signal modeled as a sequence of i.i.d. RV is examined. 
The very good agreement of the proposed analytical method with the computational evaluations highlights its 
applicability in the efficient design of real-world PWM systems.

Discrete-time UPWM
In this section, Uniform-sampling Pulse Width Modulation of digital signals and their discrete Fourier transform 
are described. The classical UPWM conversion of deterministic Pulse Code Modulation (PCM) input signals 
is extended towards UPWM conversion of random sequencies and the DFT spectra of the resulting random 
UPWM signals are derived.

Deterministic input sequences
Let a discrete-time signal xn : xn ∈

[

− 1
2 ,

1
2

]

, n ∈ [0, d − 1] , quantised with k-bit resolution, sampling frequency 
fs , sampling period ts and duration td = dts , be the input to a UPWM conversion process (For simplicity, the 
signal is assumed to have an even number of samples d. ). The resulting discrete-time, double-edge UPWM signal 
yn′ : yn′ ∈ [0,1], n′ ∈ [0,D − 1] , is a stream of square pulses of equal amplitude and varying width. A schematic 
representation of the conversion process from xn to yn′ can be seen in Fig. 1a. Each UPWM pulse corresponds 
to a single sample of xn and is centered within the sampling interval ts . The pulses take 2k possible discrete widths, 
corresponding to the discrete amplitudes of xn . Each pulse is represented by Mp = 2(2k − 1)  samples13, with a 
sampling period tp = ts

Mp
 , or equivalently a sampling frequency fp = Mpfs . The total number of samples of the 

UPWM signal is D = Mpd =
td
tp

 while its duration remains the same as the input, that is td . The UPWM pulses 
result from comparison of the instant amplitude of the upsampled—to the frequency fp—modulating signal xn′ 
with the amplitude of a triangular carrier cn′ with fundamental frequency fcar = fs as shown in the block diagram 
of Fig. 1b.

In the discrete frequency domain, xn and yn′ are described by the complex DFT vectors Xk : k ∈
[

0, d2

]

 and 

Yl : l ∈
[

0, D2
]

 respectively; for the purpose of the presented analysis, the negative frequencies will be neglected. 
The vectors Xk and Yl have a frequency resolution fd = 1

td
 and Nyquist frequencies fs2 and fp2  respectively. The 

frequency range up to fs2 is mentioned as the band of interest, or in-band range, whereas the range fs2 ≤ f <
fp
2  is 

mentioned as out-of-band range. The out-of-band components of Yl are here treated distinctly for the carrier 
frequencies, namely the carrier fundamental frequency and its harmonics fm = mfs , m ∈ N : m ∈

[

1,
Mp

2 − 1
]

 

and the side frequencies fm,b , with b ∈
[

− d
2 + 1, d2

]

\{0} defined as the out-of-band frequencies around the car-
rier harmonics. Out-of-band frequencies are addressed via the nearest carrier harmonic fm and a frequency 
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distance fb = bfd = b
d fs from fm , so that fm,b = fm + fb ; the related DFT index is lm,b = md + b . Figure 2 illus-

trates the DFT representation of a UPWM modulated digital sinewave xn = 1
2 sin(2π fsinnts) with fsin = 200 Hz 

and sampling frequency fs = 44.1 kHz. In Fig. 2a, the in-band and out-of-band components are separated by 
the frequency fs2 and the carrier components are marked with crosses. Figure 2b–d present details from the spectra 
around the carrier fundamental f1 = 44.1 kHz (1st harmonic) and 2nd harmonic f2 = 88.2 kHz.

Now, the DFT coefficients Yl of the UPWM signal yn′ at a frequency f = lfd are commonly expressed in terms 
of the samples of the UPWM signal as:

Floros et al.6 have shown that Yl can be directly calculated from the samples of the input signal xn , according 
to:

where Al =
1
π l e

−j π ld  . Equation (2) requires the knowledge of the input time-series for the calculation of the 
coefficients Yl . In this work it is shown that when the input signal xn is an ergodic random sequence of i.i.d RV, 
only statistical information of the amplitude distribution of xn is required for the precise estimation of the coef-
ficients Yl.

Random input sequences
By adopting the vector notation for the random input sequences, let xd(θ) = [x0(θ)x1(θ) . . . xd−1(θ)]

t be a ran-
dom vector containing d i.i.d. RV xn(θ) with n ∈ [0, d − 1] taking values within the range xn(θ) ∈

[

− 1
2 ,

1
2

]

 and 
quantised with k-bit resolution. Let us also consider that the functions fxn(x) and Fxn(x) denote the Generalized 
Probability Density Functions (GPDF) and the Cumulative Distribution Function of xn(θ) respectively. Then, it 
is well-known that the average of the elements of xd(θ):

(1)Yl =
1

D

D−1
∑

n′=0

yn′e
−j 2π lD n′ .

