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Deep learning‑based, fully 
automated, pediatric brain 
segmentation
Min‑Jee Kim 1, EunPyeong Hong 2, Mi‑Sun Yum 1*, Yun‑Jeong Lee 3, Jinyoung Kim 2 & 
Tae‑Sung Ko 1

The purpose of this study was to demonstrate the performance of a fully automated, deep learning-
based brain segmentation (DLS) method in healthy controls and in patients with neurodevelopmental 
disorders, SCN1A mutation, under eleven. The whole, cortical, and subcortical volumes of previously 
enrolled 21 participants, under 11 years of age, with a SCN1A mutation, and 42 healthy controls, 
were obtained using a DLS method, and compared to volumes measured by Freesurfer with manual 
correction. Additionally, the volumes which were calculated with the DLS method between the 
patients and the control group. The volumes of total brain gray and white matter using DLS method 
were consistent with that volume which were measured by Freesurfer with manual correction 
in healthy controls. Among 68 cortical parcellated volume analysis, the volumes of only 7 areas 
measured by DLS methods were significantly different from that measured by Freesurfer with 
manual correction, and the differences decreased with increasing age in the subgroup analysis. The 
subcortical volume measured by the DLS method was relatively smaller than that of the Freesurfer 
volume analysis. Further, the DLS method could perfectly detect the reduced volume identified by the 
Freesurfer software and manual correction in patients with SCN1A mutations, compared with healthy 
controls. In a pediatric population, this new, fully automated DLS method is compatible with the 
classic, volumetric analysis with Freesurfer software and manual correction, and it can also well detect 
brain morphological changes in children with a neurodevelopmental disorder.

Keywords  Dravet syndrome, Deep learning-based segmentation, Convolutional neural network, VUNO 
Med-DeepBrain

Neurodevelopmental disorders (NDD) are highly prevalent among children aged 3 to 17 in the United States, 
affecting approximately 17% of this population1. Recent advancements in genetic technologies have led to the 
identification of genetic causes in 15–53% of NDD cases2, but comprehensive phenotypic evaluation, including 
laboratory tests and neuroimaging, remains crucial for precise genetic diagnosis. Eventually, these evaluations 
provide insights into the underlying mechanisms and potential biomarkers associated with these disorders.

Since the advent of high-resolution, three-dimensional (3D) structural magnetic resonance imaging (MRI) 
of the human brain, brain morphometric analysis has been widely applied in various neurodevelopmental 
diseases3–6 and the features, such as regional volume and thickness, have been developed as biomarkers of 
disease states or treatment responses7,8. Additionally, repeated MRI scans can typically be made on the same 
individual, due to their non-invasive and radiation-free characteristics, enabling the visualization of longitudinal 
changes in normal brain development and the distinguishing of atypical trajectories in pediatric patients with 
neurodevelopmental diseases9,10.

To conduct brain morphometric analysis effectively in both research and clinical settings, precise segmen-
tation of T1-weighted brain MRI into anatomical regions is an essential component of quantitative analysis11. 
Given that manual delineation of structural parameters is both labor-intensive and prone to inter-rater variability, 
standardized and automated processing approaches such as mni_autoreg12, SPM13, Freesurfer14,15, and FSL16,17 
are widely used to label novel target images in adults. Nevertheless, the pediatric brain is substantially distinct 
from its adult counterpart. Consequently, these templates, predominantly derived from adult data, may not be 
ideally suited for pediatric applications11.

OPEN

1Department of Pediatrics, Asan Medical Center Children’s Hospital, Ulsan University College of Medicine, 88, 
Olympic‑ro 43‑Gil, Songpa‑Gu, Seoul  05505, South Korea. 2VUNO Inc., Seoul, South Korea. 3Department of 
Pediatrics, Kyungpook National University Hospital and School of Medicine, Kyungpook National University, 
Daegu, South Korea. *email: misun.yum@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-54663-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4344  | https://doi.org/10.1038/s41598-024-54663-z

www.nature.com/scientificreports/

Owing to these challenges, innovative methods are being incessantly developed to address the constraints 
inherent to existing template-based approaches. Recently, deep learning has emerged as a promising methodol-
ogy for precise brain segmentation18. Deep learning encompasses neural networks exceeding five layers, which 
facilitate the extraction of hierarchical features directly from raw images. Given their capability for autonomous 
learning, these networks demonstrate remarkable outcomes and broad generalizability when trained on exten-
sive datasets11,18–20. In the field of neonate and infant brain segmentation, including whole brains or lesions, 
convolutional neuronal networks (CNNs) are the most commonly used11. In this context, a state-of-the-art 
deep-learning based segmentation (DLS) methodology, named VUNO Med-Deep Brain, has been introduced 
in adult cohorts with Alzheimer’s disease21.

In a previous study conducted by our team, we utilized the Freesurfer software coupled with manual adjust-
ments to execute brain morphometric analyses. This yielded the first comprehensive findings on developmental 
brain alterations and volumetric disparities in regional structures among epilepsy patients harboring an SCN1A 
gene mutation22. The SCN1A gene (MIM#182389), responsible for encoding the alpha 1 subunit of the voltage-
gated sodium channel, has mutations that can lead to an array of neurodevelopmental disorders, including 
epilepsy23.

To ascertain the efficacy of the newly devised deep-learning based morphometric analysis for pediatric 
cohorts, we compared the structural parameters derived from the DLS method for healthy children aged under 
11 with those obtained from the Freesurfer software supplemented by manual corrections. For a more granular 
assessment of the age-specific accuracy of the DLS approach, we performed subgroup analyses focusing on three 
distinct age groups: under two years, between two to six years, and older than six years. Furthermore, to gauge 
the robustness of the DLS technique, we juxtaposed regional volumes between pediatric patients (below 11 years) 
with an SCN1A mutation and their healthy counterparts.

Results
Baseline demographics of patients and control group
Twenty-one patients with a SCN1A mutation and 42 healthy controls, previously selected and analyzed by our 
center, were re-analyzed in this study (age range; 2.0–10.5). To delineate the age-specific performance of the 
DLS method, we classified the control group into three different age subgroups: age ≤ 2 years (n = 12, 28.6%), 
2 < Age ≤ 6 years (n = 18, 42.9%), and 6 < Age ≤ 10 years (n = 12, 28.6%). The baseline demographics are shown 
in Table 1 of a previous study22.

Brain volume analysis in control group measured by two different methods
Whole‑brain volume analysis
The volumes of total brain, total gray matter, cortical gray matter, and total white matter measured by DLS 
method were not different from those measured by Freesurfer with manual correction. The volume of subcortical 
gray matter measured by DLS was significantly smaller, and the total cerebellum measured by DLS was larger 
than that measured by Freesurfer with manual correction methods. (Table 1 and Fig. 1).

