
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4326  | https://doi.org/10.1038/s41598-024-53768-9

www.nature.com/scientificreports

A novel extension of half‑logistic 
distribution with statistical 
inference, estimation 
and applications
A. A. Bhat 1, S. P. Ahmad 2, Ahmed M. Gemeay 3, Abdisalam Hassan Muse 4*, M. E. Bakr 5 & 
Oluwafemi Samson Balogun 6

In the present study, we develop and investigate the odd Frechet Half-Logistic (OFHL) distribution 
that was developed by incorporating the half-logistic and odd Frechet-G family. The OFHL model 
has very adaptable probability functions: decreasing, increasing, bathtub and inverted U shapes are 
shown for the hazard rate functions, illustrating the model’s capacity for flexibility. A comprehensive 
account of the mathematical and statistical properties of the proposed model is presented. In 
estimation viewpoint, six distinct estimation methodologies are used to estimate the unknown 
parameters of the OFHL model. Furthermore, an extensive Monte Carlo simulation analysis is used 
to evaluate the effectiveness of these estimators. Finally, two applications to real data are used to 
demonstrate the versatility of the suggested method, and the comparison is made with the half-
logistic and some of its well-known extensions. The actual implementation shows that the suggested 
model performs better than competing models.

Keywords  Odd Frechet-G family, Half logistic distribution, Quantile function, Statistical properties, Monte 
Carlo simulation, Estimation methods

In the field of probability distribution theory, the normal and exponential distributions serve as fundamental 
models, illustrating various theoretical findings. For instance, the exponential distribution is often employed as 
a constant example, particularly in reliability research. However, the use of exponential distribution is incompat-
ible in conditions wherein failure rate is not constant. To integrate this situation, extensions like the Weibull and 
gamma distributions are used, offering solutions to model non-constant failure rates. The Weibull and gamma 
distributions can be seen as expansions of the exponential distribution, providing more flexibility in handling 
varying failure rates. Additionally, the half logistic model, resembling the shape and characteristics of the Weibull 
distribution, serves as another alternative in such cases, offering a different approach to modeling scenarios with 
non-constant failure rates.

The half-logistic (HL) model introduced by Balakrishnan1 using the absolute transformation of the logistic 
distribution is highly regarded in modelling datasets from a wide range of fields and has got tremendous impor-
tance in statistics, physics, hydrology and logistic regression. The best unbiased estimators of the parameters 
of the HL model were discovered by Balakrishnan and Puthenpura2 using linear functions of order statistics. 
Balakrishnan and Wong3 utilised type II censoring in order to determine the approximate maximum likelihood 
estimates of the HL model. Some characterizations results in the form of theorems of the HL model were studied 
by Olapade4. The reliability test plan for the HL distribution developed by Rosaiah et al.5 among others are some 
important sources of the HL distribution.

The probability density function (PDF) and cumulative distribution function (CDF) of Half-Logistic (HL) 
model with shape parameter θ are
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and

In practice, lifetime studies call for more adaptable models that can take into account various types of data 
sets. In light of these issues, several authors have focused on the HL model in recent years, offering a range of 
extensions and novel forms. For example, the generalised half-logistic model with extended properties was 
reported by Torabi and Bagheri6, who also investigated several estimation methodologies for estimating the 
parameters of the model using both complete and censored data. Rao et al.7 made an effort to present the basic 
characteristics, parameter estimation and hypothesis testing of the exponential half-logistic distribution. Olapade8 
proposed the Odd generalized half-logistic model. Cordeiro et al.9 investigated the exponentiated half-logistic 
family of distributions to study the extension of the HL model. Krishnarani10 studied the power transformation 
of HL model and derived its different characterization results while as Yegen and Özel11 extended the half-logistic 
distribution by utilizing Marshall-Olkin-G approach.

In statistical theory, generalizing probability distributions is a common practice. To generate adaptable math-
ematical models that can handle non-normal data circumstances, new distributions are being developed. This 
flexibility can be obtained in a straightforward manner by including additional parameters such as location, scale 
and shape. There are several generalized (or G) classes that have recently emerged in the literature, including 
the Weibull-G family proposed by Bourguignon et al.12, Weighted Weibull-G family of distributions by Hassan 
et al.13, Kumaraswamy-G family of distributions developed Cordeiro and de Castro14, two innovative methods 
for generating probability models with application to Weibull distribution were proposed by Lone et al.15,16.

Recently, an intriguing technique “Odd Frechet-G (OF-G)” family of probability distributions was presented 
by Haq and Elgarhy17 with CDF and PDF respectively given as

and

where  m(x;π) is the PDF, π is the parameter vector and α is the shape parameter of the baseline model.
The OF-G family is used to broaden the scope of the baseline distribution applicability in modeling different 

types of datasets. Utilising the OF-G approach, ZeinEldin et al.18 offered a novel generalisation of the inverse 
Lomax model, Elgarhy and Alrajhi19 investigated the distributional characteristics and applications of odd Frechet 
Inverse Rayleigh model, odd Frechet inverse exponential model was studied by Alrajhi20, odd Frechet inverse 
weibull model using OF-G scheme was suggested by Fayomi21 and Ahsan ul Haq et al.22 proposed odd Frechet 
power function distribution.

