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Materials informatics in the development of organic light-emitting diode (OLED) related materials 
have been performed and exhibited the effectiveness for finding promising compounds with a desired 
property. However, the molecular structure optimization of the promising compounds through the 
conventional approach, namely the fine-tuning of molecules, still involves a significant amount of 
trial and error. This is because it is challenging to endow a single molecule with all the properties 
required for practical applications. The present work focused on fine-tuning triazine-based electron-
transport materials using machine learning (ML) techniques. The prediction models based on localized 
datasets containing only triazine derivatives showed high prediction accuracy. The descriptors from 
density functional theory calculations enhanced the prediction of the glass transition temperature. 
The proposed multistep virtual screening approach extracted the promising triazine derivatives 
with the coexistence of higher electron mobility and glass transition temperature. Nine selected 
triazine compounds from 3,670,000 of the initial search space were synthesized and used as the 
electron transport layer for practical OLED devices. Their observed properties matched the predicted 
properties, and they enhanced the current efficiency and lifetime of the device. This paper provides 
a successful model for the ML assisted fine-tuning that effectively accelerates the development of 
practical materials.

The data-science driven development of novel functional materials has attracted attention and has been promoted 
for its cost-effectiveness and exhaustiveness1–4. However, the difficulty of the systematic data accumulation 
and the localization of informatics projects in organic electronics have limited the employment of data-driven 
approaches5,6. Furthermore, data-driven approaches for the molecular fine-tuning is still under development. 
Herein, we report a model case of a materials informatics (MI) project which focuses on achieving the coex-
istence of multiple superior properties in a single molecule. By using the step-by-step screening method that 
synergistically combines machine learning (ML) and scientists’ knowledge, we have successfully fine-tuned 
electron-transport compounds for use in organic light-emitting diode (OLED) devices.

Recently, MI strategies have been studied in the field of organic electronics5–8. These strategies have enabled 
the development of novel molecules with desired properties through data science-assisted structure-property 
relationship prediction. Computational virtual screening methods have been used to explore novel organic 
semiconductors9–11, fluorescent molecules12,13, and emitter molecules for OLEDs14–17. In a previous study, Aspuru-
Guzik et al. reported a high throughput screening method that used an ML prediction model based on large 
datasets between molecular structures and density functional theory (DFT) calculations to calculate rate con-
stants of reverse intersystem crossing17. Although the sophisticated DFT calculations can contribute to effective 
property prediction, simulations in long-range and dynamic molecular behavior require significant computa-
tional resources. Especially, the carrier mobility and glass transition behavior can be simulated; however they 
require large-scale molecular dynamics calculations18–22. Therefore, it is difficult to achieve the high-throughput 
prediction of the essential properties of the carrier transport materials, next to the light emitting layer in OLED 
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devices8. The fact implies that traditional supervised ML is still a powerful prediction tool for exploring the car-
rier transport materials. In the present work, the prediction of electron mobility and glass transition temperature 
was achieved via typical ML methods using hundreds of experimental datasets. The present prediction models, 
enhanced by low-level DFT calculations, enabled virtual screening to find molecules with versatile superior 
properties.

OLEDs are practical and promising technologies for manufacturing vivid and colorful displays used in daily 
life23–26. To enhance the external quantum efficiency and driving voltage characteristics, the development of 
electron-transport materials is crucial25,26. Among these materials, 1,3,5-triazine derivatives play an important 
role in the component materials of OLED devices27–32. Their electron negativity and planar nature lead to the high 
electron mobility and durability in practical usage as an electron-transport layer (ETL). In the previous works, 
the molecular design of triazine derivatives was studied to find compounds with higher electron mobility29–32. 
However, the general strategy to enhance electron mobility is yet to be fully understood because complicated 
intermolecular interactions and molecular geometry affect carrier transport. Additionally, a higher glass transi-
tion temperature is strongly required for long-term durability33–35 even though the thermodynamic behavior of 
triazine derivatives remains unclear. Furthermore, practical device fabrication requires appropriate conduction 
band levels and applicability to the vapor deposition method25,26,35. The balancing these properties often presents 
a challenge beyond human intelligence. If ML-based techniques can realize the high-throughput predictions of 
the required properties, the exploration of novel materials will be dramatically accelerated.

