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High‑order asymptotic methods 
provide accurate, analytic solutions 
to intractable potential problems
Alexander W. Wray 1* & Madeleine R. Moore 2

The classical problem of determining the density and capacity of arrays of potential sources is studied. 
This corresponds to a wide variety of physical problems such as electrostatic capacitance, stress in 
elastostatics and the evaporation of fluid droplets. An asymptotic solution is derived that is shown to 
give excellent accuracy for arbitrary arrays of sources with non-circular footprints, including polygonal 
footprints. The solution is extensively validated against both experimental and numerical results. We 
illustrate the power of the solution by showcasing a variety of newly accessible classical problems that 
may be solved in a rapid, accurate manner.
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We examine the classical mathematical problem of solving the three-dimensional Laplacian mixed boundary 
value problem

where the potential cS(x, y) is specified, and S = ∪kSk is a domain in the z = 0 plane, where the Sk are flat, disjoint, 
simply-connected components of the domain, termed the sources, as shown in Fig. 1. The problem is to determine 
the density σk and capacity Ck for each source,

Suitably dimensionalized, the density corresponds to a variety of physical situations (see Chapter 1 of Ref.1 
and the many references therein) including heat flux in thermostatics2,3; charge density in low conductivity 
electrostatics and charge flux in high conductivity electrostatics4; diffusive liquid flux through a membrane5; 
evaporative flux of droplets6; imbibition flux into porous layers7; transmission in magnetic polarizability8; the 
stress imposed by stamps on linear elastic media9; diffusion across the surface of nanobubbles and nanodroplets10; 
and the growth of ice crystals11 among other applications.

Accordingly, the problem has been much studied: the first solution for a single, circular source was given by 
Weber in 187312, and it has since been the subject of major books1,13 and reviews6,14. However, despite over 150 
years of attention, few exact closed-form solutions are known: only those for a circular disk12,15 and an ellipse16 
(and solutions for non-flat sources17–19). There have been attempts to provide solutions for more general planar 
shapes, including approximate formulations20, and asymptotic solutions for monochromatic source boundaries21. 
In addition, solutions have been determined for both the density and capacity for arrays of multiple circular 
sources22–24.

Unfortunately, in practice, sources typically have footprints with complex polychromatic shapes, and rarely 
occur in isolation. This has, to date, meant that Eq. (1) must be tackled using time-consuming numerical meth-
odologies such as the boundary element method (BEM)25 or the finite element method (FEM)21,26. Unfortunately, 
the singular behaviour of the density at the boundaries ∂Sk of the sources has meant that in even the simple 
case of two circular sources, FEM was not reliably accurate enough to assess the accuracy of analytical results22, 
significantly limiting the scale of accessible systems.

(1)∇2c = 0, lim
|x|→∞

c = 0,

{

c|z=0 = cS(x, y), (x, y) ∈ S
cz |z=0 = 0, (x, y) /∈ S

,

(2)σk = −
∂c

∂z
for (x, y) ∈ Sk , Ck =

∫∫

Sk

σk dA.
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Here, we present a novel solution to this issue by determining an explicit solution for general arrays of sources 
with star-convex domains. While formally only valid close to circularity, the solutions are tested extensively 
against both experiments and numerical computations to demonstrate validity even far from this limit. As rep-
resentative examples, we demonstrate that this can for the first time provide accurate solutions to long-standing 
problems in electrostatics, droplet evaporation and printing problems among others.

Results
As shown in Fig.  1, we consider N sources with centres (xk , yk) and domains Sk with boundaries 
r = ak(θ) = āk(1+ ǫfk(θ)) in the plane z = 0 , where (r, θ) are polar coordinates relative to the centre of source 
k; āk is the average contact radius of droplet k normalized by the average contact radius of droplet k = 1 ; and 
0 < ǫ ≪ 1 . Note that hence ā1 = 1 . While in the problem of an isolated source we present results for the case 
k = 1 , accommodating āk �= 1 is a simple matter of rescaling. The distance between the centres of sources k and 
n is rk,n.