This study aims to introduce a novel distribution, the Odd Frechet Half Logistic (OFHL) model, by incor-
porating the Half Logistic (HL) distribution into the larger context of the OF-G family of distributions. The 
rationale behind adopting the OF-G family of distributions lies in its capacity to enhance the flexibility of the 
HL distribution. Moreover, utilizing the OF-G framework enables us to delve into the tail properties of the 
distribution and enhance its goodness-of-fit characteristics, thus offering a more comprehensive understanding 
and application of the OFHL model.

The subsequent sections unfold as follows: Section “The odd Frechet Half-Logistic (OFHL) model” introduces 
the Probability Density Function (PDF) and Cumulative Distribution Function (CDF) of the OFHL model, 
alongside several associated functions. In Section “Basic properties”, the emphasis switches to examining the 
statistical characteristics such as the Quantile function, moments, moment generating function, conditional and 
incomplete moments, mean residual time, mean waiting time, as well as minima and maxima associated with 
the OFHL model. In Section “Parameter estimation of OFHL model”, a comprehensive analysis of six classical 
point estimation approaches for the OFHL model is thoroughly examined. In Section “Simulation study”, an 
extensive Monte Carlo simulation analysis is employed to evaluate the performance of these estimators. Finally, 
Section “Real data applications” showcases two applications using real data, demonstrating the flexibility of the 
suggested approach. The study concludes in Section “Conclusion”, summarizing the findings and implications 
of the research.

The odd Frechet Half‑Logistic (OFHL) model
In this part, we investigate the Odd Frechet Half-Logistic model and look at aspects of its statistical properties. 
By inserting Eqs. (1) and (2) into Eq. (4), we deduce the OFHL PDF having two positive shapes parameters 
α and θ , abbreviated as OFHL(α, θ), given by

(1)m(x; θ) =
2θe−θx

(
1+ e−θx

)2 ; x, θ > 0

(2)M(x; θ) =
1− e−θx

1+ e−θx
; x, θ > 0

(3)F(x;α,π) =

[
M(x;π)

1−M(x;π)

]

∫

0

α

xα+1
e−x−α

dx = exp

[
−

(
1−M(x;π)

M(x;π)

)α]

(4)f (x;α,π) =
αm(x;π)[1−M(x;π)]α−1

M(x;π)α+1
exp

[
−

(
1−M(x;π)

M(x;π)

)α]
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The CDF of the OFHL model corresponding to (5) is computed as

Reliability function
The mathematical expressions for reliability function of OFHL(α, θ) distribution is calculated as

Hazard rate function
The associated hazard rate function of OFHL(α, θ) distribution takes the form

Figure 1 visually illustrates the PDF of OFHL model across various values of parameters α and θ . This depic-
tion showcases the versatility of the OFHL model, exhibiting PDFs that can be unimodal, right-skewed, sym-
metric, or even demonstrate an increasing density function. These variations portray the model’s adaptability in 
capturing diverse data patterns related to lifetime distributions.

Figure 2 depicts the graphical representation HRF for distinct parameter values of the OFHL model. This 
graphical representation demonstrates the flexibility of the OFHL model in modeling different types of lifetime 
data by displaying HRFs that can be decreasing, increasing, exhibit a bathtub-shaped pattern, or even an inverted 
bathtub-shaped pattern. This flexibility highlights the model’s capability to capture a wide range of behaviours 
observed in lifetime data analysis (Fig. 3).

Series expansion of the OFHL model
A useful series expansion of the PDF and CDF of the OFHL model is provided in this section.

The series expansion of e−y is derived by using Taylor series expansion as given by

(5)f (x;α, θ) =
αθ

(
2e−θx

)α
(
1− e−θx

)α+1
exp

{
−

(
2e−θx

1− e−θx

)α
}
; x > 0,

(6)F(x;α, θ) = exp

{
−

(
2e−θx

1− e−θx

)α
}
; x > 0

(7)R(x;α, θ) = 1− exp

{
−

(
2e−θx

1− e−θx

)α
}

(8)h(x;α, θ) =
αθ

(
2e−θx

)α
exp

{
−
(

2e−θx

1−e−θx

)α}

(
1− e−θx

)α+1
[
1− exp

{
−
(

2e−θx

1−e−θx

)α}] .

Figure 1.   Variations of PDF of OFHL(α, θ) distribution along with parameters α and θ.
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The binomial series expansion of (1− x)−n is derived by using the binomial theorem and Taylor series expan-
sion. The expansion is derived as

Then, it follows that, using Eq. (9) and Eq. (10), we can expand

(9)e−y =

∞∑

ξ=0

(−1)ξ
yξ

ξ !
.

(10)(1− x)−n =

∞∑

k=0

(
n+ k − 1

k

)
xk , for|x| < 1,

Figure 2.   Fluctuations of HRF of OFHL(α, θ) distribution along with parameters α and θ.

Figure 3.   TTT plots of the Covid-19 and Survival time datasets.
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and

Using Eq. (11) and Eq. (12) in Eq. (6), the PDF of the OFHL(α, θ) model can be rewritten as

where

Basic properties
This part is devoted to derive some of the basic properties of the OFHL(α, θ) model such as quantile function, 
ordinary moments, incomplete and conditional moments and order statistics.

Quantile function
By inverting the CDF of the OFHL(α, θ) model, the expression for quantile function Q(u) of the random variable 
X is calculated as

where u is the uniform random variable defined on a unit interval [0,1].
As a result, the median (M) of the OFHL(α, θ) model is computed by setting u = 0.5 , we get

Moments and moment generating function
If X follows OFHL(α, θ) model, then the rth moment about origin (raw moments) can be evaluated by extending 
the PDF given by Eq. (13)

Using Integration via substitution method in Eq. (14), we perform the following operations:
Let,

Thus,

On simplification, we get

(11)exp

{
−

(
2e−θx

1− e−θx

)α
}

=

∞∑

k=0

(−1)k

k!

