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ERCP‑Net: a channel extension 
residual structure and adaptive 
channel attention mechanism 
for plant leaf disease classification 
network
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Plant leaf diseases are a major cause of plant mortality, especially in crops. Timely and accurately 
identifying disease types and implementing proper treatment measures in the early stages of leaf 
diseases are crucial for healthy plant growth. Traditional plant disease identification methods rely 
heavily on visual inspection by experts in plant pathology, which is time‑consuming and requires 
a high level of expertise. So, this approach fails to gain widespread adoption. To overcome these 
challenges, we propose a channel extension residual structure and adaptive channel attention 
mechanism for plant leaf disease classification network (ERCP‑Net). It consists of channel extension 
residual block (CER‑Block), adaptive channel attention block (ACA‑Block), and bidirectional 
information fusion block (BIF‑Block). Meanwhile, an application for the real‑time detection of plant 
leaf diseases is being created to assist precision agriculture in practical situations. Finally, experiments 
were conducted to compare our model with other state‑of‑the‑art deep learning methods on the 
PlantVillage and AI Challenger 2018 datasets. Experimental results show that our model achieved 
an accuracy of 99.82% and 86.21%, respectively. Also, it demonstrates excellent robustness and 
scalability, highlighting its potential for practical implementation.

Plant leaf diseases decrease the efficiency of photosynthesis and seriously hinder the synthesis of organic matter 
and energy acquisition. It has become one of the main obstacles to achieving high yield and quality of crops. 
Meanwhile, various degrees of diseases impair the synthesis of nutrient proteins and result in yield reduction, 
reducing the economic efficiency of  crops1. Traditional plant leaf disease identification mainly relies on the 
experience accumulated by generations of researchers in the plant production process, which requires a high 
level of professional knowledge for plant producers. However, discriminating plant leaf diseases by eyes has high 
subjectivity and is prone to errors, thus hindering the timely treatment of  plants2,3. Therefore, for today’s agricul-
tural production, it is necessary to develop a new system to liberate producers from the inefficient and complex 
process of plant leaf disease identification. Due to artificial intelligence’s rapid development, image processing 
and deep learning techniques are becoming increasingly mature. The application of deep learning  technology4–11 
to identifying plant leaf diseases intelligently has become a prominent trend, which helps to overcome the defects 
of traditional methods to improve plant  yields12.

Considering the above issues, a new plant disease classification network is proposed in this paper to improve 
identification accuracy and efficiency. Meanwhile, a plant leaf disease identification application (APP) is pre-
sented to assist in identifying plant leaf diseases, thereby maximizing yields and ensuring sustainable agricultural 
development. To extract discriminative features for leaf disease classification, three different neural network 
blocks-the bidirectional information fusion block (BIF-Block), the adaptive channel attention block (ACA-Block), 
and the channel expansion residual block (CER-Block)-are specifically employed. Among them, the CER-Block 
adopts three pooling windows of different sizes and a residual structure to expand the model’s receptive field 
and output channels while maintaining a lower computational burden. The ACA-Block introduces an adaptive 
size distribution function with a reverse Gaussian probability density function into the Convolutional Block 
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Attention Module (CBAM)13, enabling the model to focus on critical regions and channels containing leaf dis-
ease information. The BIF-Block establishes a bidirectional information pipeline among multi-level features to 
extract fine-grained information between multi-level features, thereby improving the robustness and accuracy 
of the network.

The main contributions of this work are summarized as follows:

• A novel ERCP-Net is proposed based on deep learning techniques, which effectively combines CER-Block, 
ACA-Block, and BIF-Block to achieve automatic recognition of plant leaf diseases.

• A convenient plant leaf disease identification APP is developed, which is equipped with a trained model and 
supports photographing, uploading, identification, and information feedback of plant leaves in real scenarios.

• The experimental results indicate that the proposed ERCP-Net achieved recognition accuracy of 99.82% and 
86.21%, outperforming other state-of-the-art methods.

The rest of this paper is outlined as follows: “Related work” discusses prior research on plant leaf disease recogni-
tion using deep learning techniques. “Dataset processing” presents the experimental dataset and introduces the 
methods used for increasing the sample size. “Method” provides a detailed description of the method proposed 
in this work. “Experimental results and analysis” introduces the experimental setup and environment, presents, 
compares, and analyzes the experimental results to validate the feasibility of the proposed method. “Conclusion” 
concludes the whole study and provides insights into future research directions.