The potential c(r, θ , z) satisfies the potential problem Eq. (1) in the upper half plane. This problem may be 
recast in a Green’s function formulation and we may then exploit the smallness of the parameter ǫ to find an 
asymptotic solution for the density and capacity. This procedure is described in the Supplementary Information 
(SI). While trivially generalisable, the solution for the density when cS ≡ 1 is

where σ I
i  is the density of source i in isolation (see Eqs. (9), (11), (20), (30) in the SI), and S(r, θ; i, j) is the shield-

ing of source i due to source j (see Eq. (38) in the SI).
Note that the capacity Ci in the presence of other sources, which is required to evaluate S and hence σi , may 

be determined from

as shown by Ref.24, where CI
i  is the capacity of source i in isolation, determined from σ I

i .
In principle, the solutions given by Eqs. (3) and (4) are only valid for large rk,n and small ǫ , that is, when the 

sources are far apart and almost circular. However, as we shall demonstrate below, the solutions prove robust 
even when both are of order unity.

In the following suite of example applications, where possible we compare against exact or experimental 
results. Where numerical validation is required, we solve the problem using COMSOL27, as described by Ref.21.

Single source problems
We shall first illustrate the veracity and strength of Eqs. (3) and (4) for a single source. In the interests of brevity, 
all suffices denoting source number are suppressed in this section.

(3)σi = σ I
i


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�
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Figure 1.   Schematic showing notation used in the mathematical description. Two sources occupy Si , i = k, n , 
with boundaries denoted by ai . The source centres are denoted by (xi , yi) and polar coordinates (r, θ) are defined 
in relation to the centre of Sk . The distance and angle between the centres are denoted by rk,n, θk,n , respectively.
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Capacity of an isolated source
The capacity of an isolated source is a common quantity of interest in electrostatics, where the source is an elec-
trode termed the capacitor, the density is the charge distribution, and the capacity is the electrostatic capacitance: 
the total charge on the capacitor4. Capacitors are ubiquitous in modern electronics due to their utility in contexts 
including power conditioning and energy storage28.

Unfortunately, as capacitance must be determined by solving a problem of the form Eq. (1), it suffers the afore-
mentioned lack of analytic solutions. This has led to significant effort, both experimental29 and numerical9,30–33, 
to determine the capacitance of various shapes of electrode. Even approximate solutions for the simple case of a 
square electrode are still an ongoing area of interest34.

To this end, as we shall demonstrate, the asymptotic solution Eqs. (3) and (4) represents a step change in the 
accuracy of analytic expressions for the capacitance. In order to quantify the accuracy of the capacitance pre-
dicted by Eqs. (3) and (4), a dimensionless coefficient g depending only on the shape of the source is defined via

where A is the area of the domain20,34. For a square electrode, Ref.29 gives an experimental value of g = 0.37532 , 
COMSOL gives a numerical value of g = 0.368 , and several approximate values exist in the literature: Ref.34 
offers g = 0.36± 0.01 , Ref.20 offers g = 0.3612 , Ref.32 offers g = 0.3363 and Ref.30 offers g = 0.3613 . Our new 
solution Eq. (3) gives g = 0.367 , which lies within the bounds prescribed by Ref.34 and is closest to the COMSOL 
result (an error of 0.25%). All these values differ somewhat from the experimental value of Ref.29, likely due to 
a combination of finite electrode thickness effects and experimental measurement error. In particular, the 2% 
error between COMSOL and experiment is therefore a threshold below which a model might reasonably be 
considered exact for practical purposes.

In applications, electrodes are often rectangular rather than square. Therefore, in Fig. 2 we show the absolute 
relative error of Eqs. (3) and (4) and the approximate expressions of Refs.20,30 compared to COMSOL for the coef-
ficient g, for varying eccentricities e of rectangle. We find Eqs. (3) and (4) give excellent agreement, surpassing 
the accuracy even of models designed specifically to accommodate rectangular geometries30.

This provides a stringent test of Eqs. (3) and (4) due to the presence of sharp corners, and increasing deviation 
from circularity with eccentricity—other tests of footprints that are smoother and/or closer to circularity find, 
as anticipated, even better agreement with the exact solutions.