After subgroup analysis according to age, the volume differences of the subcortical and cerebellar gray matter 
between the two methods were revealed to be consistent in all three subgroups.

Cortical parcellated volume analysis
Among the 68-parcellated areas measured by the two methods, volume differences were found in only 7 areas 
(Table 2). The volumes of the right caudal middle frontal, right frontal pole, left inferior parietal, left fusiform, 

Table 1.   Whole brain volume analysis between two methods, DLS and Freesurfer with manual correction 
methods in the control group. Volume were normalized by ICV and expressed in mL. The paired t test was 
applied. Bold font indicates statistical significance (p < 0.001). GM gray matter, WM white matter.

Parcellation 
region

Overall (n = 42, 100%) Age ≤ 2 (n = 12, 28.6%) 2 < Age ≤ 6 (n = 18, 42.9%) Age > 6 (n = 12, 28.6%)

DLS, mean
Free-surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value

Total brain 1127.1 1073.4 0.014 1076.8 1036.3 0.123 1120.4 1044.8 0.030 1187.3 1153.3 0.848

Total GM 610.4 701.8 0.239 606.9 695.0 0.127 612.8 685.9 0.141 610.2 732.6 0.019

 Cortical GM 566.3 547.6 0.006 565.0 545.4 0.012 569.1 540.2 0.135 563.5 560.8 1

 Subcortical 
GM 44.1 55.9  < 0.001 41.9 53.3  < 0.001 43.7 54.0  < 0.001 46.7 61.5  < 0.001

Total WM 358.9 348.2 0.025 323.9 321.7 1 354.2 335.8 0.086 400.9 393.3 0.35

Total cerebel-
lum 107.3 98.8  < 0.001 101.5 94.7 0.004 103.6 93.1 0.014 118.6 111.6 0.737

 Cerebellar 
WM 21.2 23.9  < 0.001 17.7 20.2 0.019 20.6 23.6 0.014 25.7 28.1 0.28

 Cerebellar 
GM 128.5 122.8  < 0.001 119.2 114.9  < 0.001 124.2 116.7  < 0.001 144.3 139.7  < 0.001

 Total ven-
tricle 13.3 14.1 0.01 12.7 13.0 1 13.6 14.2 0.039 13.7 14.9 0.135
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right lateral occipital, and right insular cortex were significantly smaller. However, the left parahippocampus 
volume was significantly larger when measured by DLS, than when measured by Freesurfer with manual cor-
rection methods. Subgroup analysis between the two methods exhibited a significant volume difference in the 
right insular cortex among the ≤ 2 years of age group.

Subcortical volume analysis
The measured volume of both thalami, both putamen, and left caudate were significantly different between those 
measured by the DLS method and those by the Freesurfer with the manual correction method (Table 3 and 
Fig. 2). In the ≤ 2 years age group, both thalami were significantly larger and the right putamen was significantly 
smaller in the volume measured by the DLS method, compared to that by Freesurfer with the manual correction 
method. These differences were also observed in volumes of the right thalamus in the 2 < Age ≤ 6 years group 
and the right putamen in the 6 < Age ≤ 10 years group.

Group comparison of each volume between patients with a SCN1A mutation and healthy con‑
trol measured by DLS
Whole‑brain volume analysis
After adjusting for the sex, age and ICV for each group, the volumes of the total brain, total gray matter, cortical 
gray matter, subcortical gray matter, and total white matter were found to be significantly smaller in the patient 
group than in the controls (Table 4 and Fig. 3A) as is consistent with a previous study22.

Figure 1.   Whole brain volume analysis in a 42 healthy control by the DLS method and Freesurfer with manual 
correction. (A) Whole brain volume of overall healthy controls (B) Whole brain volume of healthy controls with 
age ≤ 2 years (C) Whole brain volume of healthy controls with 2 < age ≤ 6 (D) Whole brain volume of healthy 
controls with age > 6 The blue dots showed the volume measured by Freesurfer with manual correction; The red 
dots showed the volume measured by the DLS method. **p-values < 0.001.
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Parcellation 
region

Overall (n = 42, 100%) Age ≤ 2 years (n = 12, 28.6%) 2 < Age ≤ 6 years (n = 18, 42.9%) Age > 6 years (n = 12, 28.6%)

DLS, Mean
Free-surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value DLS, mean