Related work
Deep learning techniques applied to plant leaf disease identification
Although deep learning networks such as  VGG14,  ResNet15,  DenseNet16, and  Efficientnet17, perform well in tra-
ditional classification tasks, they are not suitable for plant leaf disease recognition. He et al.4 proposed an end-to-
end bilinear residual structure that can extract finer-grained features on plant leaf spots. Brahimiet al.5 identified 
tomato leaf disease images by using a convolutional neural network (CNN) that is trained on a dataset containing 
14828 images of tomato leaves infected with nine diseases. Soujanya et al.6 used deep learning techniques to 
classify plant diseases and proposed a method to reduce the number of parameters and computational cost by 
adding an inverse convolution layer to the traditional AlexNet. The method achieved the best accuracy of 96.50% . 
Singh et al.7 developed a multilayer CNN for classifying mango anthracnose leaves, and the proposed model 
obtains higher classification accuracy for mango anthracnose than other methods. Hussain et al.8 constructed 
a deep learning framework based on optimal feature selection for identifying multiple classes of foliar diseases 
of cucumber. Akram et al.18 added a low-pass output to the Retinex model for dataset preprocessing to improve 
the detection of small targets. Moreover, a classification method was developed based on the deep convolutional 
neural network to classify leaf diseases of five plants, and it obtained an accuracy of 97.80% on the PlantVillage 
dataset. Chen et al.19 extended VGG by applying transfer learning to the Inception module for pre-training, 
and the method achieved an accuracy of above 91.83% on the public dataset and 92.00% for the classification 
prediction of rice plant leaf disease images in complex contexts. Wang et al.20 classified the images of the apple 
black spot PlantVillage dataset according to the degree of disease as healthy leaves, mild, moderate, and severe 
diseased leaves based on expert opinion. Meanwhile, the researchers compared four classification networks, 
including VGG16, VGG19, Inception-V3, and ResNet50, and they concluded that the fine-tuned VGG16 model 
performed best, with a classification accuracy of 90.40% on the test set of disease severity assessment. Chohan 
et al.21 developed a plant leaf disease classification model based on CNNs, and the accuracy of the proposed 
model on the test set was 98.30% . Akshai et al.22 trained three CNNs, including VGG, ResNet, and DenseNet, on 
the PlantVillage dataset. The results showed that DenseNet performed the best on the test set with an accuracy 
of 98.27% . Hassan et al.23 constructed a deep learning model using residual connectivity and deep separable 
convolution. This model achieved an accuracy of 99.39% on the PlantVillage dataset. Atila et al.24 designed a 
modified EfficientNet model, which obtained an accuracy of 99.97% on the test set of the PlantVillage dataset.

Attention mechanism techniques applied to plant leaf disease identification
Limited by the local perceptual field problem of convolutional operations, traditional CNNs tend to obtain 
local optimal solutions, resulting in the loss of feature information. Therefore, attention mechanisms that can 
selectively focus on the feature information of interest have been widely studied. For the attention mechanism in 
CNN, visual attention is divided into channel attention and spatial attention by Niu et al.25. The most commonly 
used attention mechanisms are Squeeze-and-Excitation Network (SENet)26 and  CBAM27. Alirezazadeh et al.28 
embedded the improved CBAM into their model to achieve an accuracy of 86.89% on the test set of the public 
dataset  DiaMOS29. Yang et al.30 proposed an attention mechanism with weighted feature information fusion for 
fine-grained classification of 37 types of plant leaf diseases. The proposed attention mechanism combined with 
transfer learning achieved an accuracy of 95.62% on the test set. Zhao et al.31 incorporated an improved CBAM 
into ResNet to reduce redundant information extracted from the convolutional layer. The proposed model 
achieved an accuracy of 97.59% on a dataset of 16 tomato leaf diseases. Zhao et al.32 enhanced the channel atten-
tion in the CBAM structure by replacing the Shared MLP (Multilayer Perceptron) with two one-dimensional 
convolutions and modifying the kernel size of the one-dimensional convolution based on prior knowledge. For 
a dataset containing images of corn, potatoes, and tomatoes from the PlantVillage dataset, the model obtained 
an accuracy of 99.55% on the test set. Based on the analysis of the existing research, this work proposes to use the 
residual and attention mechanism to further improve the classification of plant leaf diseases. Table 1 summarizes 
the relevant research on the PlantVillage dataset.
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Dataset processing
The  PlantVillage33 dataset used in this study is publicly available and authoritative. The PlantVillage does not 
represent real scenarios but lab conditions. This dataset includes leaf diseases of 14 types of plants with a total of 
38 disease types. There are 54305 sample images in the dataset, and each image has three channels of R, G, and 
B. Fig. 1 shows some plant leaf disease images in the dataset.