Here, we present a model case of data-driven fine-tuning to discover novel triazine derivatives. We propose 
a hierarchical combination, including empirical knowledge from scientists, DFT calculations, and ML to select 
compounds (Fig. 1). The resulting triazine derivatives showed enhanced properties as the ETL and functioned 
as a practical component for highly efficient and durable OLED devices.

Methods
Device fabrication
All reagents were used after sublimation purification. A glass substrate on which transparent indium-tin oxide 
(ITO) electrode was printed as a stripe pattern was prepared. The substrate was washed with isopropyl alcohol 
and then its surface was treated by irradiation of ultraviolet rays. The area of the test devices was 4 mm2 (2 mm 
× 2 mm). The glass substrate was placed in a vacuum deposition chamber, and the inner pressure was reduced 
to 1.0 × 10−4 Pa. Each layer was formed by vacuum deposition. The detailed procedure and molecular structures 
of the device components are described in the supporting information (SI).

Characterization
The thermodynamic property of the triazine compounds was measured by differential scanning calorimetry 
(DSC, Hitachi High-Tech, DSC7020). Typically, 5 mg of the sample loaded in sealed aluminum pan was main-
tained at 360 °C for 5 min. Then, the melted sample was cooled by putting it on dry ice to obtain the glass-state 
sample. The DSC chart of heating process was measured at a rate of 10 °C min−1 rate in range from 40 °C to 350°C. 
The fabricated electron-only-device (EOD) and the OLED device were tested by an electrometer (Keithley 2400). 
Luminous properties of the OLED device were evaluated by applying a direct current and using a luminance 
meter (Topcon Technohouse, BM-9). The current density and emission intensity were recorded at various ter-
minal voltages. To test the long-term durability, the current density was kept to the initial value corresponding 
to 1000 cd m−2 of the emission intensity.

Figure 1.   Schematic illustration of the proposed virtual screening.
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Data handling and machine learning process
The analysis of the V–J curve based on the space-charge-limited current (SCLC) model36 and the time-dependent 
degradation analysis of the OLED devices were automated using Visual Basic for Applications code running on 
Excel interface. The sum of errors between the experimental and the simulated values was minimized by select-
ing of unknown variables. The generalized reduced gradient method (nonlinear) was used for the optimization 
algorithm. The data handling and machine learning to predict structure-property relationships were performed 
by using PyCaret library running on Python 3.6.1 environment37. The descriptors of the molecular structures 
were generated by using Mordred38. To obtain three-dimensional (3D) optimized structures and lowest unoc-
cupied molecular orbital (LUMO) levels, DFT calculation was performed on B3LYP/6-31G(d) level theory.

Results and discussion
Training dataset of triazine compounds
The initial structure-property datasets used in this study consisted of electron mobility (μe) data (N = 202), that 
were measured by using EOD, and glass transition temperature (Tg) data (N = 551) of various triazine deriva-
tives. The initial datasets were shared from TOSOH Corporation. In the EOD fabrication, the triazine derivatives 
were co-deposited with 8-quinolinolato lithium (Liq) for smooth carrier injection (Fig. 2a). Since the ETL in the 
device contained only 50 wt% of the triazine compounds, the observed μe were lower than that measured under 
typical conditions. Therefore, the mobility values in the dataset did not represent those of the pure compound 
but the mixture composed of ETL compound and Liq. The μe was calculated from the V–J curve under the 
assumption of the SCLC model Eq. (1)36 (Fig. 2b). The following variables were used as constants in the fitting: 
the temperature (T), the thickness of the active layer (L), and relative permittivity (ε) were 25°C, 70 nm, and 3.6 
for all the compounds, respectively.
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Figure 2.   (a) Schematic architecture of the electron only device (EOD) used in the present study. (b) V–J curve 
of the EOD including D3. The VWF was estimated from the fitting curve based on SCLC model (red hashed 
line). (c) DSC chart of D3. (d) Examples of the initial dataset comprising of the various triazine derivatives.
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By optimizing two variables, μe and the voltage loss corresponding to the working function (VWF), the error 
between the experimental and simulated chart was minimized. When multiple EOD data were measured for the 
same compound, the average value was used in the final dataset. The μe values ranged from 0.1 to 60 ×10−6 cm2 
V−1 s−1 (Fig. S2). The accuracy of the proposed μe measurement procedure was calculated from the same device 
setup (using D3 as ETL material, N = 32). The mean absolute error (MAE) and coefficient of variation (CV) is 
±3.3 × 10−6 cm2 V−1 s−1 and 32%, respectively. The accuracy of the EOD measurement was regarded as the target 
level of the prediction model.