Free -surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value

Frontal

 Superior 
frontal gyrus, 
left

25.6 25.6 1 24.9 25.0 1 25.7 25.6 1 26.0 26.2 1

 Superior 
frontal gyrus, 
right

24.2 24.5 1 23.4 24.0 1 24.6 24.6 1 24.3 24.9 1

 Rostral mid-
dle frontal, 
left

18.8 19.0 1 18.6 19.1 1 18.8 18.5 1 18.8 19.8 1

 Rostral mid-
dle frontal, 
right

19.4 20.0 1 18.7 20.1 1 19.8 19.7 1 19.6 20.4 1

 Caudal mid-
dle frontal, 
left

7.2 6.9 1 6.8 6.7 1 7.4 7.0 1 7.4 7.1 1

 Caudal mid-
dle frontal, 
right

7.5 6.5  < 0.001 7.3 5.9 0.552 8.0 6.7 0.136 7.1 6.8 1

 Pars opercu-
laris, left 5.5 5.5 1 4.9 4.9 1 5.8 5.6 1 5.8 5.9 1

 Pars opercu-
laris, right 4.6 4.7 1 4.4 4.3 1 4.8 4.9 1 4.6 4.9 1

 Pars triangu-
laris, left 4.6 4.5 1 4.7 4.3 1 4.6 4.5 1 4.5 4.6 1

 Pars triangu-
laris, right 5.3 5.2 1 5.3 5.3 1 5.2 5.1 1 5.5 5.4 1

 Pars orbitalis, 
left 2.8 2.6 1 2.6 2.6 1 2.8 2.6 1 2.9 2.6 1

 Pars orbitalis, 
right 3.0 3.2 1 2.9 3.2 1 2.9 3.1 1 3.1 3.3 1

 Lateral 
orbitofrontal, 
left

9.2 8.5 0.014 9.1 8.5 1 9.3 8.3 1 9.3 8.9 1

 Lateral 
orbitofrontal, 
right

8.1 8.1 1 8.0 8.2 1 8.2 7.9 1 8.1 8.3 1

 Medial 
orbitofrontal, 
left

6.2 5.8 1 6.4 6.2 1 6.1 5.6 1 6.2 5.7 1

 Medial 
orbitofrontal, 
right

6.4 6.1 1 6.6 6.3 1 6.3 6.1 1 6.3 6.0 1

 Precentral, 
left 14.5 14.9 1 13.9 14.4 1 14.7 14.8 1 14.7 15.4 1

 Precentral, 
right 14.4 14.6 1 13.9 13.7 1 14.5 14.9 1 14.7 15.2 1

 Paracentral, 
left 4.1 4.2 1 3.9 4.0 1 4.2 4.3 1 4.3 4.5 1

 Paracentral, 
right 4.1 4.7 0.044 4.0 4.4 1 4.2 4.7 1 4.3 4.9 1

 Frontal pole, 
left 1.4 1.1 0.002 1.6 1.3 1 1.4 1.2 0.524 1.1 1.0 1

 Frontal pole, 
right 1.9 1.5  < 0.001 2.2 1.6 0.033 1.9 1.5 1 1.7 1.3 1

 Rostral 
anterior cin-
gulate, left

2.9 3.0 1 2.9 3.1 1 3.0 3.0 1 2.9 2.9 1

 Rostral 
anterior 
cingulate, 
right

2.2 2.3 1 2.1 2.3 1 2.2 2.2 1 2.3 2.5 1

 Caudal 
anterior cin-
gulate, left

1.8 2.0 1 1.7 2.0 1 2.0 1.9 1 1.7 2.0 0.218

 Caudal 
anterior 
cingulate, 
right

2.3 2.6 1 2.1 2.5 1 2.4 2.5 1 2.4 2.8 1

Parietal

Continued
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Parcellation 
region

Overall (n = 42, 100%) Age ≤ 2 years (n = 12, 28.6%) 2 < Age ≤ 6 years (n = 18, 42.9%) Age > 6 years (n = 12, 28.6%)

DLS, Mean
Free-surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value DLS, mean

Free -surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value

 Superior 
parietal, left 17.9 16.8 1 18.1 16.9 1 17.9 16.9 1 17.5 16.4 1

 Superior 
parietal, 
right

16.6 16.3 1 17.0 16.3 1 16.5 16.4 1 16.3 16.0 1

 Inferior 
parietal, left 16.3 17.0 1 17.4 17.2 1 15.2 16.3 1 16.9 17.8 1

 Inferior pari-
etal, right 21.8 19.4  < 0.001 21.7 19.6 0.128 22.1 18.8 0.235 21.7 20.2 1

 Supramar-
ginal, left 14.4 13.6 1 13.7 13.4 1 15.0 13.7 1 14.3 13.7 1

 Supramar-
ginal, right 11.6 12.8 0.004 11.0 12.9 1 11.7 12.7 1 12.1 12.9 1

 Postcentral, 
left 11.4 12.1 0.099 11.6 12.3 1 11.1 11.8 1 11.8 12.3 1

 Postcentral, 
right 11.1 11.9 0.256 11.3 12.2 1 10.9 11.7 1 11.3 12.0 1

 Precuneus, 
left 12.6 12.8 1 13.0 13.0 1 12.6 12.9 1 12.0 12.5 1

 Precuneus, 
right 13.4 12.9 1 14.2 13.2 1 13.4 12.9 1 12.7 12.5 1

 Posterior cin-
gulate, left 3.9 3.9 1 3.9 3.9 1 3.9 3.8 1 3.8 3.9 1

 Posterior 
cingulate, 
right

4.0 4.0 1 3.8 3.7 1 4.1 4.1 1 4.1 4.2 1

 Isthmus cin-
gulate, left 3.4 3.3 1 3.6 3.4 1 3.4 3.4 1 3.1 3.2 1

 Isthmus 
cingulate, 
right

3.3 3.2 1 3.6 3.4 1 3.3 3.2 1 3.1 3.0 1

Temporal

 Superior 
temporal, left 14.1 13.2 1 13.8 12.8 1 13.9 13.0 1 14.5 13.8 1

 Superior 
temporal, 
right

13.3 13.3 1 13.2 12.7 1 13.6 13.5 1 13.0 13.6 1

 Middle tem-
poral, left 12.4 12.2 1 12.0 12.0 1 12.4 11.6 1 12.8 13.1 1

 Middle tem-
poral, right 15.3 13.7 0.003 15.1 13.5 1 14.9 13.1 1 15.9 14.9 1

 Inferior tem-
poral, left 12.8 11.2 0.014 12.7 10.8 0.066 13.1 10.6 0.408 12.5 12.5 1

 Inferior tem-
poral, right 11.2 10.4 1 11.3 10.6 1 11.1 9.5 1 11.2 11.7 1

 Banks of the 
sts, left 3.0 2.8 1 2.9 2.9 1 3.1 2.8 1 3.1 2.9 1

 Banks of the 
sts, right 2.8 2.8 1 2.6 2.5 1 2.9 2.8 1 2.9 3.0 1

 Fusiform, left 12.4 11.1  < 0.001 12.5 10.4 0.079 12.6 11.0 0.323 11.8 11.7 1

 Fusiform, 
right 11.0 10.4 1 10.9 10.3 1 11.4 10.3 1 10.5 10.7 1

 Transverse 
temporal, left 1.5 1.5 1 1.5 1.5 1 1.6 1.5 1 1.6 1.4 1

 Transverse 
temporal, 
right

1.4 1.2 0.002 1.3 1.2 1 1.4 1.2 1 1.4 1.1 0.069

 Entorhinal, 
left 1.8 1.7 1 1.8 1.5 1 1.8 1.7 1 1.9 1.9 1

 Entorhinal, 
right 1.5 1.5 1 1.5 1.5 1 1.3 1.4 1 1.8 1.6 1

 Temporal 
pole, left 2.6 2.6 1 2.6 2.6 1 2.7 2.6 1 2.4 2.8 1

 Temporal 
pole, right 2.4 2.3 1 2.3 2.5 1 2.3 2.1 1 2.6 2.3 1

 Parahip-
pocampal, 
left

2.0 2.4  < 0.001 1.9 2.2 1 2.0 2.4 0.034 2.2 2.5 1

Continued
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Cortical parcellated volume analysis
The 34 cortical parcellated regions per hemisphere between the two groups; healthy control and patients with 
SCN1A mutation were compared (Table 4 and Supplementary Table 1). In comparison to heathy controls, patients 
showed significantly decreased volumes in both the lateral orbitofrontal, precentral, and inferior parietal, right 
isthmus cingulate, right middle temporal, left Banks of the STS, left parahippocampal, and right insular cortex 
compared to healthy control.

Subcortical volume analysis
A subcortical volume analysis was performed to compare the volumes of the subcortical structures (thalamus, 
caudate, putamen, pallidum, accumbens area) between the patients and the controls (Table 4, Supplementary 
Table 1 and Fig. 3B). The patients showed significantly smaller volumes of both the thalami, putamen, and cau-
date, and right pallidum than those of healthy controls.