To improve the generalization and robustness of the model, this work adopts four methods for data enhance-
ment, including random horizontal flip, random vertical flip, random rotation of the image angle between 0 and 
35 degrees, and the addition of Gaussian noise. The enhanced dataset has 60371 sample images in total. The 
dataset was divided into a training set, a validation set, and a test set at a ratio of 6:2:2.

In order to verify the performance of the model. There are 50,000 labeled images of crop leaves in the dataset 
used in the AI Challenger 2018. Ten plant species-apples, cherries, grapes, citrus, peaches, strawberries, toma-
toes, peppers, maize, and potatoes-as well as twenty-seven distinct illnesses are depicted in the pictures. With 61 
categories in all, the data collection offers rich and varied samples for researching illnesses and pests.

Method
This section introduces our proposed method and its variants in detail. First, the CER-Block is presented, which 
can extract image information accurately by combining the ideas of channel expansion and residuals. Based 
on the CER-Block, the ER-Net is constructed, which is a backbone network for plant leaf disease classification. 
Second, the ACA-Block is designed, which makes the backbone network focus more on leaf disease information 
to reduce redundant information interference. Also, as shown in Fig. 5, the ACA-Block is embedded into the 
backbone network to build a stronger ERC-Net. Finally, the BIF-Block is proposed to improve the classification 
results’ robustness. Finally, the state-of-the-art classification model ERCP-Net is established, as shown in Fig. 6.

Table 1.  Comparison of different obfuscations in terms of their transformation capabilities.

Reference Methods Accuracy (%)

Akram et al.18 CNN 97.80

Wang et al.20 Proposed VGG16 90.40

Chohan et al.21 CNN 98.30

Akshai et al.22 DenseNet 98.27

Hassan et al.23 CNN 99.39

Atila et al.24 Proposed EfficientNet 99.97

Zhao et al.32 Proposed model 99.55

Figure 1.  The sample results of plant leaf diseases: (a) apple scab, (b) grape black rot, (c) peach bacterial spot, 
(d) potato early blight, (e) squash powdery mildew, (f) strawberry leaf scorch, (g) tomato leaf mold, and (h) 
tomato mosaic virus.
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CER‑Block and ER‑Net
Traditional image classification networks usually use convolutional operations for channels to scale, which can 
increase the number of parameters. As the network deepens, numerous training parameters will incur a large 
computational burden and cause gradient information disappearance. To solve this problem, this paper proposes 
the channel expansion residual structure (CER-Block).

The CER-Block consists of two components: an image feature information extraction layer and a residual con-
nection layer. The image feature information extraction layer consists of three max-pooling layers with different 
window sizes (3× 3, 5 × 5, and 9 × 9) and an information aggregation layer. This helps to expand the perceptual field 
while triple-expanding the number of channels without increasing the number of parameters. Then, the features 
obtained by max-pooling are fed to the information aggregation layer to make the network focus on leaf disease 
information from multiple perspectives. The information aggregation layer consists of three convolutions of 
different kernel sizes, i.e., 1, 3, and 1. The role of the convolution layer is to perform more abstract information 
aggregation from features.

Moreover, the residual connection layer comprises a convolution with a kernel size of 1, and this layer is 
essentially an additive node. It combines the gradient information of the upper layer with the output information 
of the first part while preserving the original state of the gradient. During the gradient information propagation, 
the risk of gradient explosion or gradient disappearance in the network is reduced Fig. 2 illustrates the structure 
of the CER-Block.

The backbone network ER-Net is constructed based on CER-Block. As shown in Fig. 3, the CER-Net com-
prises two down-sampling layers and three CER-Blocks. First, ER-Net receives the input images with a size of 
416× 416 pixels. Then, the image is fed to a 7 × 7 convolution layer with a stride of 2 and a max-pooling layer with 
a stride of 2. In this way, meaningless spatial information is suppressed, and discriminative channel information 
is improved. Since plant leaf diseases are often represented as composite features such as color, texture, and shape, 
it is difficult for a simple convolutional layer to transform composite feature information from simple to abstract. 
Therefore, the feature map is fed to three cascaded CER-Blocks to learn different and complementary plant 
leaf disease information from the feature map, thereby enhancing the network’s disease recognition capability. 
Finally, the abstract feature information is input to the prediction layer to obtain the final classification results.