Density of an isolated source
In many contexts, the spatial variation of the density is crucial. For example, an accurate expression for the 
density affords a rapid way of computing the potential anywhere in space via the Green’s function formulation 
of Eq. (1). Densities for several shapes are given in Fig. 3. These examples have deliberately been selected as ones 
that test the limits of Eq. (3) due to their significant non-circularity and sharp corners. We see strong agreement 
in the density contours for each shape (alongside < 1% error in g in each case). Shapes with less acute corners, 
such as pentagons, give even better results, and corresponding plots yield results for which COMSOL and Eq. 
(3) are indistinguishable.

(5)1 =
C

2πg
√
A
,

Figure 2.   Absolute relative error in the capacitance for a rectangular electrode of eccentricity e, according 
to Eq. (3) (solid line), Fabrikant’s approximation20 (dashed line) and Solomon’s approximation30 (dotted 
line) compared to numerical results from COMSOL. Notably, the two approximations from the literature are 
specifically derived for rectangular contact lines, yet perform substantially worse than Eqs. (3) and (4).
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(a)

(b)

(c)

Figure 3.   Density as predicted by asymptotics (dashed lines) and COMSOL (solid lines) from (a) a square 
domain ( g = 0.368 ; 0.25% error); (b) an irregular domain ( g = 0.371 ; 0.977% error); (c) a star-like domain 
( g = 0.407 ; 0.76% error).
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Of particular note in Fig. 3 is the change in shape of the density contours as we move from the edge of the 
source towards its centre. Near the boundary, the contours are roughly the same shape as the boundary itself, 
while near the centre, the contours are closer to circular or elliptical. This is in stark contrast to the approximate 
solution of Ref.20, which gives contours that are always scaled versions of the boundary and illustrates the neces-
sity of the higher-order corrections in the solution Eqs. (3) and (4) presented herein. A similar finding for a 
source with a monochromatic boundary was discussed in Ref.21.

In fact, our explicit solution allows for a deeper investigation of the behaviour of the shape of contours close 
to the centre of the source. Suppose that the contact line profile has the Fourier series

where M ≥ 2 , and the j = 1 term may be eliminated by a suitable choice of coordinate origin within the source. 
Then, an asymptotic expansion as ǫ, r → 0 of the density of an isolated source, σI , as given by Eqs. (9), (11) and 
(20) in the SI gives

Thus, we see that if the contact line geometry is such that the coefficients a2 or b2 in the Fourier series Eq. 
(6) are nonzero, then the contours of the density exhibit O(ǫ) perturbations from circularity, and thus appear 
elliptical close to the origin. Otherwise, they are circular up to O(ǫ2).

Application to the coffee‑ring effect in evaporating droplets
As a motivating example of the utility of the density, we examine the coffee-ring effect in thin, non-circular, 
solute-laden droplets. Due to applications varying from microscale patterning to DNA mapping to blood spatter 
analysis35,36, this field has attracted significant experimental and numerical attention37–42. However, most previ-
ous analytical attempts were confounded by the absence of a suitable expression for the evaporative flux (i.e. the 
density) and have thus concentrated on simple geometries such as axisymmetric or elliptical droplet footprints. 
The existence of the asymptotic solution Eq. (3) now opens up a new approach for these more complex problems.

We follow the formulation of Ref.23, whereby the solute is dilute so that transport occurs purely via advec-
tion. For thin droplets, the depth-averaged flow velocity ū , the liquid pressure p and the droplet free surface h 
are given by

where α = 1/
∫∫

H dA and the extinction time of the droplet is tf = 1/
∫∫

σ dA . Driven by the dominance of 
capillarity, the scaled free surface profile H(r, θ) satisfies the Young-Laplace equation

with suitable regularity conditions at the origin. The scaled pressure may be determined from the thin film 
equation

where n is the outward-pointing normal to the pinned contact line.
Ignoring all effects of finite particle size and jamming, the streamlines are time-independent in the drop-

let and hence coincident with the pathlines43. Hence, once the liquid has fully evaporated, the mass M(θc) of 
residue accumulated at the contact line between θ = 0 and θ = θc is the total initial solute located between the 
streamlines originating from the stagnation point within the droplet and finishing at θ = 0 and θ = θc . The sol-
ute residue density may then be found by evaluating D = dM/ds , where s is the arc length around the contact 
line23. This may be used as a measure of the strength of the coffee-ring effect. While the residue density can be 
computed analytically given a suitable asymptotic expression for H, in order to test the behaviour of Eq. (3) in 
isolation, H is computed numerically, and determination of the residue density reduces to simple quadrature.