(
2e−θx

1− e−θx

)αk

,

(12)
(
1− e−θx

)−(αk+α+1)
=

∞∑

ℓ=0

(
αk + α + ℓ

ℓ

)(
e−θx

)ℓ

(13)

f (x;α, θ) = αθ

∞∑

k,ℓ=0

(−1)k

k!

(
αk + α + ℓ

ℓ

)
2α(k+1)

(
e−θx

)α(k+1)+ℓ
,

f (x;α, θ) = αθ

∞∑

k,ℓ=0

ηk,ℓ2
α(k+1)

(
e−θx

)α(k+1)+ℓ
; x > 0,α, θ > 0

ηk,ℓ =
(−1)k

k!

(
αk + α + ℓ

ℓ

)
.

Q(u) =
1

θ
log



1+
2

�
−log(u)

� 1
α



.

M =
1

θ
log



1+
2

�
−log(0.5)

� 1
α



.

E
(
Xr

)
=

∞∫

0

xr f (x;α, θ)dx; r = 1, 2, 3, . . .

(14)E
(
Xr

)
= αθ

∞∑

k,ℓ=0

ηk,ℓ2
α(k+1)

∞∫

0

xr
(
e−θx

)α(k+1)+ℓ
dx

(α(k + 1)+ ℓ)x = z ⇒ x =
z

α(k + 1)+ ℓ
⇒ dx =

dz

α(k + 1)+ ℓ
.

E
(
Xr

)
= αθ

∞∑

k,ℓ=0

ηk,ℓ2
α(k+1)

∞∫

0

zre−θz

(α(k + 1)+ ℓ)r+1
dz.
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The moment generating function of OFHL(α, θ) model utilizing the Maclaurin series is mentioned as

Thus, by using Eq. (15), the expression for moment generating function is computed as

Incomplete and conditional moments
If X belongs to OFHL(α, θ) distribution, then the rth incomplete moment is given by

Using the PDF (13), we can write

On simplification, we obtain

where, γ (a, b) =
a∫

0

xb−1e−xdx is the lower incomplete gamma function.

Furthermore, the rth conditional moment, say �r

(
y
)
= E

(
Yr |Y > y

)
 is given by

Hence, by using (13), �r

(
y
)
 can be written as

On simplication, the final expression comes out to be

Mean residual life and mean waiting time
Suppose X is a continuous random variable having survival function R(x) , the mean residual life function, say 
π(t) is defined as the expected life of an item after it has reached a certain age t  , is given

where,

and

(15)E
(
Xr

)
= α

∞∑

k,ℓ=0

ηk,ℓ
2α(k+1)

(α(k + 1)+ ℓ)r+1

Ŵ(r + 1)

θ r
.

MX(t) = E
(
etx

)
=

∞∑

r=0

tr

r!
E
(
Xr

)
,

MX(t) = α

∞∑

k,ℓ=0

ηk,ℓ
tr

r!

2α(k+1)

(α(k + 1)+ ℓ)r+1

Ŵ(r + 1)

θ r
.

ϕr
(
y
)
=

y∫

0

xr f (x;α, θ)dx; r = 1, 2, 3, . . .

ϕr
(
y
)
== αθ

∞∑

k,ℓ=0

ηk,ℓ2
α(k+1)

y∫

0

xr
(
e−θx

)α(k+1)+ℓ
dx

ϕr
(
y
)
= α

∞∑

k,ℓ=0

ηk,ℓ
2α(k+1)

(α(k + 1)+ ℓ)r+1

γ
{
r + 1, (α(k + 1)+ ℓ)θy

}

θ r
.

�r

(
y
)
=

1

F(y)

∞∫

y

xr f (x;α, θ)dx; r = 1, 2, 3, . . .

�r

(
y
)
=

αθ
∑∞

k,ℓ=0 ηk,ℓ2
α(k+1)

∞∫
y
xr
(
e−θx

)α(k+1)+ℓ
dx

1−
∑∞

k=0
(−1)k

k!

(
2e−θx

1−e−θx

)αk

�r

(
y
)
=

α
∑∞

k,ℓ=0 ηk,ℓ
2α(k+1)

(α(k+1)+ℓ)r+1

Ŵ{r+1,(α(k+1)+ℓ)θy}
θ r

1−
∑∞

k=0
(−1)k

k!

(
2e−θx

1−e−θx

)αk .

(16)π(t) =
1

R(t)



E(t)−

t�

0

xf (x;α, θ)dx



− t

(17)E(t) =
α

θ

∞∑

k,ℓ=0

ηk,ℓ
2α(k+1)

(α(k + 1)+ ℓ)2
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By using (7), (17) and (18), π(t) can be written as

where,

The mean waiting time is very important to analyse the actual time of failure of an already failed item. It 
represents the amount of time that has passed since an object failed, assuming that the failure occurred within 
the interval [0, t]. The mean waiting time say π(t) , is defined by

By using (6) and (18), the final expression of π(t) comes out to be

Order statistics
In real-world applications incorporating data from life testing studies, order statistics is very important. Assume 
that X1,X2, . . . ,Xn be a random sample with relevant order statistics given by X(1),X(2), . . . ,X(n) . The CDF of 
the nth or maximum order statistics, say Fn:n(x) , is given as

Consequently, the PDF of the nth order statistics, say fn:n(x) , is computed as

The CDF and PDF of minimum order statistics is given by

and

Parameter estimation of OFHL model
This section is devoted to discuss various estimation methodologies for estimating the unknown parameters of 
the OFHL model, such as the Maximum Likelihood Estimation (MLE), Anderson–Darling Estimation (ADE), 
Cramer-von Mises Estimation (CVME), Maximum Product of Spacing Estimation (MPSE), Ordinary Least 
Square Estimation (OLSE) and Weighted Least Square Estimation (WLSE).