Figure 2.  The structure of the CER-Block. “a× b” means window size. Note that the stride of each component 
defaults to 1.

Figure 3.  The framework of the ER-Net network.
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ACA‑Block and ERC‑Net
CBAM13 is a classical attention mechanism module that combines channel and spatial attention. This module 
can be easily embedded into the backbone network for image classification to obtain better results. Zhao et al.32 
proposed an improved channel attention module based on CBAM by modifying the shared MLP in the original 
channel attention module into two 1D convolutions and manually setting the kernel size of the 1D convolution. 
Then, they conducted a mass variant experiment about the convolution kernel size to achieve the best perfor-
mance. Since the manual setting of kernel size is time-consuming, subjective, and random, this work uses the 
inverse Gaussian probability density function to project the kernel size of the 1D convolution adaptively.

Let the kernel size of the 1D convolution be x, and the number of channels of the feature map is y. Then, the 
original Gaussian probability density function is represented as:

where µ is the mean and σ is the variance. Moreover, the inverse Gaussian probability density function is as 
follows:

where µ represents the mean, and σ represents the variance. First, the inverse Gaussian probability density 
function is applied to the channel attention module. Then, a residual connection is introduced to combine the 
complete gradient information of the CER-Block with the output information of the attention module while 
preserving the original state of the gradient. Based on this, the ACA-Block is constructed. Note that x is an integer 
greater than or equal to 1. Fig. 4 presents the framework of the proposed ACA-Block.

Compared with the CBAM and BAM, our ACA-Block has three improvements. First, we use two 1D con-
volutions in the channel attention module to replace the original 2D convolution. The two one-dimensional 
convolutions are not downsampled, which can better prevent information loss in the feature map. Second, the 
size of the convolution kernel in the two one-dimensional convolutions is calculated by the inverse Gaussian 
probability density function (IGPDF). It is an adaptive size distribution function that can change with the size 
of the feature maps, making the feature maps have a stronger correlation after convolution. Third, we add a new 
residual structure. This structure ensures that the input gradient information can retain its original state after 
ACA-Block. A comparison of the formulae for calculating the feature map information for the CBAM, BAM, 
and ACA-Block is as follows:

where F ′BAM , F ′CBAM , F ′ACA−Block are the outputs of the BAM, the CBAM, and the ACA-Block, respectively. BN is 
batch-normalization. MLP is a multilayer perceptron consisting of two two-dimensional convolutions. MS(·) is 
spatial attention. F is input information. IGPDF is the inverse Gaussian probability density function. AvgPool is 
average pooling. MaxPool is max pooling.

As illustrated in Fig. 5, the ACA-Block is embedded behind each CER-Block to make the backbone network 
focus more on the information of the leaf disease part to reduce the interference of redundant information. Based 

(1)y =
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σ
√
2π

e
− (x−µ)2

2σ2

(2)x =
√

−2σ 2 ln (yσ
√
2π)+ µ

(3)F ′BAM =BN(MLP(AvgPool(F)))+MS(F)

(4)F ′CBAM =σ(MLP(AvgPool(F))+MLP(MaxPool(F)))+MS(F)

(5)F ′ACA−Block =F + σ(IGPDF(AvgPool(F))+ IGPDF(MaxPool(F)))+MS(F)

Figure 4.  The structure of the ACA-Block. Note that the kernel size of 1D convolution is determined by an 
inverse Gaussian probability density function, and the kernel size of 2D convolution is set to 7 ×7.
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on this, the ERC-Net network is constructed. Since the number of channels of the feature maps obtained by the 
three CER-Blocks in the ERC-Net network differs, the kernel size of the 1D convolution calculated by the inverse 
Gaussian probability density function is also different. Because of this, the attention module ACA-Block receives 
feature maps of different scales and with different numbers of channels. From the above two aspects, the ACA-
Block can filter out redundant information, focus on leaf disease features, and further enhance the information 
correlation between feature maps to improve the accuracy of plant leaf disease classification.