Parcellation 
region

Overall (n = 42, 100%) Age ≤ 2 years (n = 12, 28.6%) 2 < Age ≤ 6 years (n = 18, 42.9%) Age > 6 years (n = 12, 28.6%)

DLS, Mean
Free-surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value DLS, mean

Free -surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value

 Parahip-
pocampal, 
right

2.0 2.1 1 2.0 1.9 1 2.0 2.0 1 2.2 2.3 1

Occipital

 Lateral 
occipital, left 14.6 13.1 0.004 15.1 13.2 1 14.9 12.6 0.008 13.6 13.6 1

 Lateral 
occipital, 
right

15.4 13.1  < 0.001 16.9 13.4 0.003 15.1 12.8 1 14.5 13.2 1

 Lingual, left 7.9 8.0 1 8.5 8.3 1 8.1 8.1 1 7.0 7.4 1

 Lingual, right 8.0 7.9 1 8.3 8.2 1 8.4 8.0 1 7.2 7.5 1

 Cuneus, left 3.4 3.7 1 3.6 4.0 1 3.5 3.8 1 3.3 3.4 1

 Cuneus, right 3.8 4.0 1 4.2 4.3 1 3.7 4.0 1 3.7 3.8 1

 Pericalcarine, 
left 2.5 2.5 1 2.7 2.7 1 2.6 2.5 1 2.4 2.3 1

 Pericalcarine, 
right 2.6 2.8 1 2.7 2.9 1 2.6 2.8 1 2.5 2.5 1

 Insular 
cortex, left 7.0 6.9 1 7.0 6.9 1 6.9 6.6 1 7.1 7.2 1

 Insular cor-
tex, right 7.2 6.9  < 0.001 7.2 6.8  < 0.001 7.1 6.5 0.601 7.4 7.4 1

Table 2.   Cortical volume analysis between the two methods, DLS and Freesurfer with manual correction 
methods in control group. Data are presented as differences between means. Paired t test and Bonferroni 
correction was applied. Bold font indicates statistical significance (p < 0.001).

Table 3.   Subcortical volume analysis between the two methods, DLS and Freesurfer with manual correction 
methods in control group. Volume were normalized by ICV and expressed in mL. Paired t test and Bonferroni 
correction was applied. Bold font indicates statistical significance (p < 0.001).

Parcellation 
region

Overall (n = 42, 100%) Age ≤ 2 years (n = 12, 28.6%) 2 < Age ≤ 6 years (n = 18, 42.9%) Age > 6 years (n = 12, 28.6%)

DLS, mean
Free-surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value DLS, mean

Free-surfer, 
mean p-value

Thalamus, left 7.2 6.7  < 0.001 6.9 6.3  < 0.001 7.2 6.5 0.047 7.6 7.6 1

Thalamus, 
right 7.3 6.5  < 0.001 7.0 6.2  < 0.001 7.3 6.4  < 0.001 7.7 7.1 0.002

Putamen, left 5.2 6.0  < 0.001 5.0 5.7 0.034 5.0 5.7 0.075 5.6 6.7 0.005

Putamen, 
right 5.0 6.0  < 0.001 4.8 5.8  < 0.001 4.8 5.7 0.012 5.4 6.7  < 0.001

Caudate, left 3.5 3.7  < 0.001 3.4 3.5 1 3.6 3.7 0.477 3.7 3.9 0.117

Caudate, 
right 3.6 3.7 0.012 3.4 3.6 1 3.6 3.7 1 3.7 3.9 0.021

Pallidum, left 1.9 1.8 1 1.8 1.9 1 1.9 1.8 1 2.0 1.9 1

Pallidum, 
right 1.9 1.6 0.002 1.7 1.6 1 1.8 1.6 0.492 2.0 1.8 0.013

Accumbens, 
left 0.7 0.7 1 0.7 0.7 1 0.7 0.7 1 0.7 0.7 1

Accumbens, 
right 0.6 0.7 0.002 0.7 0.7 1 0.6 0.7 0.782 0.6 0.8 0.123
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Group comparison of each volume between patients with a SCN1A mutation and healthy con‑
trol measured by DLS
In the assessment of our segmentation algorithm’s efficacy, we computed the Dice Similarity coefficient (DSC), 
along with precision and recall metrics, across whole, cortical, and subcortical brain regions as delineated in 
Table 5. Our findings revealed cortical gray matter showed relatively low performance compared to other whole 
brain areas. Notably, specific areas such as the frontal pole, entorhinal cortex, temporal pole, and nucleus accum-
bens exhibited suboptimal performance, with performance values falling below 0.7, in both cortical and sub-
cortical analyses.

Discussion
In pediatric populations, accurate brain segmentations of MR imaging can help find a diagnostic biomarker for a 
specific neurological disease, define a clinical course, or identify the underlying developmental patho-mechanism 
of various neurodevelopmental disorders24. However, accurate segmentation of pediatric brain MR imaging 
is challenging due to the reduced tissue contrast, increased noise, several partial volume effects, and ongoing 
white matter myelination25,26. This study aimed to demonstrate the performance of the DLS method for brain 
segmentation of MRI in a pediatric population aged under 11 years.

To investigate the accuracy of the DLS method in measuring regional brain volume, the volume of whole 
brain (Table 1 and Fig. 1), parcellated cortical volumes (Table 2), and segmented subcortical volumes (Table 3 

Figure 2.   Subcortical volume analysis in a 42 healthy control by the DLS method and Freesurfer with manual 
correction. (A) Whole brain volume of overall healthy controls (B) Whole brain volume of healthy controls with 
age ≤ 2 years (C) Whole brain volume of healthy controls with 2 < age ≤ 6 (D) Whole brain volume of healthy 
controls with age > 6 The blue dots showed the volume measured by Freesurfer with manual correction; The red 
dots showed the volume measured by the DLS method. **p-values < 0.001.
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Control mean (SD) Patients mean (SD) Difference between means (%) p-value

Whole brain volume analysis

 Total brain 1127.07 (155.73) 1041.66 (228.22)  − 7.8  < 0.001**

 Total GM 610.37 (6.878) 557.01 (11.17)  − 9.0  < 0.001**

  Cortical GM 566.30 (6.53) 516.36 (10.65)  − 9.1  < 0.001**

  Subcortical GM 44.07 (0.62) 40.66 (0.79)  − 8.0  < 0.001**

 Total WM 358.87 (.8627.97) 331.67 (10.63)  − 7.8  < 0.001*

 Total cerebellum 128.51 (2.59) 124.72 (3.28)  − 3.0 0.088*

  Cerebellar WM 21.21 (0.76) 20.78 (0.87)  − 2.1 0.413*

  Cerebellar GM 107.30 (1.90) 103.89 (2.50)  − 3.2 0.086

Left, difference between means (%) Left, p-value
Right, difference between means 
(%) Right, p-value