The Tg data of the compounds were measured by DSC. To obtain the glass state, the samples were placed on 
sealed aluminum pan and heated above their melting point before being rapidly cooled. In the typical DSC chart 
of the heating process, a baseline shift and endothermic peak were observed (Fig. 2c). The former corresponds 
to the Tg while the latter corresponds to the melting point. The Tg values distributed between 80 °C and 180 °C 
(Fig. S2). For example, the training dataset were composed of triphenyl triazine derivatives with various terminal 
groups such as phenyl, naphthyl, phenanthryl and pyridyl groups (Fig. 2d).

Prediction models
To construct supervised ML models, Mordred was used to calculate the descriptors of the compounds38. Mordred 
is a descriptor-calculation software widely used in cheminformatics research; it can generate 1,613 descriptors 
from 2D molecular structure. The descriptors comprised the numbers from counting atoms/bonds/rings, graph-
based indices, and numerous autocorrections, etc. Several descriptors were removed because of zero-distribution 
and multicollinearity (Fig. 3a). As a result of the initial cleaning, the numbers of the descriptors were narrowed 
to a range of 50–90, depending on the threshold values. After tuning to improve the accuracy of the prediction 
model, the correlation coefficient cutoff threshold was set to 0.7 during preprocessing. The ML model training 
was performed by using the PyCaret library37, which contains powerful and low-code functions to perform typi-
cal ML methods. The initial dataset was separated into training and test data at a ratio of 70:30 and prediction 
models using various algorithms were trained with default values of hyperparameters. Thereafter, we selected 
five expecting algorithms based on the initial MAE scores of the test data (Fig. S3). The hyperparameters of the 
training models based on the selected algorithms were optimized by 5-fold cross-validation. The best prediction 
model was determined by considering predicted vs. experimental plot of each model and the gap between MAEs 
of the training and test data. The prediction accuracy was primarily evaluated by the MAE score and compared 
to the corresponding measurement accuracy.

For the prediction of μe, four linear regression models and ten tree-based models were adopted based on the 
PyCaret library (Fig. S4). The number of descriptors was reduced to 20 by principal component analysis (PCA) 
method to address the challenge of the small amount of the training data, after trying several values. The cumula-
tive proportion of the components was 0.84 in the condition. Through the tuning process of the hyperparameters, 
the random forest model was obtained with an MAE score of 3.4 × 10−6 cm2 V−1s−1 (Table 1 and Fig. 3b). Even 

Figure 3.   (a) Schematic pipeline representing the descriptor generation and prediction model construction. 
(b–d) Predicted-experimental plots of the machine learning models. (b) Random forest model for µe (c) Extra 
tree model for Tg(2D) (d) Extra tree model for Tg(3D).
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though the test data plots in the high-mobility region were scattered in the predicted vs. experimental plot, the 
predicted and experimental μe were consistent in the range of 1–30 × 10−6 cm2 V−1 s−1. Since the MAE value is 
comparable to the accuracy of the μe measurement, we used the resulting model for the virtual screening. The goal 
of this work is to discover practical materials with enhanced properties through fine-tuning the existing materials. 
Thus, the superior performance for the existing triazine derivatives included in the initial datasets was required to 
accurately predict the properties of related triazine derivatives, which are among the neighboring search spaces.

ML-based Tg prediction was performed by the same procedure for the μe prediction (Fig. 3a). The number 
of descriptors was reduced to 20 by PCA method, for the same reason as the μe prediction. After optimizing 
the hyperparameters on the Extra tree algorithm, the training model based on the 2D descriptors, Tg(2D) 
model, showed an MAE of 5.8 °C (Fig. 3c). While the value did not reach the measurement accuracy, we added 
descriptors that could be calculated from the 3D molecular structure. The optimized structures were obtained 
from DFT calculations on B3LYP/6-31G(d) level theory. Mordred can generate 1,826 descriptors from the 3D 
molecular structure. The number of the features was reduced using the same procedure. The remaining descrip-
tors contained partial surface area descriptors, geometric radius descriptors, and molecular representations of 
structures based on electronic diffraction (3D-MoRSE) descriptors. The 3D descriptors derived from the DFT-
assisted optimized structures improved the prediction accuracy. The MAE score reduced from 5.8 °C to 3.4 °C 
(Fig. 3d and Table 1). Both the Tg(2D) and Tg(3D) models were used for the screening, considering the trade-off 
between the computational cost and the prediction accuracy.