ERCP‑Net
The traditional image classification network feeds the feature information extracted from top to bottom to the 
output layer to obtain the prediction results. Nevertheless, this output layer only focuses on the semantic informa-
tion extracted from the deeper layers of the network. Meanwhile, it is difficult to focus on the pixel-level features 
of the image. To enable the classification network to focus on feature information from different aspects, this 
paper proposes a bidirectional information fusion block (BIF-Block) that incorporates feature map informa-
tion from multiple perspectives. The improved output layer can focus on semantic and pixel-level information, 
thereby obtaining a robust prediction result. Fig. 6 illustrates the structure of the ERCP-Net network. Firstly, the 
traditional output layer of the ERC-Net network is removed. Secondly, the feature map information obtained 
from the third CER-Block+ACA-Block structure is upsampled and merged with the feature map information 
obtained from the second CER-Block+ACA-Block structure. The number of channels of the merged feature 
map is increased, i.e., deeper pixel information is added to the shallow semantic information. Then, the merged 
feature information is downsampled and merged again with the feature information obtained from the third 
CER-Block+ACA-Block structure to further enrich the semantic and pixel information. Finally, the final feature 
information is feedback to the output layer to obtain robust classification results. The output tensor dimensions 
for each layer of ERCP-Net are detailed in Table 2.

Experimental results and analysis
Experimental setup
The experiment is conducted on a personal computer equipped with 32G RAM and an Nvidia GeForce RTX 
3060 graphics card with 12G video memory, and the computer runs the Ubuntu 18.04.6 LTS operating system.

The deep learning libraries are Pytorch 1.8.0 and Python 3.8.15. The training parameters are set as follows: 
The batch size is set to 16, and the initial learning rate is set to 0.01. The model is trained for 100 epochs using 
the SGD optimizer and the cross-entropy loss function. The accuracy on the validation set is monitored during 
training, and the learning rate is decreased when the accuracy does not increase for three epochs  (Eq. 6). The 
detailed setting of the training parameters is listed Table 3.

where lr and LR denote the learning rate of the previous epoch and the current epoch, respectively.

(6)LR = 0.3× lr

Figure 5.  The framework of the ERC-Net network.

Figure 6.  The framework of the ERCP-Net network.
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Evaluation metrics
To verify the feasibility of our method, accuracy, precision and recall are taken as the evaluation index for the 
experiment. The value of this index is calculated based on true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN). The calculation formula is given below.

Comparison and analysis
In this section, the performance differences between the proposed method and other state-of-the-art methods 
are compared to demonstrate the superiority of ERCP-Net in leaf disease spot recognition. Table 4 shows the 
accuracy of ERCP-Net and ten popular methods on the PlantVillage dataset. The results indicate that ERCP-Net 
achieves the best accuracy of 99.82%, surpassing the second-place by 0.27%. Although our result is lower than the 
first place, it may be related to the way the dataset is divided and enhanced. Meanwhile, the experimental results 
demonstrate that ERCP-Net performs better in leaf disease spot recognition than classical image classification 
networks, including VGG19, Inception-V3, DenseNet, EfficientNet, and ResNet50. On the PlantVillage dataset, 
Vo et al.34 also achieved an accuracy of 99.77% by combining EfficientNetB0 with MobileNetV2, Wang et al.35 
achieved a 99.77% accuracy rate using the proposed methodology. Zhao et al.32 improved the CBAM structure 
of the channel attention by manually modifying the kernel size of the 1D convolution. The classification accuracy 
of the proposed model on the PlantVillage dataset is 99.55% . The performance of our suggested model on AI 
challenger 2018 is displayed in Table 5. As we can see, our model’s accuracy of 86.21% outperforms the widely 
used pest and disease classification methods now in use. Compared to these methods, our method performs the 
best. The experimental results indicate that using the inverse Gaussian probability density function to adaptively 
adjust the convolution kernel size is reliable and advantageous.

(7)Accuracy =
TP + TN

TP + TN + FP + FN

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN

Table 2.  The details of ERCP-Net and the tensor sizes of each output layer.

Layer Tensor size

Input [3,416,416]

Conv [16,208,208]

MaxPool [16,104,104]

CER-Block_1 [48,52,52]

ACA-Block_1 [48,52,52]

CER-Block_2 [144,26,26]

ACA-Block_2 [144,26,26]

CER-Block_3 [432,13,13]

ACA-Block_3 [432,13,13]

BIF-Block [1296,13,13]

Global average pool [1296,1,1]

Fully connected layer [1296]

Softmax [38]

Table 3.  The training parameters about ERCP-Net.