(2)Yl = Al

d−1
∑

n=0

sin

(

π l

d

(

xn +
1

2

))

e−j 2π ld n,

(3)wd(θ) =
1

d
< 1d , xd(θ) >,

Figure 1.  (a) Signal representation and (b) block diagram of the conversion of a digital modulating signal to a 
stream of discrete-time UPWM pulses by comparison to a triangular carrier.
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with <.,.> and 1d denoting the inner product operator and an all-ones vector of length d respectively, defines a 
new RV wd(θ) whose GPDF fwd (w) is given by:

where ‘*’ denotes the linear convolution operator. In addition, the following relations hold for wd(θ):

and

where E[.] , µx , µwd
 , σ 2

x , σ
2
wd

 denote the expectation operator and the means and variances of the RV xn(θ),wd(θ) 
respectively. Note that from Eq. (6) that, as the length d of the random vector xd(θ) tends to infinity the variance 
of the RV wd(θ) tends to zero, i.e:

For Eq. (7), the law of large numbers ensures that wd(θ) is a consistent estimator of the expected value of the 
i.i.d. random variables xn(θ), n = 1,2, . . . , d.

Let us consider now that the random vector xd(θ) is an input in a UPWM conversion process. According to 
Eq. (2), the Discrete Fourier Transform coefficients Yl(θ) of the UPWM vector yn′ are given by:

The RV Yl(θ) can be expressed using Eq. (3) as:

(4)fwd (w) = fx1(x)× fx2(x)× · · · × fxd (x),

(5)µwd
= E[wd(θ)] = µx ,

(6)σ 2
wd

= E[(wd(θ)− µx)
2] =

σ 2
x

d
,

(7)lim
d→∞

σ 2
wd

= lim
d→∞

E[(wd(θ)− µx)
2] = 0.

(8)Yl(θ) = e−j π ld
1

π l

d−1
∑

n=0

sin

(

π l

d

(

xn(θ)+
1

2

))

e−j 2π ld n.

Figure 2.  Computationally evaluated DFT of a sinewave modulating signal with fsin = 200Hz ; fs = 44.1 kHz 
and 8-bit resolution: (a) full DFT spectrum, (b) detail from 1st and 2nd carrier harmonic, (c) carrier 
fundamental and surrounding side frequencies and (d) carrier 2nd harmonic and surrounding side frequencies. 
Odd/Even harmonics marked with crosses.
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where ed,l =
[

1e−j 2π ld . . . e−j 2π ld (d−1)
]t

 and vd,l(θ) is a vector of i.i.d. RVs vn,l resulting from the transformation 
of the RVs xd(θ) , i.e.:

with g(·) being the sinusoidal function acting on each element of xd(θ) and al = π l
d  , bl = al

2 .
In the next paragraph, it is demonstrated that for random input sequences of i.i.d. RVs, the variables Yl(θ) 

defined in Eq. (9) constitute consistent estimators of the expected value. Carrier harmonics and the side frequen-
cies are treated separately.

Carrier harmonics
For the carrier harmonics, e−j 2π ld n = e−j2πmn = 1 , and Eq. (8) reduces to:

with Am = (−1)m

πm  . The expected value µYmd
 and the variance σ 2

Ymd
 of the variables Ymd(θ) are respectively given by:

and

which by using Εqs. (3) and (6) becomes:

Since σ 2
vmd

 is bounded and lim
d→∞

σ 2
Ymd

= 0 , the coefficients Ymd(θ) constitute consistent estimators of the true 
mean.