The ML model for Tg prediction exhibited the best performance among that for low-molecular weight organic 
compounds related to OLED. While several earlier works reported a quantitative structure-property relationship 
and ML models for Tg prediction, their accuracy was lower than that of the present work (Table S1)8,16,39–41. The 
use of ML techniques is a simple and effective way to improve the accuracy of the Tg prediction. According to 
the difference between predicted the Tg(2D) and Tg(3D) value, 3D structure of the compounds contributes to 
the enhanced prediction accuracy. The superior prediction accuracy of the Tg(3D) model was confirmed by the 
comparison based on the same train/test separation (Table S1). Despite the low-level theory used in the DFT 
calculations, the 3D descriptors can still play important roles in Tg prediction. Our intention here is that the 
low-cost DFT calculations have great potentials to produce the effective descriptors. With a small target search 
space, it is not reasonable to hesitate to perform DFT calculations, considering the trade-off between the cost 
and their usefulness.

Efficient discovery of new compounds by virtual screening
The proposed multistep screening consists of four steps (Fig. 4a). Since we focused on the coexistence of the 
sublimability, high μe, upper Tg, and appropriate LUMO level, the step-by-step filtering of the candidates was 
applied from the low-cost property prediction to the high-cost one. After that, among the promising candidates, 
those with low synthesis cost and high novelty were manually selected.

The virtual compound library was created by combining core triazine structures and terminal functional 
groups42. The 4 types of the core triazine structures containing bis(4-biphenyl) triazine moiety were selected 
(Fig. 4b). The 1,2,3-substitution type structures were not considered because of their large steric hindrance. 
The aromatic groups consisting of up to 18 carbon atoms were used as the terminal groups. They were curated 
from a partial structure composing the initial datasets. The pyridyl groups were included to ensure the diversity 
of LUMO levels and intermolecular interactions. The anthracenyl, pyrenyl, and benzanthracenyl groups were 
excluded because they would cause unwanted fluorescence in OLED devices. The number of the generated ter-
minal groups was 1,087. The entire virtual compound library contained almost 3,670,000 triazine derivatives.

On the first step of the screening, the search space was simply reduced by the upper limit of the molecular 
weight. In our experimental knowledge, the sublimation temperature of the triazine derivatives with a molecular 
mass of 750 g/mol and more are expected to exceed 370 ℃, which is higher than their thermal decomposition 
temperature. Furthermore, lower sublimation temperatures are required in a mass production process compared 
to a lab-scale synthesis to shorten the process. The first step screening by the molecular weight filter extracted 
5,503 compounds from the whole search space.

On the second step, the μe and Tg(2D) predictions were performed by the ML models. The selected threshold 
values of the predicted μe and Tg(2D) were 10 × 10−6 cm2 V−1s−1 and 120 °C, respectively. The threshold value for 
the μe was derived from the top 40 percentile values in the initial experimental datasets and that of the Tg(2D) 
was a required value owing to the sealing process on the device fabrication. The ML-based screening revealed 
that 2000 triazine derivatives were expected to acquire efficient electron-transport properties, of which about 
1,474 compounds (0.03% of the whole search space) showed promising glass-state stability (Fig. 4c,d). Then, 
the optimized coordinate of the resulted candidates was calculated by the DFT method on the B3LYP/6-31G(d) 
level theory by Gaussian 16.

Table 1.   Characteristic values of the machine learning models.