Parameter Value

Batch size 16

Init learning rate 0.01

Epochs 100

Optimizer SGD (momentum = 0.9, weight_decay = le−4)

Loss function Cross-entropy
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Ablation and analysis
To assess the effectiveness of the proposed modules and conduct a thorough analysis of our ERCP-Net, we per-
formed ablation studies on two datasets:  PlantVillage33 and AI Challenger 2018.

Table 6 presents the performance of five model variants: ER-Net (#1), ER-Net-inceptionA (#2), ER-Net+CBAM 
(#3), ERC-Net (#4), and ERCP-Net (#5). To expand the channel number using deep learning techniques without 
increasing the parameter count, we propose the CER-Block. Utilizing this block, we first constructed the ER-Net 
(#1), a leaf disease spot classification network. Thanks to the CER-Block, ER-Net achieved accuracies of 99.74% 
and 83.51% on the PlantVillage and AI Challenger 2018 benchmarks, respectively. Furthermore, we replaced 
the CER-Block with the Inception-A block from Inception  v445 under identical experimental conditions. The 
introduction of the Inception-A block resulted in a decrease in accuracy, attributed to its inability to capture 
large-scale information and the loss of discriminative information through residual connections via the pooling 
layer. Then, the original  CBAM13 module is embedded into the ER-Net, and the accuracy of the model decreases 
to 99.69% and 82.86% , respectively. This is because some plant leaf diseases are affected by composite features 

Table 4.  Comparison of ERCP-Net and state-of-the-art methods on the PlantVillage test set. The highest 
performance is marked in bold.

Reference Methods Accuracy (%)

Wang et al.20 Proposed VGG16 90.40

Khan et al.18 CNN 97.80

Akshai et al.22 DenseNet 98.27

Chohan et al.21 CNN 98.30

Kaushik et al.36 CNN 97.10

Hassan et al.23 CNN 99.39

Zhang et al.37 CNN 99.40

Atila et al.24 Proposed EfficientNet 99.97

Sutaji et al.38 CNN 99.52

Zhao et al.32 Proposed model 99.55

Vo et al.34 EffcientNetB0+MobileNetV2 99.77

Wang et al.35 ResNet101+Attention 99.82

Ours ERCP-Net 99.82

Table 5.  Performance comparison among different work on the AI challenger 2018 dataset The best 
performance is shown in bold.

Reference Year Network Accuracy (%)

Ferentinos39 2018 VGG 82.57

Too et al.17 2019 DenseNet 84.25

Kamal et al.40 2019 MobileNet 83.74

Chen et al.19 2020 VGG19 variant 83.61

Ramamurthy et al.41 2020 CNN+attnetion 78.12

Ronghua Gao et al.42 2021 ResNet18 variant +attention 86.09

Zhao et al.32 2022 CNN+attention 84.91

Li et al.43 2023 CNN 85.73

Singh Thakur et al.44 2023 VGG variant 85.37

Ours 2023 ERCP-Net 86.21

Table 6.  Comparison of model performance on the AI Challenger 2018 and PlantVillage datasets.

# Model

AI Challenger 2018 PlantVillage

Accuracy (%) Avg precision (%) Avg recall (%) Accuracy (%) Avg precision (%) Avg recall (%)

1 ER-Net 83.51 81.56 81.95 99.74 99.65 99.68

2 ER-Net-inceptionA 83.00 80.55 80.10 99.70 99.61 99.66

3 ER-Net+CBAM 82.86 80.23 79.87 99.69 99.60 99.66

4 ERC-Net 85.12 83.26 82.12 99.76 99.69 99.71

5 ERCP-Net 86.21 84.12 83.94 99.82 99.78 99.81
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such as color, texture, and shape, leading to a lower fit between the original CBAM and the ER-Net network. 
Subsequently, by embedding the original  CBAM13 module into ER-Net, we observed a decrease in accuracy to 
99.69% and 82.86% on the respective datasets. This decline is likely due to the inability of the original CBAM to 
adequately account for the composite features, such as color, texture, and shape, that characterize some plant leaf 
diseases, resulting in a suboptimal fit with the ER-Net network. To enhance the compatibility between CBAM 
and ER-Net, we improved the original CBAM and proposed the ACA-Block. Incorporating the ACA-Block, we 
developed ERC-Net, the second leaf disease spot classification network. ERC-Net showed improved accuracies 
of 99.76% and 85.12% on the PlantVillage and AI Challenger 2018 datasets, respectively. Additionally, ERC-Net 
demonstrated increased average precision and average recall rates of 83.26% and 82.12%, correspondingly, on 
the AI Challenger 2018 benchmark. Ultimately, by replacing the traditional output layer with the BIF-Block, we 
designed ERCP-Net. Leveraging the BIF-Block allows ERCP-Net to integrate multi-perspective feature informa-
tion, focusing on both semantic and pixel-level details. Experimental results reveal that ERCP-Net outperforms 
all previous models, achieving accuracies of 99.82% and 86.21%, average precisions of 99.78% and 84.12%, and 
average recalls of 99.81% and 83.94% on the PlantVillage and AI Challenger 2018 benchmarks, respectively. 
These findings underscore ERCP-Net’s superior capability in addressing complex image recognition tasks across 
diverse datasets.