Cortical volume analysis

 Frontal

  Superior frontal gyrus  − 8.4 0.015  − 9.5 0.024

  Rostral middle frontal  − 10.3 0.045  − 12.2 0.016

  Caudal middle frontal  − 4.5 1  − 9.5 1

  Pars opercularis  − 13.2 0.154  − 8.0 1

  Pars triangularis  − 10.9 1  − 9.1 1

  Pars orbitalis  − 11.7 0.558  − 9.2 0.226

  Lateral orbitofrontal  − 13.1  < 0.001**  − 11.9  < 0.001

  Medial orbitofrontal  − 3.7 1  − 4.9 1

  Precentral  − 7.6  < 0.001**  − 8.2  < 0.001

  Paracentral  − 1.2 1  − 8.9 0.397

  Frontal pole  − 2.9 1  − 10.3 0.807

  Rostral anterior cingulate  − 18.2 0.032  − 15.4 0.179

  Caudal anterior cingulate  − 8.9 1  − 5.7 1

 Parietal

  Superior parietal  − 9.0 0.035  − 3.2 1

  Inferior parietal  − 12.0  < 0.001**  − 18.0  < 0.001

  Supramarginal  − 4.8 1  − 7.1 0.752

  Postcentral  − 3.1 1  − 7.1 1**

  Precuneus  − 10.7 0.169  − 11.8 0.062

  Posterior cingulate  − 10.1 0.296  − 10.1 0.445

  Isthmus cingulate  − 9.6 0.017  − 13.5  < 0.001**

 Temporal

  Superior temporal  − 7.6 1  − 6.9 1

  Middle temporal  − 11.8 0.368  − 14.0 0.001**

  Inferior temporal  − 7.0 1  − 2.8 1

  Banks of the STS  − 17.3  < 0.001  − 15.1 0.022

  Fusiform  − 8.8 0.553  − 8.4 0.984

  Transverse temporal  − 0.6 1  − 7.5 1

  Entorhinal  − 11.7 0.959  − 2.4 1

  Temporal pole  − 7.1 1  − 4.5 1

  Parahippocampal  − 16.0  < 0.001  − 9.4 0.162

 Occipital

  Lateral occipital  − 12.3 0.064  − 9.9 1

  Lingual  − 6.1 1  − 8.3 1

  Cuneus  − 7.3 1  − 8.5 1

  Pericalcarine  − 6.7 1  − 6.1 1

  Insular cortex  − 6.3 0.537  − 8.0  < 0.001

Subcortical volume analysis

 Thalamus  − 5.4 0.006  − 6.8  < 0.001

 Putamen  − 10.2 0.003**  − 9.6 0.005**

Continued
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and Fig. 2) were measured by a DLS method in healthy controls and compared to previously measured volumes 
using Freesurfer with a manual editing method.

Importantly, using the DLS method, the volumes of the total brain, total cerebral gray matter, cortical gray 
matter, and total white matter, were consistent with those measured by Freesurfer with manual editing (Table 1 
and Fig. 1). In particular, the DLS methods can successfully delineate the gray and white matter and parcellate the 
total cortical gray matter (Table 1 and Fig. 1) as the freesurfer did (Table 2) representing the good performance 
of DLS method for cortical volume analysis.

The volume of only seven area including right caudal, middle frontal, right frontal pole, left inferior parietal, 
left fusiform, left lateral occipital, right insular, and the left parahippocampal cortex, measured by the DLS 
method, were discordant with that measured by Freesurfer with manual correction. After a subgroup analysis, 
the differences were resolved in the Age > 2 years group.

Since CNN was first introduced in 198927, great interest in CNN’s ability of the neonate and infant brain 
segmentation were gained through two large-scale competitions using standardized open data sets: the Neonatal 
Brains Segmentation Challenge and the 2017 iSeg 6-month Infant Brain Magnetic Resonance Imaging Segmenta-
tion Challenge. They concluded that the CNN approach, using deep-learning methods, could solve the neonate 
and 6-month-old brain tissue segmentation with a respectable dice similarity coefficient of 72.5–73.5%6,28,29.

Recently, the UNC/UMN Baby Connectome Project (https://​iseg2​017.​web.​unc.​edu/​baby-​conne​ctome-​proje​
ct/) is in the process of identifying brain and behavioral development in typically developing infants across the 
first 5 years of life by analyzing structural segmentation and functional connectivity30. These data suggest that 
CNN can be applied to the segmentation of young child brains and that it is particularly effective in whole brain 
and cortical gray matter volume analysis. In addition, currently released deep learning-based, infant-dedicated 
cortical surface reconstruction pipeline, iBEAT V2.0 were successfully processed various imaging protocols/
scanners31.

However, there were volume differences between Freesurfer with manual editing, and the new DLS method in 
the cerebellum and subcortical gray matter, including both thalami and the right putamen. Regard to subgroup 
analysis, the volume differences were evident mainly in patients of age under two and also dissolved in older age 
groups upper two as cortical parcellated volume analysis. The Supplementary Fig. 1 provide several illustrative 
examples, highlighting enhancements in achieving consistent and accurate segmentation in specific brain areas 
using deep learning segmentation (DLS) methods. Notably, the examples include incorrect segmentation from 
subcortical gray matter (GM) to white matter (WM) (Supplementary Fig. 1A), a noisy boundary in cerebellar 
segmentation (Supplementary Fig. 1B), and smaller segmented volumes in the putamen and pallidum areas 
(Supplementary Fig. 1C and D), when measured by Freesurfer with manual editing. These findings imply that the 
DLS approach could be instrumental in addressing the challenges of precise segmentation of complex structures, 
which is a limitation observed with Freesurfer.

Traditionally, atlas-based methods32–34, which match intensity information between an atlas and target images, 
and pattern recognition methods35,36, which classify tissues based on a set of local intensity features, are the 
classical approaches to automated segmentation11. Unfortunately, these methods have been shown to provide 
inaccurate segmentation for pediatric brain37,38 due to an inappropriate template, customized to adult brains 
with low intensity contrasts and high shape variability of each regional structure, including the thalamus, hip-
pocampus, parahippocampal areas, and insular cortex. For these reasons, volume differences measured between 
these two methods can be observed in these areas. Additionally, small sample sizes with large dispersions also 
contribute to the volume differences measured between the two methods.

In investigating the ability to identify brain morphometric abnormalities in patients with a SCN1A mutation, 
we compared the volumes between patients and healthy controls using the DLS method (Table 4). In whole brain 
analysis, the volumes of total brain, total gray matter, cortical gray matter, subcortical gray matter, and total white 
matter were significantly decreased in patients with a SCN1A mutation and related epilepsy, compared to that 
of healthy control and these results were consistent with our previous study22. In addition to the cortical and 
subcortical areas which showed reduced volume in patients using Freesurfer software with manual correction22, 
the both thalamus, right pallidum, right lateral orbitofrontal, right paracentral, right inferior parietal, left Banks 
of the STS, left parahippocampal, and right insular cortex were significantly smaller in patients with SCN1A 
mutation related epilepsy compared to those of healthy controls in this study.