Maximum likelihood estimation
Let x1, x2, , . . . , xn be a random sample of size n following OFHL model with parameters α and θ , then the loga-
rithmic likelihood function is

(18)

t∫

0

xf (x;α, θ)dx = α

∞∑

k,ℓ=0

ηk,ℓ
2α(k+1)

(α(k + 1)+ ℓ)2
γ {2, (α(k + 1)+ ℓ)θ t}

π(t) =
1�

1− exp
�
−
�

2e−θ t

1−e−θ t

�α��



α

θ

∞�

k,ℓ=0

ηk,ℓA− α

∞�

k,ℓ=0

ηk,ℓAB



− t

A =
2α(k+1)

(α(k + 1)+ ℓ)2
,

B = γ {2, (α(k + 1)+ ℓ)θ t}.

(19)π(t) = t −
1

F(t)

t∫

0

xf (x;α, θ)dx

π(t) = t −
α

exp
{
−
(

2e−θ t

1−e−θ t

)α}
∞∑

k,ℓ=0

ηk,ℓAB.

Fn:n(x) = [F(x)]n =

[
exp

{
−

(
2e−θx

1− e−θx

)α
}]n

.

fn:n(x) = n[F(x)]n−1f (x)

fn:n(x) = nαθ

[
exp

{
−

(
2e−θx

1− e−θx

)α
}]n−1 ∞∑

k,ℓ=0

ηk,ℓ2
α(k+1)

(
e−θx

)α(k+1)+ℓ
.

F1:n(x) = 1− [1− F(x)]n = 1−

[
1− exp

{
−

(
2e−θx

1− e−θx

)α
}]n

.

f1:n(x) = nαθ

[
1− exp

{
−

(
2e−θx

1− e−θx

)α
}]n−1 ∞∑

k,ℓ=0

ηk,ℓ2
α(k+1)

(
e−θx

)α(k+1)+ℓ
.
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By differentiating (20) with respect to unknown parameters α and θ , the resulting partial derivatives are 
given by

and

By setting the above partial derivatives equal to zero, we could calculate the ML estimators α̂ML and θ̂ML of 
the unknown parameters α and θ . Since, the given equations are not in a closed form and cannot be derived 
analytically. However, R software can be used to get ML estimators of the parameters.

Anderson darling estimation
The Anderson–Darling test Anderson and Darling23 can be used in place of other statistical tests to identify devia-
tions from normality in sample distributions. The AD estimators denoted by α̂AD and θ̂AD of the parameters can 
be evaluated by minimizing the following function with respect to α and θ , respectively

Cramer‑von‑Mises estimation
Our choice to utilise minimal distance estimators of the Cramer-von-Mises type was supported by empirical 
data from Macdonald24 proving that the bias of the estimator is smaller than that of the competing minimum 
distance estimators. The Cramer-von-Mises estimators α̂CVM and θ̂CVM of α and θ are derived by minimizing 
the value of the following function

Maximum product of spacing estimation
This approach was first developed by Cheng and Amin25 as an alternative to ML estimation. The uniform spacing 
for a random sample of size n taken from the OFHL model can be determined by

where Dk denotes the uniform spacing, F
(
x(0)

)
= 0 and F

(
x(n+1)

)
= 1.

The MPS estimators α̂MPS and θ̂MPS of the unknown parameters α and θ can be obtained by maximizing the 
following function

(20)

L(α, θ) = nlog(α)+ nlog(θ)+ α

n∑

k=1

log
(
2e−θxk

)
− (α + 1)

n∑

k=1

log
(
1− e−θxk

)
− α

n∑

k=1

2e−θxk
(
1− e−θxk

)

(21)
∂L

∂α
=

n

α
+

n∑

k=1

log
(
2e−θxk

)
−

n∑

k=1

log
(
1− e−θxk

)
−

n∑

k=1

2e−θxk
(
1− e−θxk

)

(22)
∂L

∂θ
=

n

θ
− α

n∑

k=1

xk − (α + 1)

n∑

k=1

xke
−θxk

(
1− e−θxk

) + 2α

n∑

k=1

xie
−θxk

(
1− e−θxk

)2

A(α, θ) = −n−
1

n

n∑

k=1

(2k − 1)
[
lnF

(
x(k)

)
+ lnS

(
x(n+1−k)

)]
.

A(α, θ) = −n−
1

n

n∑

k=1

(2k − 1)

[
lnexp

{
−

(
2e−θx(k)

1− e−θx(k)

)α
}

+ ln

[
1− exp

{
−

(
2e−θx(k)

1− e−θx(k)

)α
}]]

.

C(α, θ) =
1

12n
+

n∑

k=1

{
F
(
x(k)

)
−

2k − 1

2n

}2

.

C(α, θ) =
1

12n
+

n∑

k=1

[
exp

{
−

(
2e−θx(k)

1− e−θx(k)

)α
}

−
2k − 1

2n

]2
.