Side frequencies
Let us now concentrate on the side frequencies where the related DFT index takes the values 
l = md + b,m ∈ N

∗, b ∈
[

− d
2 + 1, d2

]

\{0} . It is well known that the expected value µwd
 of the linear combination 

wd of d identically distributed random variables wn:

where an are constants, is given by:

Respectively, the variance σ 2
wd

 is given by:

Thus, the expected value µYl = E[Yl(θ)] of the DFT coefficients of Eq. (8) takes the form:

where µvl = E
[

vn,l
]

 . Moreover, for l  = md,
∑d−1

n=0 en,l = 0 and hence:

Again, to determine whether µYl is a consistent estimator of the mean value of the DFT coefficient Yl(θ) , the 
variance σ 2

Yl
 needs to be calculated:

(9)Yl(θ) = e−j π ld
1

π l
< ed,l , vd,l(θ) >,

(10)vd,l(θ) = [v0,l(θ)v1,l(θ) . . . vd−1,l(θ)]
t = g(alxd(θ)+ bl),

(11)Ymd(θ) =
Am

d
< 1d , vd,md(θ) >,

(12)µYmd
=

Am

d
E
[

< 1, vd,md(θ) >
]

= Amµvmd
,

σ 2
Ymd

=
1

(πm)2
E[

(

1

d
< 1, vd,md(θ) > −µvmd

)2
]

,

(13)σ 2
Ymd

=
σ 2
vmd

π2m
2
d
.

wd(θ) = a0w0(θ)+ a1w1(θ)+ · · · + ad−1wd−1(θ),

(14)µwd
= E[wd(θ)] =

d−1
∑

n=0

anµwn = µwn

d−1
∑

n=0

an.

(15)σ 2
wd

= σ 2
wn

d−1
∑

n=0

a2n.

(16)µYl = e−j π ld
1

π l
E
[

< ed,l , vd,l(θ) >
]

= e−j π ld
1

π l
µvl

d−1
∑

n=0

en,l , l = md + b,

(17)µYl = 0.
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By using Eqs. (15) and (18) becomes:

However, since π
2l2

d = π2
(

m2d + 2mb+ b2

d

)

 and:

we get:

from which it becomes evident that the variables Yl(θ) constitute consistent estimators of the mean DFT values 
of the UPWM process.

Concluding, we have shown so far that for ergodic random input sequences of i.i.d. RV, the DFT coefficients 
on the side frequencies have zero expected values µYl = 0 , while for the carrier harmonics the expected values 
are non-zero (Eq. 13). For this reason, the following analysis focuses on the DFT coefficients on the carrier 
harmonics only.

Closed-form formulas for common distributions
As discussed in the “Introduction” section, if the GPDF (or equivalently the Probability Mass Function) of the 
RVs of the random input sequence xd(θ) is known, then the DFT coefficients Ymd(θ) can also be expressed in 
closed form in terms of the moments of the RVs. To demonstrate this, distinct expressions are derived for the 
odd and even harmonics from Eq. (8):

Using the Taylor series of the sinusoidal functions, we get:

Finally, assuming that d is large enough, by the law of large numbers the sums:

are consistent estimators of µx,l and hence, from Eq. (23) we get:

Equation (24) shows that the DFT coefficients of the UPWM signal on the carrier harmonics can be computed 
when the moments µx,2k of the random process are known. However, it is not particularly useful in this form 
since an infinite number of moments is required for its calculation, while at the same time, Eq. (24) only holds 
under the assumption of infinite order ergodicity, which is a hard constraint, thus making it unusual in practice. 
Nevertheless, there is a wide range of distributions parametrized by a small number of parameters, such as the 
truncated normal, truncated Laplacian, arcsine, beta and uniform to name a few, for which Eq. (24) becomes 
practically useful. Significantly, as we are going to demonstrate in the next subsections, for such input signal 
distributions Eq. (24) leads to closed-form formulas that allow for computation of the DFT coefficients of the 
underlying UPWM random process. However, their use demands knowledge of the parameters’ values, which is 
often not available in real world applications. This obstacle can be overcome by estimating these parameters. In 
this case, a closed-form estimator formula of the DFT coefficients of the UPWM signal is derived from Eq. (24) 
just by replacing the unknown parameters values by their estimations from the input signal. This can be practi-
cally done since the needed RV moments before quantization can be estimated from their quantized counterparts, 
provided that the quantization resolution is sufficiently high and the vast majority of the RV values lies within 
the desired  interval38. Indeed, the statistics of the RVs, along with the 256 levels used for quantization of the 
values in the interval [− 1/2, 1/2], ensure that the aforementioned constraints hold and thus, the resulting GPDF 
(or equivalently the Probability Mass Function (PMF)) closely approximates the continuous one. An example 

(18)σ 2
Yl

= E[
(

Yl(θ)− µYl )
2
]

= E

[

∣

∣

∣

∣

e−j π ld
1

π l
< ed,l , vd,l(θ) >

∣

∣

∣

∣

2
]

=

(

1

π l

)2

E

[

∣

∣< ed,l , vd,l(θ) >
∣

∣

2
]

.