As a stringent test of our asymptotic solution, we compare predictions of the residue density with experi-
mental deposit results from Fig. 3b in Ref.41, which considers a droplet of coffee with a triangular contact line. 
In particular, the fact that Fig. 3b of Ref.41 does not exhibit saturation at any point (i.e. the pixels never have a 
lightness of exactly zero, indicating non-zero transmittance throughout the footprint of the droplet) means that 
the density can be determined via the Beer–Lambert law21. To minimise experimental noise, the extracted data 
is averaged with itself rotated by 2π/3 and 4π/3 , as well as the reflection thereof. Note that, as the total mass of 
residue is unknown, this introduces one multiplicative fitting factor. This is chosen to scale the total residue in 
Ref.41 to coincide with the total residue in the analytical predictions.

(6)f (θ) =
M
∑

j=2

Bj(θ), Bj(θ) = aj cos(jθ)+ bj sin(jθ),

(7)σ =
2

π

(

1+
r2

2
− ǫB2(θ)+ O(ǫ2, r3)

)

as r, ǫ → 0.

(8)

ū = −
H2

3α(1− t/tf )
∇P,

p = −
1

α3(1− t/tf )3
P,

h = α(1− t/tf )H ,

(9)∇2H = −1, H|r=a(θ) = 0,

(10)∇ · (H3∇P) = σ − (α/tf )H , H3∇P · n
∣

∣

r=a(θ)
= 0,
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We now compare this data to the thin-droplet model with our asymptotic solution for σ . The droplet free 
surface profile is found by solving Eq. (9) numerically and is shown in Fig. 4a. With this in hand, the streamlines 
may be calculated from Eqs. (8) and (10), and are shown in Fig. 4b. Finally, we may use calculated streamlines 
to calculate the residue density D given in Fig. 4c alongside the experimental data. The agreement is remarkably 
good, especially considering that our solution is based on a nearly-circular assumption and, moreover, the model 
does not take into account solutal diffusion44,45, jamming18, or the finite contact angle46, which may increase 
accuracy even further.

Multiple source problems
Capacities of multiple sources
In many industrial applications, it is desirable to examine the evaporation rate of extremely large arrays of 
sources47–50. For small arrays (O(10) sources), we may realistically use FEM packages such as COMSOL. For 
larger arrays this approach rapidly becomes impractical due to prohibitively slow speeds and infeasible memory 
requirements. This can be alleviated by using accurate reduced-order models such as Eq. (4), which when solved 
directly can comfortably handle O(104) sources.

However, industrial problems can be many orders of magnitude larger. We examine the illustrative example 
of the manufacture of OLED screens in which the sources are printed pixels, the evaporation of which is both 
the rate-limiting manufacturing step and the critical factor determining defect rate51. What is more, ultra-high 
definition screens have O(108) pixels52. It is therefore instructive to determine an efficient way to solve Eq. (4) 
for large arrays.

For very large arrays, a natural approach is to neglect edge effects as a first approach and model the system 
as appearing locally like a periodic array. However, this formulation presents a mathematical problem as it does 
not converge: neighbouring pixels decrease in effect as 1/r but increase in number as r2 . In fact, this fails even 
for an infinite line of pixels, analogous to the two-dimensional single source problem53.

(a)

(b)

(c)

Figure 4.   Deposition from a triangular droplet. (a) The numerically-calculated droplet profile. (b) The flow 
streamlines found using Eq. (3). (c) The residue density D as a function of polar angle around the contact line 
from the model (dashed line) and experimental data from Fig. 3b in Ref.41 (solid line) extracted using the 
methodology described in the main text.
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While the problem could be approached using a Barnes–Hut formulation54, here we derive a more straightfor-
ward methodology. Although our approach can readily be extended to more general configurations, as an illustra-
tion, we will consider a simpler model problem, namely a square array of circular pixels of unit radius located at

The capacity of each pixel is denoted by Ci,j . We pass to a continuum formulation by considering a function 
C(x, y) coinciding with Ci,j at C(xi , yj) . Then Eq. (4) can be reposed as

where

is the full domain, and

is the full geometry with a d × d square centred at (x, y) removed.
For large d, this can be approached via a standard perturbation method in which C(x, y) = 4+ O(d−1) , 

although very large values of d, and/or multiple terms in the expansion (which are rather complicated due to 
reciprocal interactions) are required due to the simplistic nature of the leading-order approximation.