Dk(α, θ) = F
(
x(k)

)
− F

(
x(k−1)

)
; k = 1, 2, . . . , n+ 1.

M(α, θ) =
1

n+ 1

n+1∑

k=1

logDk .

M(α, θ) =
1

n+ 1

n+1∑

k=1

log

[
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{
−

(
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1− e−θx(k)

)α
}
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−

(
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Ordinary and Weighted Least Square Estimation
For estimating the unknown parameters, the least square (LS) and weighted least square (WLS) approaches are 
widely known Swain et al.26. Here, the two approaches for parameter estimation of OFHL model are examined. 
By minimising the following function with respect to α and θ respectively, it is possible to obtain the LS and 
WLS estimators α̂ and θ̂  of the OFHL distribution

By setting nk = 1 , the LS estimators α̂LS and θ̂LS can be obtained, while as by setting nk = (n+1)2(n+2)
k(n−k+1)  , we can 

obtain the WLS estimators denoted by α̂WLS and θ̂WLS.

Simulation study
It is not theoretically possible to compare the effectiveness of the introduced estimation methods derived in the 
previous section for estimating the parameters of the OFHL model. Thus, we undertake a Monte Carlo simulation 
analysis to identify the top estimation method among the six classical estimation methods. In order to do this, 
we created 1,000 samples at random of sizes 20, 40, 100, 200 and 400 from the OFHL model for three different 
sets of parameter values, as shown below:

In this simulation study, we evaluate the average values of estimates (AVEs), biases, mean square errors 
(MSEs) and mean relative errors (MREs). The following mathematical formulas are used to accomplish these 
objectives:

where ϑ = (α, θ) . All the results related to simulation were obtained by using R-Studio software. The results of 
the simulation are displayed in Tables 1, 2, 3.

Interpretations at the end of the simulation Results

•	 The absolute biases of α̂ and θ̂  decreases as n rises under all estimation techniques.
•	 As n increases, the MSE reduces for all the methods of estimation, satisfying the consistency criteria.
•	 In all estimation procedures, as n increases, the discrepancy between estimates and specified parameters 

decreases.
•	 In terms of MSE, the method of maximum product of spacing estimation outperforms the other methods in 

the majority of situations.
•	 In light of our analysis and from Table 4, we determine that MPSE performs best (overall score of 23.5) as n 

approaches infinity in terms of bias, MSE and MRE for the parameter combinations taken into account in 
our study.

•	 In most instances, the second best performing estimator is MLE (overall score of 27.5) followed by ADE 
(overall score of 47.5).

•	 The overall position of the remaining estimators is displayed in Table 4.

The overall inference drawn from the simulation results is that as sample size increases, bias, MSE and MRE 
for all parameters goes on decreasing and eventually will reach to zero. This shows the precision of both the 
numerical computations for the OFHL parameters and the estimation techniques.

Real data applications
To highlight the significance of the OFHL distribution discussed in Section “The odd Frechet Half-Logistic 
(OFHL) model”, we demonstrate two real applications to assess the adaptability of the subjected model.

Dataset I: The first dataset covers 108 days from 4 March to 20 July 2020 and corresponds to the COVID-19 
mortality rate for Mexico. It was previously examined by Almongy et al.27. The values of first data: 8.826, 6.105, 
10.383, 7.267, 13.220, 6.015, 10.855, 6.122, 10.685, 10.035, 5.242, 7.630, 14.604, 7.903, 6.327, 9.391, 14.962, 4.730, 
3.215, 16.498, 11.665, 9.284, 12.878, 6.656, 3.440, 5.854, 8.813, 10.043, 7.260, 5.985, 4.424, 4.344, 5.143, 9.935, 

S(α, θ) =

n∑

k=1

nk

{
F
(
x(k)

)
−

i

n+ 1

}2

.

S(α, θ) =

n∑

k=1

nk

[
exp

{
−

(
2e−θx(k)

1− e−θx(k)

)α
}

−
i

n+ 1

]2
.

Set I : α = 0.25, θ = 0.75.

Set II : α = 1.50, θ = 0.50.

Set III : α = 1.25, θ = 1.75.

Bias(ϑ) =
1

N

N∑

k=1

(
ϑ̂ − ϑ

)
,MSE(ϑ) =

1

N

N∑

k=1

(
ϑ̂ − ϑ

)2
,MSE(ϑ) =

1

N

N∑

k=1

(
ϑ̂ − ϑ

)
/ϑ .



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4326  | https://doi.org/10.1038/s41598-024-53768-9

www.nature.com/scientificreports/

7.840, 9.550, 6.968, 6.370, 3.537, 3.286, 10.158, 8.108, 6.697, 7.151, 6.560, 2.988, 3.336, 6.814, 8.325, 7.854, 8.551, 
3.228, 3.499, 3.751, 7.486, 6.625, 6.140, 4.909, 4.661, 1.867, 2.838, 5.392, 12.042, 8.696, 6.412, 3.395, 1.815, 3.327, 
5.406, 6.182, 4.949, 4.089, 3.359, 2.070, 3.298, 5.317, 5.442, 4.557, 4.292, 2.500, 6.535, 4.648, 4.697, 5.459, 4.120, 

Table 1.   The Average estimate (AVE), Bias, MSE and MRE for (α = 0.25, θ = 0.75).