(19)σ 2
Yl

=

(

1

π l

)2

σ 2
vl

d−1
∑

n=0

∣

∣en,l
∣

∣

2
=

1

π2l2
dσ 2

vl
.

(20)lim
d→∞

(

m2d + 2mb+
b2

d

)

→ ∞,

(21)lim
d→∞

σ 2
Yl

→ 0,

(22)Ymd(θ) =







(−1)
m+1
2

πmd

�d−1
n=0 cos(πmxn(θ)), modd

(−1)
m
2

πmd

�d−1
n=0 sin(πmxn(θ)), meven

.

(23)Ymd(θ) =











(−1)
m+1
2

πm

�∞
k=0

�

(−1)k(πm)2k

(2k)!

�

1
d

�d−1
n=0 x

2k
n (θ)

��

, m odd

(−1)
m
2

πm

�∞
k=0

�

(−1)k(πm)2k+1

(2k+1)!

�

1
d

�d−1
n=0 x

2k+1
n (θ)

��

, meven
.

1

d

d−1
∑

n=0

xln(θ) = µx,l(θ),

(24)Ymd = E[Ymd(θ)] =
1

πm

{

(−1)
m+1
2

∑∞
k=0

(−1)k

(2k)! (πm)2kµx,2k , modd

(−1)
m
2
∑∞

k=0
(−1)k

(2k+1)! (πm)2k+1µx,2k+1, meven
.
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demonstrating this fact for the truncated normal distribution N(0, 0.01) is shown in Fig. 3. In “Experimental 
evaluation” section, these aspects are validated by the excellent agreement between the computational evaluations 
and the analytical estimations via the proposed estimator-form formulas.

Symmetric distributions
Let us now concentrate on the derivation of closed-form expressions of the spectral lines Ymd for typical symmet-
ric distributions, and specifically for the truncated normal and Laplacian distributions, the uniform distribution 
and the arcsine distribution. Then, their estimator-form counterparts are obtained by replacing the unknown 
parameters’ values with their estimations from the quantized input signals.

To this end, let us begin from the truncated normal distribution N(0, σ 2) whose even moments Nµx,2k can 
be expressed with respect to the variance Nσ 2

x  as:

By substituting in Eq. (24), we get:

which, after some simple manipulations, leads to:

In practice, Eq. (25) cannot be used for the computation of NYmd except if the variance Nσ 2
x  is known. If 

Nσ
2
x  is unknown, it can be estimated from the input signal xn(θ) . By replacing it in Eq. (26), the estimator-form 

counterpart is obtained:

which we are going to use for the estimation of the coefficients NYmd.
Following similar steps and by taking into account that the moments for the truncated Laplacian, the symmet-

ric uniform and the arcsine distribution with values in the interval [− 0.5, 0.5] , corresponding to scale parameter 
Swx = 1, are given by the following relations:

• Lµx,2k = Lb
2
x(2k)! , whereLbx is the Laplace parameter,

• µx,2k =
Ua

2k
x

(2k+1) , whereUax is the upper limit of the distribution, and
• Sµx,2k =

(2k−1)!!
(2k)!! .

The closed-form expressions for these distributions become:

Nµx,2k = Nσ
2k
x

(2k)!

k!2k
.

NYmd =
1

πm
(−1)

m+1
2

(

1+

∞
∑

k=1

(−1)k(mπ)2k
Nσ

2k
x

(2k)!!

)

, m odd,

(25)NYmd =
(−1)

m+1
2

πm
e−

π2m2
Nσ2x

2 , m odd.

(26)NYmd(θ) =
(−1)

m+1
2

πm
e−

π2m2
Nσ2x (θ)
2 , m odd,

Figure 3.  Example of approximating the truncated normal PDF via the respective 8-bit quantized distribution 
with 256 amplitude levels.
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with J0(.) denoting the Bessel function of the first kind.
For the two first distributions, their estimator-form counterparts are given by:

respectively. From Eq. (29) it becomes evident that the resulting closed-form expression for the DFT coefficients 
for the arcsine distribution do not depend on any statistic of the input signal. Thus, Eq. (29) can be directly used 
for the computation of the coefficients. It should be noted that Eq. (29) agrees with the relation obtained by the 
double Fourier series method proposed in Ref.24. Finally, it is important to highlight that since the computation 
of Nσ 2

x (θ) , Lbx(θ) and Uax(θ) has a complexity O(d) , the use of the above estimator-forms allows for the estima-
tion of the coefficients Ymd in linear time, as opposed to the O

(

D2
)

 and O
(

Dlog(D)
)

 complexity of the DFT and 
FFT algorithms, respectively.