An alternate approach is to re-write the governing equation as

Note that arcsin(|x − x
′|−1) = |x − x

′|−1 + O
(

|x − x
′|−3

)

 and hence, as |x − x
′| ≥ 2d for x′ ∈ �x,y , this 

closely approaches the Green’s function formulation inverted to find Eq. (3) other than a small contribution close 
to (x, y). It is therefore suitable to approximate the capacity as C(x, y) ≈ C(0, 0)σ (x, y)/σ (0, 0) , where σ(x, y) 
is the density for a source with the shape of the array (here a square with side of length (2N + 1)d ). Evaluating 
at (x, y) = (0, 0),

Then

where σint =
∫∫

�
σ(r′, θ ′) dr′ dθ ′/σ(0, θ ′) = d(1/2+ N)k and k is a parameter-free constant. We note that 

evaporation rates of other pixels can be approximated similarly, but we focus on (0, 0) as it is typically the rate-
limiting contribution.

It is anticipated that the above approximation will give significantly better agreement with the exact solution 
than, for example, the expansion in large d due to the principal error arising from the approximation of the arcsin 
term which, as shown above, should be small.

The parameter k can be determined in a variety of ways. Using the leading order of Eq. (3) yields 
k = 4π arccoth

√
2 ≈ 11.08 := k0 , while including second-order terms in ǫ yields k ≈ 11.17 := k2 . A full cal-

culation in COMSOL yields k ≈ 11.24 := kc.
We compare the results of Eqs. (4) to (14) in Fig. 5. This demonstrates excellent agreement: by N = 102 all 

solutions have an error of � 1% . For d ≥ 3 and k = kc the results exhibit power law behaviour with a slope of 
− 0.990 indicating convergence for large N. Indeed, for large N, C0,0 ∼ 2dπ/(kN) , so for the approximate solution 
k = k2 the lower limit on the error will be ≈ 0.6% . The non-monotonic behaviour for k = k2 is due to the solu-
tions for d = 2 and d = 3 switching from underestimating to overestimating at N = 11 and N = 103 respectively, 
before converging to 0.6% for large N.

Note that the range of validation of the approximate solution Eq. (14) in Fig. 5 is restricted by memory 
constraints: when solving the full system Eq. (4) with 32 gigabytes of memory at 16 bytes per matrix entry, the 
maximum theoretical dense matrix size is M ×M with M = (32× 10243/16)1/2 ≈ 4.6× 104 droplets (cor-
responding to N = 107 ). This is still 4 orders of magnitude short of the scale required for ultra high definition 
screens, effectively enforcing the use of a methodology such as that presented here. Indeed, to that end, calcu-
lating Eq. (14) is practically instantaneous, so that the favourable comparisons presented herein demonstrate 
that our substantially simpler and quicker approach provides an excellent methodology with potential in future 
applications involving large arrays of sources.

(11)(xi , yj) =
(

i × d, j × d
)

, for i, j ∈ [−N , . . . ,N].

4 ≈ C(x, y)+
∫∫

�x,y

2C(x′, y′)

π
arcsin

1

|x − x′|
d�

d2
,

� = [−(N + 1/2)d, (N + 1/2)d] × [−(N + 1/2)d, (N + 1/2)d],

�x,y = � \ [(x − 1/2)d, (x + 1/2)d] × [(y − 1/2)d, (y + 1/2)d],

(12)4 ≈
∫∫

�

2C(x′, y′)

πd2
arcsin

1

max{1, |x − x′|}
d�.

(13)4 ≈ C0,0






1+

2

πd2

��

�0,0

1

r′
σ(r′, θ ′)r′ dr′ dθ ′

σ(0, θ ′)






.
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4

1+ 2

πd2
(−4d arccoth

√
2+ σint)
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Densities of multiple sources
Finally, we wish to examine the most stringent possible test for our formulation. As observed by Ref.5, the most 
stringent test of any approximate or asymptotic solution of Eq. (1) should be given by several sources with 
domains of similar area in close proximity.