The banks of the STS, and parahippocampal cortex are subnetworks of default mode network (DMN) and 
the thalamus and insular cortex are correlated areas with DMN in studies with resting state functional MRIs39,40. 

Left, difference between means (%) Left, p-value
Right, difference between means 
(%) Right, p-value

 Caudate  − 10.4  < 0.001**  − 12.5  < 0.001**

 Pallidum  − 5.7 0.123  − 9.4 0.001

 Accumbens  − 6.5 1**  − 4.4 1**

Table 4.   Group comparison of whole brain, subcortical and cortical parcellated volumes by deep-learning 
based segmentation (DLS) method. General linear models were used to account for correlation by matching 
of age and gender. Bold font indicates statistical significance (p < 0.001) after Bonferroni correction. Volume 
were normalized by ICV and expressed in mL. GM gray matter, WM white matter, SD standard deviation. 
**p-values < 0.001, and *p-values < 0.05: the areas with significant differences between two group had been 
shown in previous study using FreeSurfer with manual correction method.

https://iseg2017.web.unc.edu/baby-connectome-project/
https://iseg2017.web.unc.edu/baby-connectome-project/
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These structural alterations of the DMN and DMN-associated areas, in patients with a SCN1A mutation, is 
consistent with the results of other studies22,41.

For cortical parcellation, FreeSurfer generates a white matter (WM) surface and pial surface for each hemi-
sphere. The WM surface is generated from a segmentation mask and a copy of the WM surface is deformed 
towards the cerebrospinal fluid (CSF)/Gray matter (GM) boundary, to eventually form a pial surface. The cortical 
surface is mapped to a spherical atlas and the probabilities for each cortical region are calculated with Bayesian 
estimations. As the parcellation pipeline includes intensive computation such as registration and surface recon-
struction, the whole processing time is around 7 h while it depends on the computation environment.

Since DeepBrain utilizes the fully trained deep-learning model for the parcellation pipeline that replaces 
manually designed algorithms such as cortical surface generation, the computation time can be significantly 
reduced. The total computation time for whole brain parcellation was less than 1 min, which is incomparably 
faster than traditional methods, such as FreeSurfer.

Despite several limitations, namely lack of validation using standardized open datasets or other datasets from 
multiple resources with dice coefficient, and a small number of patients, the deep-learning-based method with 
CNN could provide a key solution for accurate pediatric brain segmentation. Importantly, accurate and quick 
segmentation by CNN may identify the normal trajectories of developing brains, leading ultimately to the early 
detection and treatment of various neurodevelopmental diseases.

In a pediatric population, this new, fully automated DLS method is compatible with the classic, volumetric 
analysis with Freesurfer software and manual correction, and it can also well detect segmental brain volume 
change in children with a SCN1A mutation. Further validation using larger population data may confirm that this 
fully automated DLS method is a good and easy tool for accurate brain segmentations in pediatric populations.

Methods
Subjects
The 21 patients of epilepsy with a SCN1A mutation, who were under 11 years of age, and the 42 healthy con-
trols, who had participated in our previous study, were reinvestigated by the DLS method22. Patients of epilepsy 
with a SCN1A mutation were recruited from the pediatric neurology clinics of three medical centers in Korea: 
Asan Medical Center, Samsung Medical Center, and Seoul National University Children’s Hospital. We included 
patients who satisfied the following inclusion criteria: (i) epilepsy diagnosed by a pediatric neurologist; (ii) a 
genetically confirmed SCN1A mutation and (iii) a normal brain MRI. For each patient, two healthy control 
subjects matched in age and sex and without alleged neurologic deficits, were recruited.

MRI acquisition
MRI scans were obtained on a Philips Achieva 3.0 T scanner (Philips Healthcare, Eindhoven, The Nether-
lands) (n = 114) and Siemens MAGNETOM Verio 3.0 T scanner (Siemens AG, Erlangen, Germany) (n = 6). 
Three-dimensional whole brain T1 sequence imaging was acquired with the following image parameters: echo 
time (TE) = 4.6 ms, repetition time (TR) = 9.8 ms, flip angle (FA) = 8.08, field of view (FOV) = 224 × 224 mm, 
matrix = 256 × 256, slice thickness = 1  mm, sagittal images of the entire brain with in-plane resolution 
1.0 mm × 1.0 mm or TE = 5.1 ms, TR = 25 ms, FA = 30, FOV = 220 × 220 mm, matrix = 512 × 512, slice thick-
ness = 1 mm, sagittal images of the entire brain with in-plane resolution 1.0 mm × 1.0 mm on a Philips 3.0 T 
Achieva scanner. On the MAGNETOM Verio scanner, images were obtained with TE = 1.9 ms, TR = 1500 ms, 
FA = 9.0, FOV = 220 × 220 mm, matrix = 256 × 256, slice thickness = 1 mm, sagittal images of the entire brain 

Figure 3.   Group comparison of whole brain (A) and subcortical (B) parcellated volumes by deep-learning 
based segmentation (DLS) method. The blue dots showed the volumes of healthy controls; The red dots showed 
the volume of SCN1A patients **p-values < 0.001. 
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Dice coefficient Precision Recall

Total Healthy control SCN1A patients Total Healthy control SCN1A patients Total Healthy control SCN1A patients