Non‑symmetric distributions
The potential of the presented analysis for the estimation of the DFT of UPWM signals derived from stochastic 
input sequences from closed-form formulas, is not restricted to inputs following single-parameter (neglecting 
the mean) symmetric distributions but it actually extends to non-symmetric ones. This is demonstrated in this 
subsection by deriving such a closed-form formula for the two-parameter non-symmetric beta distribution. The 
probability density function of the beta distribution is given by:

where B(·, ·) the beta function and a, b the “left” and “right” distribution parameters. The moments Bµx,k of the 
beta distribution are expressed in terms of the two parameters as:

Since the distribution takes values in the range x ∈ (0,1) , Eq. (8) of the UPWM DFT must be adapted as 
follows:

Following the same procedure as in “Closed-form formulas for common distributions” section, we get the 
following counterpart of Eq. (24):

Note that in this case, m can be either even or odd. Now, substituting through Bµx,k in Eq. (34) we get:

which leads to the closed-form expression:

where 2F3(·) the generalized hypergeometric function.
Actually, Eq. (34) cannot be used for the desired computations since the values of the parameters α and b 

are unknown. In order to obtain the estimator-form counterpart of Eq. (34) we can estimate the values of the 
aforementioned parameters from the input signal xn(θ) by using the moments  method39, that is:

(27)LYmd =
1

πm
(−1)

m+1
2

1

1+ (mπLbx)
2
, m odd,

(28)NYmd =
1

πm
(−1)

m+1
2

sin(mπUax)

mπUax
, m odd,

(29)SYmd =
1

πm
(−1)

m+1
2 J0(mπ), m odd,

(30)LYmd(θ) =
1

πm
(−1)

m+1
2

1

1+ (mπLbx(θ))
2
, m odd,

(31)NYmd =
1

πm
(−1)

m+1
2

sin(mπUax(θ))

mπUax(θ)
, m odd,

f (x) =
1

B(a, b)
xa−1(1− x)b−1, x ∈ (0,1),

Bµx,k =
B(a+ k, b)

B(a, b)
.

(32)Ymd(θ) =
Am

d

d−1
∑

n=0

sin(πmxn(θ)).

(33)Ymd =
(−1)m

πm

∞
∑

k=0

(−1)k

(2k+ 1)!
(πm)2k+1

Bµx,2k+1.

Ymd =
(−1)m

πm

∞
∑

k=0

(−1)k

(2k+ 1)!
(πm)2k+1 B(a+ 2k+ 1, b)

B(a, b)
,

(34)Ymd =
B(a+ 1, b)

B(a, b)
2F3

(

a+ 1

2
,
a

2
+ 1;

3

2
,
a+ b+ 1

2
,
a+ b

2
+ 1;−

(mπ)2

4

)

,
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and substitute them into Eq. (34) to obtain its estimator-form counterpart:

Up to this point, all quantities and relations regarding the DFT analysis of UPWM signals generated by 
stochastic inputs have been defined and derived. In the next section, experimental results are presented, dem-
onstrating the validity of the proposed model.

Experimental evaluation
In this section, the validity of the presented model is established through the demonstration of its predictive 
accuracy concerning:

• The effect of the observation window size on the side frequency components of the UPWM DFT.
• The accuracy of the closed-form formulas and their estimator-forms presented in “Closed-form formulas for 

common distributions” section, evaluated against the direct computational evaluations of the DFT.
• The effect of the distribution’s asymmetry on the even carrier harmonics.
• The application of the estimator-form formula of the truncated Laplacian distribution in the estimation of 

the DFT of a UPWM signal originating from a real speech signal.

All PCM signals used for the evaluations are sampled at 44.1 kHz and quantized with 8-bit resolution.

The effect of the observation window size
In “Random input sequences” section it was shown that the side frequency DFT coefficients Yl(θ) of a UPWM 
signal generated from an input sequence xd(θ) with i.i.d. RV xn(θ) have zero mean (Eq. 17) and a variance given 
by Eq. (19). This aspect is proved and demonstrated here by computational evaluation of the DFT of the sequence 
yn′ generated from random input signals xd(θ) with different distributions, particularly truncated normal, trun-
cated Laplacian and symmetric uniform with parameters Nσx = 0.1, Lbx = 0.05, Uax = 1

2 respectively, and the 
arcsine distribution.