Following the formulation of Ref.1,2, the heat flux from a plate held at constant temperature corresponds to the 
density of a source at a constant potential. Therefore, for an array of several plates at constant temperature, the 
solutions for the heat flux are given by the results of Eqs. (3) and (4); these are compared to those of COMSOL 
in Fig. 6. For each plate, the predictions of both local heat flux, as illustrated by the contours, and net heat flux, 
measured by g, are in excellent with the COMSOL solutions. This is encouraging, and indicates that the model 
Eqs. (3) and (4) is robust and suitable for use in challenging contexts.

Several features are of note in this figure. Firstly, comparison of the g values against those given in Fig. 3 imme-
diately indicates a decrease in the total capacity of each source, corresponding to a decrease in total heat flux. 
This is due to the interference of the other plates: a phenomenon known in evaporative contexts as shielding22. 
Essentially, the heat due to the other plates increases the local temperature, decreasing the thermal gradient, and 
hence decreasing the thermal flux.

Secondly, all the minima (i.e. the positions of minimal thermal flux) are displaced from the centre of the 
respective plates. This is again due to the shielding effect: where the other plates are closer, the effect is more 
pronounced, resulting in a shift of the minimum. The combined effect of multiple other plates tends to result in 
a shift towards the “centre” of the other three: the minimum for the ellipse in the top left is shifted towards the 
bottom right, as all the other plates are to the right of and/or below the ellipse.

Thirdly, the shape of the contours close to the minimum is no longer as simple as was observed for single 
plates in the “Density of an isolated source” section. In particular, the triangle, which has no n = 2 mode and 
thus has circular contours close to the minimum in isolation, is distorted to a shape close to an ellipse. This is 
due to the complexity of the interference of the other plates.

Finally, we note that nonetheless a qualitatively similar behaviour is observed to the single-source case: close 
to the boundary, the contours are close to scaled copies of the boundary, but these smooth towards the minimum.

Obviously, there is much scope to explore such an incredibly diverse problem as Eq. (1), with a great deal 
more behaviours to consider, but they are beyond the scope of the present article in which we have established 
a reliable, fast asymptotic solution to the mixed boundary value problem.

Discussion
Herein, we have presented a robust and accurate explicit solution to the the classical potential problem Eq. (1) 
given by Eqs. (3) and (4). While the solution is formally only valid in the asymptotic limit in which the sources 
are nearly-circular, we have demonstrated for a range of different test cases that it gives excellent results even for 
sharp polygons and highly non-convex shapes. Given the ubiquity of Eq. (1) in different physical systems, rang-
ing from thermostatics to porous layers to ice crystal growth, our solution represents a significant step forward 
to approaching these notoriously complex mathematical problems.

In particular, we have examined systems of interest in electrostatics, droplet evaporation and thermostatics, 
in each case showing excellent agreement with both experimental data and COMSOL simulations. In the latter, 
it is notable that these simulations are expensive and unwieldy, finding significant difficulties in resolving the 
singular behaviour near the change in boundary condition. These complexities scale up rapidly as the number 
of sources increases. Our solution offers an accurate, reliable, and rapid alternative approach.

Figure 5.   Error for Eq. (14) with k = k2 (black) and k = kc (red) for d = 2 (solid lines), d = 3 (dashed lines), 
d = 4 (dotted lines), d = 5 (dot-dashed lines). Dots indicate integer values at which the error was calculated; 
these are connected by linear interpolants. The inset shows the array configuration for N = 2 , d = 3.
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Finally, motivated by printing pixels in OLED screen manufacture, we introduced a rapid solution methodol-
ogy for problems involving large arrays of sources, where the quantity of industrial relevance is the total evapora-
tion rate (i.e. the capacity). By noting similarities to the Green’s function formulation of the classical potential 
problem, we were able to reduce calculating the capacity to simple quadrature based on our asymptotic solution. 
We demonstrated excellent agreement between our approach and full numerical simulations.

We have shown that the methodology described herein has already opened an array of new problems to 
analytic tractability, including non-circular electrodes, and the evaporation of large arrays of droplets as seen 
in screen printing problems. Further problems in this direction, especially analytic treatment of the deposition 
from non-circular droplets and the effect of general arrays of stamps on linear elastic media, will form the focus 
of future investigations.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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