N Estimate Est. Par MLE ADE CVME MPSE OLSE WLSE

20 AVE
α̂ 0.27934 0.26066 0.28885 0.23622 0.26194 0.26514

θ̂ 0.76196 0.80337 0.79912 0.77849 0.83809 0.80793

Bias
α̂ 0.05421[3] 0.05308[2] 0.07615[6] 0.05062[1] 0.07281[5] 0.06267[4]

θ̂ 0.17949[1] 0.22869[3] 0.25341[4] 0.19821[2] 0.30593[6] 0.26015[5]

MSE
α̂ 0.00560[3] 0.00524[2] 0.01320[6] 0.00443[1] 0.01143[5] 0.00857[4]

θ̂ 0.05704[1] 0.09237[3] 0.12542[4] 0.06743[2] 0.18887[6] 0.12258[5]

MRE
α̂ 0.21683[3] 0.21234[2] 0.30462[6] 0.20250[1] 0.29122[5] 0.25068[4]

θ̂ 0.23931[1] 0.30491[3] 0.33789[4] 0.26427[2] 0.40791[6] 0.34687[5]

∑
Ranks 12[2] 15[3] 30[5] 9[1] 33[6] 27[4]

40

AVE
α̂ 0.25642 0.25364 0.26972 0.23952 0.2559 0.26057

θ̂ 0.75775 0.78112 0.7797 0.77144 0.79826 0.77051

Bias
α̂ 0.03167[1] 0.03467[3] 0.05169[6] 0.03184[2] 0.04831[5] 0.04282[4]

θ̂ 0.12711[1] 0.16321[3] 0.19627[6] 0.12936[2] 0.19279[5] 0.17052[4]

MSE
α̂ 0.00190[2] 0.00202[3] 0.00570[6] 0.00161[1] 0.00437[5] 0.00346[4]

θ̂ 0.02789[1] 0.04677[3] 0.07210[5] 0.02802[2] 0.07444[6] 0.04839[4]

MRE
α̂ 0.12667[1] 0.13868[3] 0.20677[6] 0.12736[2] 0.19324[5] 0.17129[4]

θ̂ 0.16948[1] 0.21761[3] 0.26170[6] 0.17248[2] 0.25706[5] 0.22736[4]

∑
Ranks 7[1] 18[3] 35[6] 11[2] 31[5] 24[4]

100

AVE
α̂ 0.25642 0.24924 0.25589 0.24229 0.25073 0.24899

θ̂ 0.74748 0.7725 0.75956 0.765 0.7681 0.77494

Bias
α̂ 0.01870[2] 0.02269[3] 0.02687[5] 0.01835[1] 0.02979[6] 0.02325[4]

θ̂ 0.07852[2] 0.10164[3] 0.12311[6] 0.07570[1] 0.12149[5] 0.10625[4]

MSE
α̂ 0.00062[2] 0.00079[3] 0.00127[5] 0.00051[1] 0.00145[6] 0.00088[4]

θ̂ 0.01020[2] 0.01753[3] 0.02407[5] 0.00960[1] 0.02413[6] 0.01756[4]

MRE
α̂ 0.07481[2] 0.09074[3] 0.10748[5] 0.07338[1] 0.11916[6] 0.09298[4]

θ̂ 0.10469[2] 0.13552[3] 0.16414[6] 0.10094[1] 0.16199[5] 0.14167[4]

∑
Ranks 12[2] 18[3] 32[5] 6[1] 34[6] 24[4]

200

AVE
α̂ 0.25371 0.25188 0.25428 0.24696 0.25114 0.2512

θ̂ 0.74875 0.75315 0.74815 0.7508 0.75334 0.75746

Bias
α̂ 0.01333[2] 0.01552[3] 0.02143[6] 0.01298[1] 0.02008[5] 0.01619[4]

θ̂ 0.05580[1] 0.07406[4] 0.08269[6] 0.05696[2] 0.08221[5] 0.07035[3]

MSE
α̂ 0.00029[1] 0.00039[3] 0.00076[6] 0.00028[2] 0.00067[5] 0.00042[4]

θ̂ 0.00513[2] 0.00848[4] 0.01058[6] 0.00506[1] 0.01056[5] 0.00795[3]

MRE
α̂ 0.05333[2] 0.06209[3] 0.08570[6] 0.05191[1] 0.08030[5] 0.06478[4]

θ̂ 0.07440[1] 0.09874[4] 0.11025[6] 0.07595[2] 0.10961[5] 0.09381[3]

∑
Ranks 9[1.5] 21[3.5] 36[6] 9[1.5] 30[5] 21[3.5]

400

AVE
α̂ 0.25101 0.25024 0.25076 0.2469 0.25057 0.24933

θ̂ 0.75125 0.75255 0.75762 0.75292 0.75183 0.75655

Bias
α̂ 0.00874[1] 0.01088[3] 0.01337[6] 0.00964[2] 0.01250[5] 0.01102[4]

θ̂ 0.03822[2] 0.05070[3] 0.05889[6] 0.03751[1] 0.05582[5] 0.05089[4]

MSE
α̂ 0.00012[1] 0.00019[3.5] 0.00029[6] 0.00014[2] 0.00026[5] 0.00019[3.5]

θ̂ 0.00224[1.5] 0.00396[3] 0.00562[6] 0.00224[1.5] 0.00490[5] 0.00417[4]

MRE
α̂ 0.03495[1] 0.04353[3] 0.05347[6] 0.03855[2] 0.05000[5] 0.04407[4]

θ̂ 0.05096[2] 0.06760[3] 0.07851[6] 0.05001[1] 0.07443[5] 0.06786[4]

∑
Ranks 8.5[1] 18.5[3] 36[6] 9.5[2] 30[5] 23.5[4]
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3.922, 3.219, 1.402, 2.438, 3.257, 3.632, 3.233, 3.027, 2.352, 1.205, 2.077, 3.778, 3.218, 2.926, 2.601, 2.065, 1.041, 
1.800, 3.029, 2.058, 2.326, 2.506, 1.923.