Total brain 0.79 0.79 0.80 0.80 0.79 0.80 0.80 0.80 0.81

Total GM 0.80 0.80 0.80 0.81 0.80 0.81 0.80 0.80 0.81

 Cortical GM 0.78 0.77 0.78 0.78 0.78 0.78 0.79 0.78 0.79

 Subcortical GM 0.82 0.82 0.82 0.83 0.83 0.83 0.82 0.81 0.82

Total WM 0.95 0.95 0.95 0.94 0.94 0.95 0.96 0.96 0.96

Total cerebellum 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

 Cerebellar WM 0.87 0.87 0.87 0.89 0.89 0.88 0.86 0.85 0.87

 Cerebellar GM 0.92 0.92 0.92 0.90 0.90 0.91 0.94 0.94 0.93

Cortical volume analysis

 Frontal

  Superior frontal gyrus, left 0.87 0.87 0.88 0.88 0.88 0.89 0.86 0.86 0.87

  Superior frontal gyrus, right 0.87 0.87 0.88 0.86 0.86 0.86 0.89 0.88 0.89

  Rostral middle frontal, left 0.85 0.85 0.85 0.86 0.86 0.85 0.84 0.84 0.85

  Rostral middle frontal, right 0.83 0.83 0.84 0.89 0.89 0.89 0.78 0.78 0.79

  Caudal middle frontal, left 0.80 0.79 0.81 0.78 0.77 0.80 0.82 0.82 0.82

  Caudal middle frontal, right 0.78 0.79 0.77 0.73 0.73 0.73 0.85 0.86 0.82

  Pars opercularis, left 0.81 0.81 0.82 0.82 0.81 0.83 0.81 0.81 0.81

  Pars opercularis, right 0.77 0.78 0.75 0.81 0.81 0.80 0.74 0.75 0.71

  Pars triangularis, left 0.82 0.82 0.81 0.83 0.83 0.83 0.81 0.81 0.80

  Pars triangularis, right 0.82 0.82 0.82 0.80 0.80 0.79 0.84 0.84 0.85

  Pars orbitalis, left 0.76 0.76 0.76 0.81 0.81 0.81 0.72 0.73 0.72

  Pars orbitalis, right 0.77 0.77 0.75 0.83 0.84 0.82 0.72 0.73 0.70

  Lateral orbitofrontal, left 0.85 0.84 0.86 0.82 0.82 0.82 0.89 0.88 0.90

  Lateral orbitofrontal, right 0.84 0.83 0.84 0.79 0.79 0.79 0.89 0.89 0.90

  Medial orbitofrontal, left 0.76 0.76 0.77 0.77 0.76 0.78 0.76 0.76 0.77

  Medial orbitofrontal, right 0.78 0.78 0.79 0.78 0.78 0.77 0.80 0.79 0.81

  Precentral, left 0.84 0.83 0.86 0.83 0.82 0.85 0.85 0.84 0.87

  Precentral, right 0.84 0.85 0.82 0.84 0.85 0.82 0.84 0.86 0.82

  Paracentral, left 0.78 0.77 0.79 0.78 0.76 0.81 0.79 0.78 0.80

  Paracentral, right 0.77 0.77 0.77 0.80 0.79 0.83 0.75 0.76 0.73

  Frontal pole, left 0.65 0.65 0.65 0.76 0.75 0.78 0.58 0.59 0.57

  Frontal pole, right 0.66 0.67 0.66 0.78 0.77 0.80 0.59 0.60 0.58

  Rostral anterior cingulate, left 0.78 0.78 0.79 0.76 0.76 0.75 0.82 0.81 0.83

  Rostral anterior cingulate, right 0.76 0.76 0.75 0.75 0.76 0.73 0.77 0.77 0.78

  Caudal anterior cingulate, left 0.72 0.72 0.73 0.75 0.75 0.73 0.71 0.70 0.74

  Caudal anterior cingulate, right 0.74 0.73 0.76 0.80 0.78 0.82 0.71 0.70 0.72

 Parietal

  Superior parietal, left 0.83 0.82 0.85 0.82 0.80 0.85 0.84 0.84 0.86

  Superior parietal, right 0.81 0.80 0.83 0.79 0.78 0.82 0.84 0.84 0.84

  Inferior parietal, left 0.82 0.81 0.84 0.83 0.82 0.84 0.82 0.80 0.84

  Inferior parietal, right 0.83 0.82 0.84 0.85 0.85 0.86 0.81 0.80 0.82

  Supramarginal, left 0.81 0.81 0.83 0.83 0.82 0.85 0.80 0.79 0.81

  Supramarginal, right 0.82 0.83 0.81 0.85 0.86 0.85 0.80 0.81 0.79

  Postcentral, left 0.81 0.80 0.83 0.82 0.81 0.84 0.80 0.79 0.82

  Postcentral, right 0.79 0.79 0.77 0.79 0.80 0.78 0.78 0.79 0.77

  Precuneus, left 0.84 0.84 0.85 0.81 0.80 0.83 0.89 0.88 0.89

  Precuneus, right 0.83 0.83 0.84 0.80 0.79 0.81 0.87 0.87 0.88

  Posterior cingulate, left 0.79 0.78 0.80 0.77 0.76 0.79 0.80 0.80 0.82

  Posterior cingulate, right 0.78 0.77 0.78 0.74 0.75 0.74 0.82 0.81 0.83

  Isthmus cingulate, left 0.79 0.78 0.79 0.83 0.83 0.83 0.75 0.75 0.76

  Isthmus cingulate, right 0.76 0.75 0.76 0.82 0.82 0.82 0.70 0.70 0.72

 Temporal

  Superior temporal, left 0.82 0.82 0.82 0.80 0.80 0.80 0.85 0.84 0.85

  Superior temporal, right 0.85 0.85 0.86 0.81 0.82 0.81 0.90 0.89 0.91

  Middle temporal, left 0.77 0.77 0.78 0.71 0.72 0.70 0.85 0.84 0.87

Continued
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with in-plane resolution 1.0 mm × 1.0 mm. Prior to data processing, all raw T1 sequencing images were visually 
inspected for common MR T1 weighted imaging artifacts.

Image analysis
We analyzed T1-weighted MR images using two automated segmentation software, VUNO Med-DeepBrain 
(version 1.0.1, VUNO Inc., Seoul, South Korea)42,43 and FreeSurfer (version 5.3.0, https://​surfer.​nmr.​mgh.​harva​
rd.​edu)42,43. FreeSurfer is a publicly available software for brain analysis which provides automated brain seg-
mentation and cortical parcellation. It uses a probabilistic atlas generated from manually segmented brain MR 
images to train a Bayesian segmentation algorithm.

VUNO Med-DeepBrain is based on DLS system, unlike the atlas-based segmentation methods used in Free-
Surfer and NeuroQuant. The DLS system provides quantitative information, which includes the volume of 104 
regions and cortical thickness of 68 cortical regions (34 for each hemisphere) from the T1-weighted brain MRI, 
and white matter hyperintensity (WMH) regions from the T2-weighted brain MRI. The DLS system is designed 
using in-house segmentation model with convolutional neural networks (CNNs) with dilated convolution layers 

Dice coefficient Precision Recall

Total Healthy control SCN1A patients Total Healthy control SCN1A patients Total Healthy control SCN1A patients