Visual analysis
Heatmap
To further investigate the impact of each module, the heatmap was used to present the attention regions of each 
model. The algorithm used for the heatmap is Grad-CAM46. Grad-CAM decodes the importance of each feature 
map for a specific class by analyzing the gradient in the convolutional layer. As shown in Fig. 7, five types of leaf 
disease images are taken as input to show the heatmap of the four models. The ER-Net is our constructed base 
leaf disease classification model based on CER-Block. As shown in the second row, it can identify the diseased 
regions in the leaf, enabling leaf disease classification. In the third row, the ER-Net incorporates the attention 
module  CBAM13, which is designed for classic classification networks. Obviously, the CBAM is not suitable for 
leaf disease classification tasks. After the introduction of CBAM, the attention region of the model is confused, 

Figure 7.  The visualization of the heatmap of the four variants. The sampled leaf disease images consist of 
tomato late blight, grape black rot, corn gray leaf spot, potato early blight, and apple black rot.
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leading to unreliable classification results. In the fourth row, the CBAM is replaced with the proposed ACA-Block 
to form the ERC-Net. It can be observed that ERC-Net focuses on leaf disease regions but fails to learn fine-
grained information in the images. In the last row, the BIF-Block is applied to fuse multi-perspective information 
and obtain the proposed ERCP-Net. The ERCP-Net can accurately and comprehensively focus on the disease 
regions in the leaf, achieving the best classification performance.

Confusion matrix
To identify the weaknesses of ERCP-Net, the confusion matrix is plotted in Fig. 8. It shows that our ERCP-Net 
has difficulty in distinguishing between the categories ”Corn gray leaf spot” and ”Corn northern leaf blight”, 
”Tomato two spider mite”, and ”Tomato target spot”. Meanwhile, there exists an issue of uneven data distribu-
tion in the PlantVillage data. It is speculated that the deficiency in focusing on hard samples might be due to the 
cross-entropy loss. In future work, we will explore the potential enhancement by using the focal  loss47.

Plant leaf disease identification APP
Currently, few plant leaf diseases can be identified with lightweight smart devices. An APP for plant leaf disease 
identification is built to make the study of plant leaf diseases more convenient and common. The creation of an 
APP involves three processes. We should first define scope and target. The App is a portable application made to 
assist farmers in promptly identifying the type of leaf disease and promptly implementing preventive measures. 
Second, the APP interface presents information in an understandable manner, taking into account both design 
and user experience. The information display box and the picture upload button are the two components of the 
interface. When users launch the APP, they may quickly learn how to use it and its function. Thirdly, the front 
and back end comprise an application. Python is used for front end development, and Flask is the framework. 
Python is used for back end development, while Pytorch is used as a framework. A LAN must contain both the 
front end and the back end. The APP’s recognition algorithm is based on the ERCP-Net algorithm. The APP 
consists of two main functions: uploading pictures and recognizing plant leaf disease. The second function 
depends on the trained ERCP-Net model, which has an accuracy of 99.82% on the test set. When the images 
are uploaded, the terminal invokes our algorithm to recognize the images and display the results on the main 
screen. Specifically, three results are displayed: the type of plant leaf disease, recognition confidence, and infer-
ence time (in seconds). The APP’s performance has been tested extensively, and some results are shown in Fig. 9. 
Fig. 9 shows the results of the APP for identifying potato late blight, where the identification category is also 
potato late blight, with an confidence of 100% and inference time of 0.07s. The experimental results show that 
the APP equipped with the ERCP-Net model can identify plant leaf diseases easily and in real-time with high 

Figure 8.  The confusion matrix of the classification results of ERCP-Net. The x and y axes in the confusion 
matrix correspond to the 38 categories of IDs.
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confidence and speed. It can prevent the spread of diseases and ensure the healthy growth of plants, assisting 
with precision agriculture applications.