To this end we are going to use two windows of size d1andd2respectively . Then, according to Eq. (19), the 
following relation holds:

where l1 = md1 + b1 and l2 = md2 + b2 respectively, and σ 2
Ymd+b

= E

[

∣

∣Ymd+b(θ)
∣

∣

2
]

.

In order to evaluate the ratio 
σ 2
vl2

σ 2
vl1

 , we assume a side frequency f  and the fact that RVs vli are given by:

However, it is easy to see that for the same frequency f  , the ratios bidi , i = 1,2 are equal, since:

and thus,

Hence, σ 2
vl1

= σ 2
vl2

 and from Eq. (34) we get:

α(θ) = µx(θ)

(

µx(θ)(1− µx(θ))

σ2x(θ)
− 1

)

,

b(θ) = (1− µx(θ))

(

µx(θ)(1− µx(θ))

σ2x(θ)
− 1

)

,

(35)

Ymd(θ) =
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,
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3

2
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(36)vli = sin
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1
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, i = 1, 2.
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To  c o m p u t a t i o n a l l y  e v a l u a t e  t h i s  r e d u c t i o n ,  l e t  u s  c o n s i d e r  t h e  v e c t o r 
Ymd+b(θ) =

[

Ymd− d
2+1(θ),Ymd− d

2+1(θ), . . . ,Ymd+ d
2
(θ)

]

 that contains d − 1 RVs Yl(θ) and use it for the estima-
tion of the variance σ 2

Ymd+b
 via its weighted squared l2 norm, i.e.:

The obtained results  are presented in Fig.   4,  where the out-of-band DFT spec-
tra Yl(θ) of the UPWM signals are shown for four (4) observation windows of duration 
d1 =

44,100
52

= 1764, d2 =
44,100

5 = 8820, d3 = 44,100, d4 = 220,500 = 44,100× 5 samples, corresponding to 
0.04, 0.2, 1 and 5 s, respectively. The total energy of the signals Etot = ||xd(θ)||

2
2 is kept constant for the results to 

be comparable. It is evident that the variance in the coefficients Yl on the side frequencies is noticeably reduced 
with increasing window size.

In general, the average variance on the side frequencies of any carrier harmonic m between two consecutive 
windows with the ratio of their lengths equal to a is reduced by a factor of a , or equivalently 20log10(a)dB . The 
average variance on the side frequencies around the 1st UPWM carrier harmonic, estimated via Eq. (37) and 
calculated via Eq. (19), for the four input signals computed for four window sizes with a = 5 , are given in Table 1.

Non-symmetric distributions
Here it is shown that asymmetry in the GPDF leads to the formation of UPWM DFT components on the even 
harmonics, as predicted by Eq. (23). To demonstrate this aspect, computational evaluations are presented for 5 

(37)σ̃ 2
Ymd+b

(θ) =
1

d − 1
||Ymd+b(θ)||

2
2.

Figure 4.  DFT spectra of UPWM signals generated from input signals with (a) truncated normal, (b) 
truncated Laplacian, (c) arcsine and (d) uniform distributions, evaluated for four (4) observation windows, 
d1 =

44,100

52
= 1764, d2 =

44,100
5

= 8820, d3 = 44,100, d4 = 220, 500 = 44, 100.5.

Table 1.  Estimated ( ̃σ 2
Ymd+b

(θ)) and calculated ( σ 2
YYmd+b

 ) variance of the side frequencies around 
the 1st UPWM carrier harmonic for four input signals with four different window sizes.

Signal/number of 
samples

σ̃
2

Ymd+b
(θ) vs σ̃ 2

Ymd+b

1764 8820 44,100 220,500

Equation (37) Equation (19) Equation (37) Equation (19) Equation (37) Equation (19) Equation (37) Equation (19)

Arcsine 3.74E−05 3.81E−05 7.78E−06 7.64E−06 1.49E−06 1.50E−06 2.99E−07 3.00E−07

Normal 5.00E−06 5.02E−06 9.84E−07 1.01E−06 2.03E−07 2.00E−07 4.10E−08 4.01E−08

Laplace 2.36E−06 2.60E−06 5.43E−07 4.97E−07 1.05E−07 1.03E−07 2.10E−08 2.06E−08

Uniform 2.82E−05 2.90E−05 5.77E−06 5.77E−06 1.17E−06 1.15E−06 2.40E−07 2.30E−07
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different input signals generated from the four-parameter beta distribution with different asymmetry levels. For 
the distributions, the following parameters were selected:

while the skewness µx,3 took the values:

For the signals, an observation window of 44,100 samples was used, corresponding to 1sec duration. Figure 5a 
shows the histogram of an input signal generated for µx,3 = 0.8 while Fig. 5b shows the DFT spectrum of the 
corresponding UPWM signal. It becomes evident that the skewed distribution exhibits prominent DFT coef-
ficients on the even carrier harmonics which are completely absent in the symmetric distributions (see “Non-
symmetric distributions” section). Moreover, Fig. 6 shows the magnitude (in dB) of the DFT coefficients on the 
4 first even harmonics for the 5 different UPWM signals, normalized with respect to the coefficient of the carrier 
fundamental. Generally, the coefficients are amplified with increasing skewness, with the only exception being 
the coefficient of the 8th harmonic for µx,3 = 0.8 , which could be due statistical error. Although the results for 
the particular distribution show an increase in the even harmonics with increasing skewness, no generalization 
can be made for other skewed distributions.

Closed-form formulas
In this subsection we demonstrate the validity of the closed-form formulas for the estimation of the DFT coef-
ficients presented in “Closed-form formulas for common distributions” section by comparing them with direct 
computational evaluations via DFT. For this purpose, the truncated normal, truncated Laplacian, uniform and 
arcsine distributions are used with the parameter values given in “The effect of the observation window size” 
section, as well as the two-parameter beta distribution presented in “Non-symmetric distributions” section 
with a = 1 and b = 3 . All the simulated signals have d = 44,100 samples. The results of the comparative evalua-
tions are summarized in Table 2 where “DFT” denotes the computational evaluations via DFT and “CFEst” and 

µ = 0, σ = 1,µx,4 = 3,

µx,3 = 0.2, 0.4, 0.6, 0.8, 1.

Figure 5.  (a) histogram of a signal xd with samples following a Pearson distribution with parameters 
µ = 0, σ = 1,µx,3 = 0.8,µx,4 = 3 and (b) DFT spectra of the UPWM signal generated from xd , where the even 
harmonics are denoted with cross markers.

Figure 6.  DFT coefficients (in dB) of the even carrier harmonics of five UPWM signals generated by 
an equal number of random input signals whose samples follow Pearson distributions with parameters 
µx = 0, σx = 1,µx,4 = 3 and µx,3 = 0.2, 0.4, 0.6, 0.8, 1.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4353  | https://doi.org/10.1038/s41598-024-54983-0

www.nature.com/scientificreports/

“CFF” denote the estimations and calculations obtained via the estimator-form and the closed-form formulas 
of “Closed-form formulas for common distributions” section, respectively. The values in Table 2 correspond to 
magnitude in dB of the DFT coefficients on the first 4 odd carrier harmonics (3, 5, 7 and 9) for the symmetric 
distributions and the first 4 harmonics (2, 3, 4, 5) for the beta distribution, normalized for each signal with 
respect to the coefficient of the fundamental frequency. From Table 2 it becomes evident that the estimations via 
the closed-form formulas and the estimator forms are in excellent agreement with the directly evaluated DFT 
coefficients, with deviations of less than 1.5 dB. This proves that, when the input signal’s samples are i.i.d. RVs 
with known distribution, the DFT spectra of the UPWM signal observed within a sufficiently large window can 
be estimated from the distribution’s statistical parameters, given an ergodic generating process.

It is important to repeat here that, while computational complexity of the typical DFT and FFT algorithms 
is O(D2) and O(Dlog(D)) , respectively, estimation of the UPWM spectra on the carrier harmonics via Eq. (12) 
can be done in linear time O(d) , where d,D = Mpd are the number of samples of the input and PWM signals, 
respectively. Of course, estimation via the closed-form formulas does not depend on d , considering that the 
statistical parameters of the underlying process are known. Otherwise, linear time is required for their estima-
tion from a realization of the process.

Application on a real speech signal
The truncated Laplacian distribution is commonly used to describe sparse signals e.g., speech signals among 
 others33–35. Consequent samples of speech signal are correlated and hence cannot be considered as i.i.d. RVs. 
Thus, Eq. (19) does not hold and the DFT components Yl(θ) of the side frequencies cannot be estimated from 
the statistics of the input signal. However, even in such a case, the carrier harmonics and particularly the odd 
harmonics which dominate the spectral energy of the out-of-band range, can be predicted by the presented model 
with sufficient accuracy. From Eq. (11) it can be seen that the Ymd(θ) do not depend on the particular sequence 
of xn(θ) but rather on their sum, so that any rearrangement of the variables in a non-stochastic manner that 
introduces dependency between the variables does not affect the value of the estimator.