  Middle temporal, right 0.81 0.81 0.82 0.77 0.78 0.77 0.86 0.84 0.88

  Inferior temporal, left 0.72 0.72 0.71 0.70 0.71 0.68 0.74 0.74 0.75

  Inferior temporal, right 0.74 0.73 0.76 0.72 0.71 0.74 0.77 0.76 0.79

  Banks of the sts, left 0.68 0.68 0.67 0.68 0.70 0.66 0.68 0.67 0.70

  Banks of the sts, right 0.71 0.69 0.73 0.71 0.69 0.75 0.71 0.71 0.72

  Fusiform, left 0.73 0.74 0.73 0.76 0.75 0.77 0.72 0.72 0.71

  Fusiform, right 0.76 0.75 0.77 0.79 0.78 0.81 0.73 0.73 0.74

  Transverse temporal, left 0.77 0.77 0.77 0.73 0.73 0.73 0.81 0.81 0.82

  Transverse temporal, right 0.76 0.75 0.77 0.77 0.77 0.77 0.76 0.75 0.77

  Entorhinal, left 0.63 0.62 0.64 0.67 0.66 0.70 0.60 0.60 0.60

  Entorhinal, right 0.62 0.62 0.62 0.56 0.55 0.56 0.74 0.75 0.71

  Temporal pole, left 0.66 0.66 0.67 0.63 0.62 0.63 0.72 0.72 0.73

  Temporal pole, right 0.64 0.63 0.66 0.67 0.67 0.67 0.62 0.60 0.65

  Parahippocampal, left 0.77 0.76 0.78 0.83 0.83 0.84 0.72 0.71 0.73

  Parahippocampal, right 0.76 0.75 0.76 0.83 0.82 0.84 0.70 0.70 0.71

 Occipital

  Lateral occipital, left 0.79 0.79 0.81 0.77 0.76 0.77 0.83 0.82 0.85

  Lateral occipital, right 0.78 0.78 0.78 0.69 0.69 0.69 0.89 0.89 0.90

  Lingual, left 0.79 0.79 0.80 0.75 0.74 0.75 0.85 0.85 0.86

  Lingual, right 0.80 0.80 0.81 0.79 0.79 0.79 0.81 0.81 0.83

  Cuneus, left 0.74 0.73 0.76 0.71 0.70 0.73 0.78 0.77 0.80

  Cuneus, right 0.75 0.75 0.75 0.77 0.76 0.77 0.73 0.73 0.73

  Pericalcarine, left 0.72 0.71 0.74 0.72 0.70 0.76 0.73 0.72 0.73

  Pericalcarine, right 0.74 0.73 0.75 0.67 0.65 0.69 0.84 0.83 0.84

  Insular cortex, left 0.84 0.84 0.84 0.81 0.81 0.80 0.88 0.87 0.89

  Insular cortex, right 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.86

 Subcortical volume analysis

  Hippocampus, left 0.85 0.85 0.86 0.86 0.86 0.86 0.85 0.84 0.86

  Hippocampus, right 0.86 0.86 0.85 0.84 0.85 0.83 0.88 0.88 0.88

  Thalamus, left 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.89

  Thalamus, right 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.90

  Putamen, left 0.84 0.84 0.84 0.91 0.91 0.91 0.79 0.79 0.79

  Putamen, right 0.86 0.86 0.87 0.94 0.94 0.94 0.80 0.79 0.81

  Caudate, left 0.88 0.88 0.89 0.92 0.92 0.93 0.85 0.84 0.86

  Caudate, right 0.88 0.88 0.88 0.87 0.87 0.87 0.89 0.89 0.89

  Pallidum, left 0.76 0.77 0.75 0.75 0.76 0.72 0.78 0.78 0.78

  Pallidum, right 0.79 0.79 0.78 0.78 0.79 0.77 0.80 0.80 0.79

  Accumbens, left 0.71 0.70 0.73 0.69 0.68 0.70 0.75 0.74 0.77

  Accumbens, right 0.64 0.64 0.66 0.77 0.76 0.78 0.56 0.56 0.57

Table 5.   Mean dice score coefficient (DSC), precision, and recall values between two methods, DLS and 
Freesurfer with manual correction methods in control, SCN1A patients, and total patients. GM gray matter, 
WM white matter.

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
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instead of max-pooling to minimize feature loss of small brain regions during spatial dimension reduction. 
The model was originally trained with adult MR images, but we fine-tuned the model with additional pediatric 
brain images obtained from OpenfMRI dataset44,45. Fine-tuning dataset consists of 249 images (female: 156, 
male: 143, age: 5.01–19.22, σ = 4.33). The input image comprised a conformed T1-weighted brain MRI and the 
outputs are segmented brain regions mask and associated volumes of 104 regions in total. The CNNs was trained 
using ADAM optimizer and generalized dice loss function. The DLS system also includes a 3D CNN model that 
provides the intracranial volume segmentation, which was used to normalize the volume measurements for 
statistical analysis.

The total processing time including image preprocessing and normalized volume retrieval was about 1 min 
on the minimum computational requirement setting (CPU: 16 GB, GPU: RTX2080Ti 11 GB). Although the 
model was trained with both 3 T and 1.5 T images, exploiting 3 T MR images was recommended to acquire 
more accurate segmentation.

Statistical analysis
We compared the absolute volume differences of healthy controls measured by two methods using the paired 
t-test. For multiple comparisons, a Bonferroni correction was applied, and p < 0.001 was considered significant 
for the whole brain, the 10 subcortical, and 34 cortical volumes.

The adjusted volumes ( Volumeadj ) were used for comparisons between the control and patient groups by the 
DLS method, in order to adjust the total (ICV). Volumeadj signifies the linearly adjusted volume calculated as 
Volume − β(ICV − ICVmean) where ICVmean is the mean ICV of the each group and the parameter was fixed to 
minimize the covariance of the Volumeadj and ICVs in each group46.

We fitted linear models with the interceptor term and the group indicator (healthy control vs. SCN1A patients) 
as covariates and used generalized least squares to estimate regression coefficients. The errors were allowed to be 
correlated with unconstrained parameters. After the Bonferroni correction for multiple comparison, a p < 0.001 
was considered significant for the whole brain, the 10 subcortical, and 34 cortical volumes.

To determine the spatial overlap of the structures, we conducted Dice score coefficient (DSC), precision, 
and recall analysis between manual and automated segmentation methods. Dice Score can be defined as twice 
the total overlapping area of the predicted mask and the ground truth divided by the sum of the total number 
of tumor pixels (i.e. pixel value 1 [foreground]) in both the predicted mask and the ground truth). The value of 
DSC ranges from 0, indicating no spatial overlap between structures, to 1, indicating complete overlap47.

Other metrics used require pixel-wise evaluation of the ground truth and the predicted masks. True positive 
(TP) can be defined as the total number of positive pixels (belonging to the tumor) in the ground truth which 
are correctly predicted, True negative (TN) is the total number of negative pixels (belonging to the background) 
in the ground truth which are correctly predicted negative, False positive (FP) is the total number of negative 
pixels which are falsely predicted as positive pixels. Precision can be defined as the ratio of the total number of 
pixels predicted as positive to the total number of actual foregrounds. Recall is the ratio of the total number of 
correctly predicted foregrounds to the total number of actual foregrounds.

Ethical approval and consent of participate
The study protocol was reviewed and approved by the Institutional Review Board of the University of Ulsan 
College of Medicine (No. 2014-0405), and informed consent was waived because of the retrospective nature of 
the study. The Study was conducted in accordance with the Declaration of Helsinki.

Data availability
The data that support the findings of this study are available on request from the corresponding author. The data 
are not publicly available due to privacy or ethical restrictions.
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