Runtime
In order to show the real-time performance of the model more clearly, we conducted experiments on two 
devices. The first device is our experimental server. The specification of the machine is conducted on a personal 
computer equipped with 32G RAM and an Nvidia GeForce RTX 3060 graphics card with 12G video memory, 
and the computer runs the Ubuntu 18.04.6 LTS operating system. The second device is an Android phone with 
the APP on it. The specification of the machine is 16G RAM and Snapdragon 8 mobile platform Gen 2. The APP 
runs the Android 13. We performed 100 inference tests on two separate devices. The running time of the first 
device is from 0.04s to 0.06s. The average running time is 0.048s. The running time of the second device is from 
0.05s to 0.08s. The average running time is 0.065s. Based on the experimental results, it can be seen that there is 
a difference of 0.017s in the average running time of the two devices, which is within the acceptable range. The 
reasons for the difference in the running time of the two devices may be the device specifications and network 
latency. Fig.10 illustrates the running time of the two devices.

Limitation and future work
Despite the promising results achieved by our proposed ERCP-Net model, there are certain limitations that 
should be acknowledged. Firstly, our model’s performance might be influenced by variations in environmental 
conditions and imaging setups, as the dataset used for training and evaluation may not cover all possible sce-
narios. Additionally, the current version of ERCP-Net might face challenges in cases of extremely rare or unseen 
leaf diseases, as the training dataset may not comprehensively represent the entire spectrum of plant leaf diseases.

To address the aforementioned limitations and further enhance the applicability of our model, future research 
directions include expanding the dataset to encompass a wider range of environmental conditions, imaging 
angles, and disease manifestations. The introduction of transfer learning techniques, pre-training on diverse 
datasets, and fine-tuning on specific plant species could contribute to improved generalization. Moreover, 
incorporating real-time disease monitoring capabilities and deploying the model in field conditions would be 
crucial for practical applications. Future research should focus on investigating interpretability techniques to 
comprehend the model’s decision-making process and on user studies to evaluate the model’s performance in 
practical situations.

Figure 9.  The results of plant leaf disease detection by the developed APP.
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Conclusion
In this paper, a new plant leaf disease classification network is developed based on deep learning and an atten-
tion mechanism. Firstly, based on multi-scale pooling and residual connection, the ER-Block is designed for 
image feature information extraction, which can triple the number of channels without increasing the number of 
network parameters while expanding the perceptual field and extracting feature information at multiple scales. 
Secondly, the ACA-Block is developed, which employs the inverse Gaussian probability density function to 
project the kernel size of the 1D convolution adaptively. In this way, it can receive feature maps of different scales 
and different numbers of channels, thereby making the backbone network focus more on the information of the 
leaf disease part and reducing the interference of redundant information. Finally, a feature fusion result predic-
tion structure is proposed to improve the robustness of the network. Then, the plant leaf disease classification 
network ERCP-Net is constructed based on the above modules. ERCP-Net can reduce redundant information 
interference and focus more on leaf disease features by transforming the shallow image information into more 
abstract feature information. Also, unlike traditional image classification networks, ERCP-Net can focus on 
semantic and pixel-level information. Finally, an app is developed to identify plant leaf diseases with a simpli-
fied detection procedure. Experimental results show that the proposed ERCP-Net network performs better than 
existing approaches on the PlantVillage and AI challenger 2018 datasets, with accuracy of 99.82% and 86.21%.

In future research, we will conduct in-depth research on the following two aspects. First, we will introduce 
small-sample learning to recognize some small-sample disease categories effectively. Plant disease recognition 
relies on a large amount of plant leaf image data. Nevertheless, in actual production, it is a great challenge to 
obtain the expected results for recognizing some disease categories whose images are difficult to collect or label. 
Second, the proposed model will be deployed to more sophisticated and intelligent machines, such as agricultural 
mobile robots, to develop an intelligent integrated process for data processing, identification, and detection.

Data availability
This study did not report any data. The proposed method was evaluated on publicly available diseases and insect 
pests detection datasets widely used in object detection: PlantVillage (https:// data. mende ley. com/ datas ets/ tywbt 
sjrjv/1) and AI challenger 2018 (https:// aistu dio. baidu. com/ datas etdet ail/ 76075).
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