Data size Algorithm Data accuracy MAE (training) MAE (test) R2

μe/cm2 V−1s−1 202 RandomForest  ± 3.3 × 10−6 3.0 × 10−6 3.4 × 10−6 0.87

Tg(2D)/ °C 551 ExtraTree  ± 3.0 5.5 5.8 0.88

Tg(3D)/ °C 551 ExtraTree  ± 3.0 3.2 3.4 0.93
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Figure 4.   (a) Core triazine structures for building the virtual molecular library. R indicates attachment points 
for R-group enumeration. (b) Schematic representation of the terminal groups for building the virtual molecular 
library. R indicates attachment points for the core triazine structure. (c) Attrition diagram of the screening 
process. (d) Relationships between the predicted μe and the predicted Tg(2D). Compounds with lower scores 
(blue) were dropped, and others (orange) were passed. (e) Relationships between the calculated LUMO level and 
the predicted Tg(3D). Compounds with lower score (orange) was dropped and others (purple) were passed.
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On the third step, the number of compounds was narrowed by the DFT based feature and Tg(3D) predic-
tion (Fig. 4e). We screened the candidates based on their LUMO level since the LUMO level close to that of 
the hole-blocking layer was required to reduce the interface resistance. The cutoff value of the LUMO level was 
upper −1.91 eV due to −1.81 eV for the hole blocking layer material (Fig. S1). In addition, 340 compounds were 
excluded because of their low predicted Tg(3D), although the predicted Tg(2D) of the candidates in this step were 
higher than 120 °C. The difference between the Tg(2D) and Tg(3D) represents the effectiveness of DFT-based 
3D descriptors. Although 1,474 candidates on the second screening step were predicted to exhibit an μe and Tg 
of more than 10 × 10−6 cm2 V−1 s−1 of μe and 120 °C of Tg, the number of candidates was narrowed down to 212 
by screening using the LUMO levels and Tg(3D), which reduced the number by 76%.

On the final step, we employed human-guided decision-making to reduce the search space. The 212 most 
promising compounds were listed up and shared this list with relevant stakeholders. Domain experts assessed 
these candidates based on several criteria, including synthesis difficulty, synthesis cost, structural diversity, and 
novelty. In the decision making, the compounds that required expensive reagents, such as organic tin reagents 
for the Stille coupling reaction and highly substituted pyridines, were removed because the goal of our project 
is to explore practical compounds that can be produced at low cost. The compounds containing the high-cost 
moiety were removed through the assessment. The examples of excluded molecules and the reasons not to be 
selected were described in the SI (Table S4).

Finally, 9 molecules were selected with the accomplished consensus for synthesis and characterization as 
ETL materials.

Synthesis and properties of the novel compounds
The selected 9 compounds were synthesized (Schemes S1–S9, Figs. S5–S6 in the SI). The obtained μe and Tg data 
were compared to the predicted ones (Table 2). Although several compounds, (T3-3317, T1-4799 and T1-5248) 
had a gap between the predicted and experimental data, the other 6 compounds showed good consistency with 
predicted and experimental μe. The Tg(3D) values also showed similar values to the experimental Tg, except for 
some compounds (T2-6104, T2-6970, and T4-442). The comparison of the predicted and experimental values 
demonstrates the usefulness of the ML models in the application of unknown compounds.

Our intention here is the improved efficiency in the discovery of new practical compounds. The efficiency 
ratio, i.e. superior 5 compounds per synthesized 9 compounds, was considered that the proposed screening 
method can find compounds with desired properties with the 56% expectation. In the initial experimental 

Table 2.   Molecular structures of the synthesized triazine compounds, their calculated LUMO level, predicted 
μe, experimental μe, Tg(2D), Tg(3D), and experimental Tg.

Structure

ID T2-7668 T2-6104 T2-6970 T2-7191

LUMO level/eV  − 1.88  − 1.86  − 1.86  − 1.90

Predicted μe × 10−6/cm2 V−1 s−1 20.8 19.7 22.8 13.3

Experimental μe × 10−6/cm2 
V−1 s−1 26.0 19.6 34.9 17.5

Predicted Tg(2D)/ °C 122 130 127 121

Predicted Tg(3D)/ °C 121 122 137 129

Experimental Tg/ °C 120 129 158 132

Structure

ID T4-442 T4-2766 T3-3317 T1-4799 T1-5248

LUMO level/eV  − 1.85  − 1.85  − 1.86  − 1.84  − 1.91

Predicted μe × 10−6/cm2 V−1 s−1 10.6 12.6 11.3 13.9 14.8

Experimental μe × 10−6/cm2 
V−1 s−1 14.0 16.5 24.7 6.4 4.3

Predicted Tg(2D)/ °C 132 127 125 126 128

Predicted Tg(3D)/ °C 130 121 122 121 122

Experimental Tg/ °C 137 116 116 120 118
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datasets used to build the ML model, the 54 compounds in whole 202 compounds exhibited both upper than 
10 × 10−6 cm2 V−1 s−1 of μe and 120 °C of Tg. The ratio, only 27%, can be regarded as the expectation value of the 
human driving development without informatics-based techniques. Therefore, the acceleration of the fine-tuning 
was achieved by the proposed screening method. Although the local and limited data accumulated in commercial 
companies provide domain-specific machine learning models, that can contribute to detailed molecular design 
on practical development.