Dataset II: The second dataset used in this study corresponds to the survival periods (measured in years) of 
46 patients treated with chemotherapy only. The earlier reports of this dataset were made by Bekker et al.28 and 

Table 2.   The Average estimate (AVE), Bias, MSE and MRE for (α = 1.50, θ = 0.50).

N Estimate Est. Par MLE ADE CVME MPSE OLSE WLSE

20

AVE
α̂ 1.62349 1.53249 1.64023 1.40593 1.50013 1.5177

θ̂ 0.49953 0.50111 0.4999 0.50296 0.50502 0.50123

Bias
α̂ 0.25228[3] 0.23576[2] 0.30452[6] 0.22689[1] 0.27849[5] 0.25393[4]

θ̂ 0.03807[4] 0.03798[3] 0.03919[6] 0.03685[1] 0.03772[3] 0.03808[5]

MSE
α̂ 0.11973[4] 0.09503[2] 0.19730[6] 0.07625[1] 0.13046[5] 0.11330[3]

θ̂ 0.00232[5] 0.00225[4] 0.00240[6] 0.00217[1] 0.00224[2.5] 0.00224[2.5]

MRE
α̂ 0.16819[3] 0.15718[2] 0.20301[6] 0.15126[1] 0.18566[5] 0.16929[4]

θ̂ 0.07615[4.5] 0.07595[3] 0.07838[6] 0.07369[1] 0.07543[2] 0.07615[4.5]

∑
Ranks 23.5[5] 16[2] 36[6] 6[1] 22.5[3] 23[4]

40

AVE
α̂ 1.55929 1.5144 1.56286 1.42963 1.49823 1.51317

θ̂ 0.50039 0.50083 0.49988 0.50269 0.50208 0.50196

Bias
α̂ 0.14944[1] 0.16213[3] 0.19976[6] 0.15444[2] 0.19401[5] 0.16325[4]

θ̂ 0.02664[2] 0.02711[3] 0.02747[4] 0.02626[1] 0.02799[6] 0.02748[5]

MSE
α̂ 0.03618[2] 0.04276[3] 0.06258[6] 0.03613[1] 0.06100[5] 0.04591[4]

θ̂ 0.00113[2] 0.00119[4.5] 0.00119[4.5] 0.00110[1] 0.00127[6] 0.00118[3]

MRE
α̂ 0.09963[1] 0.10809[3] 0.13317[6] 0.10296[2] 0.12934[5] 0.10884[4]

θ̂ 0.05328[2] 0.05422[3] 0.05494[4] 0.05251[1] 0.05597[6] 0.05495[5]

∑
Ranks 10[2] 19.5[3] 30.5[5] 8[1] 33[6] 25[4]

100

AVE
α̂ 1.52698 1.51098 1.52192 1.45496 1.49071 1.50306

θ̂ 0.49885 0.50164 0.49972 0.50106 0.49972 0.50042

Bias
α̂ 0.09570[1] 0.10035[4] 0.12095[6] 0.09584[2] 0.11285[5] 0.09964[3]

θ̂ 0.01690[3] 0.01739[4] 0.01751[5] 0.01659[1] 0.01802[6] 0.01683[2]

MSE
α̂ 0.01538[2] 0.01633[4] 0.02359[6] 0.01409[1] 0.02063[5] 0.01594[3]

θ̂ 0.00046[3] 0.00048[4.5] 0.00048[4.5] 0.00043[1.5] 0.00052[6] 0.00043[1.5]

MRE
α̂ 0.06380[1] 0.06690[4] 0.08063[6] 0.06389[2] 0.07523[5] 0.06643[3]

θ̂ 0.03380[3] 0.03479[4] 0.03503[5] 0.03318[1] 0.03604[6] 0.03366[2]

∑
Ranks 13[2] 24.5[4] 32.5[5] 8.5[1] 33[6] 14.5[3]

200

AVE
α̂ 1.51148 1.50583 1.50771 1.46873 1.50161 1.50229

θ̂ 0.50033 0.50025 0.50009 0.50042 0.50054 0.50021

Bias
α̂ 0.06230[1] 0.06676[2] 0.07949[5] 0.06813[3] 0.08134[6] 0.07380[4]

θ̂ 0.01150[1] 0.01240[4.5] 0.01240[4.5] 0.01214[3] 0.01271[6] 0.01196[2]

MSE
α̂ 0.00620[1] 0.00730[3] 0.00978[5] 0.00719[2] 0.01047[6] 0.00868[4]

θ̂ 0.00021[1] 0.00024[4.5] 0.00024[4.5] 0.00022[2] 0.00025[6] 0.00023[3]

MRE
α̂ 0.04153[1] 0.04451[2] 0.05299[5] 0.04542[3] 0.05423[6] 0.04920[4]

θ̂ 0.02300[1] 0.02480[5] 0.02479[4] 0.02427[3] 0.02542[6] 0.02392[2]

∑
Ranks 6[1] 21[4] 28[5] 16[2] 36[6] 19[3]