To demonstrate this aspect, a female speech extract with 5s duration is used, taken from the Archimedes 
anechoic audio  library40. The histogram of the extract is calculated and fitted via a Laplace function, to determine 
the distribution’s width parameter. Then, the coefficients Ymd(θ) are estimated via Eq. (27) and the results are 
compared with the direct calculation of the UPWM signal’s DFT. Figure 7a shows the histogram’s envelope and 

Table 2.  Comparison of DFT coefficients directly computed via DFT (DFT), estimated by the estimator-form 
formulas (CFEst) and calculated via the closed-form formulas (CFF).

Signal

Harmonic order (α)

3 5 7 9

DFT CFEst CFF DFT CFEst CFF DFT CFEst CFF DFT CFEst CFF

Arcsine − 14.54 – − 14.04 − 21.3 – − 20.65 − 25.73 – − 25.01 − 29.20 – − 28.27

Normal − 13.02 − 13.01 − 12.97 − 24.46 − 24.39 − 24.27 − 37.95 − 37.73 − 37.48 − 53.83 − 53.79 − 53.38

Laplace − 11.05 − 11.05 − 11.05 − 17.87 − 17.89 − 17.88 − 23.47 − 23.50 − 23.48 − 28.28 − 28.32 − 28.30

Uniform − 19.19 − 19.09 − 19.09 − 28.14 − 27.96 − 27.96 − 33.87 − 33.80 − 33.80 − 38.39 − 38.17 − 38.17

2 3 4 5

Beta − 7.50 − 7.58 − 7.53 − 14.85 − 15.03 14.98 − 19.52 − 19.57 − 19.60 − 23.56 − 23.63 23.59

Figure 7.  (a) envelope and Laplace fitting curve of the histogram and (b) computationally evaluated DFT 
spectrum of a 5s female speech extract; (c) comparative estimation of the DFT coefficients via DFT of the 
UPWM signal and via the closed-form Laplace formula.
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the fitting curve of the first extract, while Fig. 7b shows the DFT spectrum of the respective UPWM signal. In 
Fig. 7b, the prominence of the odd carrier harmonics DFT components becomes evident. Even carrier harmon-
ics are also present, however, they have significantly less energy compared to the odd harmonics. Finally, Fig. 7c 
presents the comparative results of the DFT coefficients via DFT of the UPWM signal and via the closed-form 
formula of Eq. (27). It can be seen that the coefficients Ymd(θ) of the odd carrier harmonics are predicted by LYmd 
with high precision, demonstrating the applicability of the proposed analysis in real PWM systems.

Conclusions
This work proposed a mathematical framework for the analysis and design of PWM systems whose input signals 
can be modeled as i.i.d random sequences, by demonstrating that the resulting UPWM DFT spectrum in the 
out-of-band frequency range can be precisely estimated from the statistics of the input sequence. It also dem-
onstrated that this approach is applicable in real-world PWM systems with input signals such as speech, music 
or other communication signals. Particularly, first it was proven that the expected values of the DFT coefficients 
are consistent estimators of the true mean, with a zero value for all out-of-band frequencies except for the car-
rier harmonics. For random input signals whose moments can be expressed in terms of a few parameters of 
the distribution, such as the truncated normal, truncated Laplacian, uniform, arcsine and the asymmetric beta 
distribution, closed-form formulas were derived for the estimation of the carrier harmonics DFT coefficients. 
The results were validated by comparison to computational evaluations of the DFT of PWM signal, showing 
very good agreement.

Hence, the proposed method allows for precise estimation of the excessive out-of-band energy of UPWM 
signals generated from input sequencies of i.i.d. RV, solely based on the statistical characteristics of the RV. It 
is worth noting that in the presented case, estimation of the DFT components can be generally done in linear 
time O(d) as opposed to typical O(D2) of the DFT and O(D · log(D)) of the FFT. The theoretical interest of such 
a finding is complemented by significant practical interest due to the applicability of stochastic modeling of sig-
nals that constitute common inputs to PWM systems, e.g., speech, music, sonar and noise signals among others. 
The capability to derive closed-form formulas, indicatively demonstrated for the abovementioned distributions, 
can significantly reduce computational complexity and load. The postulated analysis can significantly facilitate 
hardware design and signal processing optimization of PWM systems, especially for the mitigation of the hazards 
and restrictions owed to the excessive out-of-band energy of the UPWM signals. Finally, input-output statistical 
correlation in other non-linear signal transformations will be investigated in the future.
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