T2-6970, exhibiting the highest µe, the highest Tg, and a suitable LUMO level, was applied to the OLED device, 
and its properties as ETL material were evaluated (Fig. 5a, S4, and Table S3). We selected D3 as a reference ETL 
compound for the property comparison because D3 could be regarded as a representative ETL material and 
had been used in the practical OLED devices43. Compared to D3, the current density of the T2-6970 device 
increased at the same terminal voltage (Fig. 5b). The superior electron mobility of T2-6970 resulted in lower 
terminal voltage of the device. The maximum current efficiency of the T2-6970 device was higher than that of 
the D3 device. The improvement should originate from the change in the carrier balance factor since the higher 
electron mobility of T2-6970 leads the recombination region to near the hole-transporting layer. The long-term 
durability was evaluated by monitoring the efficiency degradation over time (Fig. 5c). The efficiency degradation 
rate was analyzed by fitting the time dependence plot with the dual time-constant model Eq. (2)35. The observed 
current efficiency over time (E) was indicated by the short and long-term efficiency degradation: E0 is the initial 
efficiency, t is time, a is ratio of short/long-term factors, τS is a time constant, and τL is another time constant.

Three variables, a, τS, and τL were optimized to minimize the error between the experimental and simulated 
efficiency values. The long-term time constant, τL, was 4,750 and 4,114 hours for the T2-6970 and D3 devices, 
respectively. The efficiency degradation rate seems to be suppressed due to the higher Tg of T2-6970, which 

(2)E = E0

(

a exp

(

t

τS

)

+ (1− a) exp

(

t

τL

))

.

Figure 5.   (a) Schematic architecture of OLED device used in the present study. (b) Relationship of terminal 
voltage and current density (circles), and current efficiency (squares) on OLED devices. (c) Time-efficiency plot 
of OLED devices on constant current mode maintaining the initial current density. The initial current density 
was corresponding to 1000 cd m−2 of the emission intensity. The simulated lines, green for and yellow for T2-
6970 and D3, respectively, were calculated from the fitting of the time-dependent degradation model34.
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is intended to prevent undesired crystallization in the device. Since the threshold value in the screening was 
determined according to practical use, T2-6970 is a very promising material with suitable properties for multiple 
aspects. Whereas the existing triazine compounds with large π-conjugated LUMO and appropriate LUMO levels 
have been explored to enhance electron-transport properties, we successfully found a fine-tuned molecular 
structure through a hierarchical virtual screening approach. Moreover, high-performance ETL materials can be 
efficiently examined using the proposed methods as shown in Fig. 1.

Conclusion
A virtual screening method was applied to find novel triazine derivatives for ETL materials in OLEDs. By using 
a typical ML method, the prediction accuracy was comparable to the measurement accuracy (an µe and Tg of 3.4 
× 10−6 cm2 V−1 s−1 and 3.4 °C, respectively). The descriptors from DFT calculations enhanced the prediction of 
Tg. To fine-tune and obtain triazine derivatives with suitable properties for multiple aspects, a screening scheme 
combining the predicting models and experimental knowledge was designed. The promising triazine deriva-
tives with the coexistence of higher µe and Tg were successfully extracted from the proposed virtual compound 
library. The resulting fine-tuned compound, T2-6970, exhibited high current efficiency and a long lifetime in the 
practical OLED device. The present work proposes that the ML-assisted hierarchical virtual screening method 
is useful for fine-tuning of molecular-based materials. Further approaches to analyze the datasets, such as the 
clustering techniques to extract effective molecular structures, are ongoing to discover future molecular designs.

Data availability
The synthesized compounds and property data in this study are included in this article. The initial datasets for 
the prediction models were managed in Tosoh Corporation.
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