400

AVE
α̂ 1.50391 1.5018 1.51058 1.4853 1.49614 1.50174

θ̂ 0.49991 0.50015 0.50002 0.50034 0.49969 0.50029

Bias
α̂ 0.04345[1] 0.04906[4] 0.05857[6] 0.04716[2] 0.05510[5] 0.04813[3]

θ̂ 0.00844[2.5] 0.00848[4] 0.00909[6] 0.00838[1] 0.00889[5] 0.00844[2.5]

MSE
α̂ 0.00293[1] 0.00376[4] 0.00555[6] 0.00343[2] 0.00486[5] 0.00362[3]

θ̂ 0.00011[2.5] 0.00011[2.5] 0.00013[6] 0.00011[2.5] 0.00012[5] 0.00011[2.5]

MRE
α̂ 0.02897[1] 0.03271[4] 0.03905[6] 0.03144[2] 0.03673[5] 0.03209[3]

θ̂ 0.01688[2.5] 0.01697[4] 0.01819[6] 0.01676[1] 0.01777[5] 0.01688[2.5]

∑
Ranks 10.5[1.5] 22.5[4] 36[6] 10.5[1.5] 30[5] 16.5[3]
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Fulment et al.29.The values of second are: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 
0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 
1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033.

Table 3.   The Average estimate (AVE), Bias, MSE and MRE for (α = 1.25, θ = 1.25).

N Estimate Est. Par MLE ADE CVME MPSE OLSE WLSE

20

AVE
α̂ 1.37061 1.28851 1.36593 1.15531 1.24319 1.24854

θ̂ 1.24745 1.25617 1.24406 1.27439 1.26248 1.27121

Bias
α̂ 0.21585[3] 0.19458[1] 0.25103[6] 0.19763[2] 0.23899[5] 0.21820[4]

θ̂ 0.10813[2] 0.11276[1] 0.11641[6] 0.10470[1] 0.11486[5] 0.10897[3]

MSE
α̂ 0.08238[4] 0.06516[2] 0.12191[6] 0.05684[1] 0.09416[5] 0.07952[3]

θ̂ 0.01820[2] 0.02000[4] 0.02096[5] 0.01678[1] 0.02149[6] 0.01899[3]

MRE
α̂ 0.17268[4] 0.15566[1] 0.20083[6] 0.15811[2] 0.19119[5] 0.17456[3]

θ̂ 0.08650[2] 0.09021[4] 0.09312[6] 0.08376[1] 0.09189[5] 0.08718[3]

∑
Ranks 17[3] 13[2] 35[6] 8[1] 31[5] 19[4]

40

AVE
α̂ 1.28907 1.27342 1.2989 1.19092 1.23236 1.26674

θ̂ 1.25632 1.25108 1.24429 1.25764 1.26492 1.24992

Bias
α̂ 0.11824[1] 0.13451[2] 0.16051[6] 0.13735[3] 0.15870[5] 0.13838[4]

θ̂ 0.07812[2] 0.08437[6] 0.07991[4] 0.07543[1] 0.08425[5] 0.07906[3]

MSE
α̂ 0.02309[1] 0.03126[3] 0.04649[6] 0.02836[2] 0.04595[5] 0.03183[4]

θ̂ 0.00970[3] 0.01112[5] 0.00993[4] 0.00915[1] 0.01128[6] 0.00941[2]

MRE
α̂ 0.09459[1] 0.10761[3] 0.12841[6] 0.10988[4] 0.12696[1] 0.11071[5]

θ̂ 0.06250[2] 0.06749[6] 0.06393[4] 0.06034[1] 0.06740[5] 0.06325[3]

∑
Ranks 10[1] 25[4] 30[6] 12[2] 27[5] 21[3]

100

AVE
α̂ 1.26636 1.25698 1.27696 1.21888 1.25057 1.25582

θ̂ 1.2525 1.24805 1.24939 1.25629 1.25499 1.25306

Bias
α̂ 0.07358[1] 0.07645[2] 0.09298[5] 0.07789[3] 0.09482[6] 0.08729[4]

θ̂ 0.05055[3] 0.04709[1] 0.05459[6] 0.04713[2] 0.05310[5] 0.05112[4]

MSE
α̂ 0.00853[1] 0.00912[2] 0.01405[5] 0.00932[3] 0.01467[6] 0.01212[4]

θ̂ 0.00385[3] 0.00345[1] 0.00455[6] 0.00365[2] 0.00453[5] 0.00394[4]

MRE
α̂ 0.05886[1] 0.06116[2] 0.07438[5] 0.06231[3] 0.07585[6] 0.06983[4]

θ̂ 0.04044[3] 0.03767[1] 0.04367[6] 0.03770[2] 0.04248[5] 0.04090[4]

∑
Ranks 12[2] 9[1] 33[5.5] 15[3] 33[5.5] 24[4]

200

AVE α̂ 1.25682 1.25811 1.26529 1.22585 1.24223 1.25166

θ̂ 1.24846 1.25095 1.25405 1.25419 1.25016 1.25095

Bias α̂ 0.05402 [2] 0.05631[4] 0.06925[6] 0.05374[1] 0.06119[5] 0.05565[3]

θ̂ 0.03368[1] 0.03789[6] 0.03781[5] 0.03449[2] 0.03689[4] 0.03538[3]

MSE
α̂ 0.00467[2] 0.00504[4] 0.00778[6] 0.00446[1] 0.00588[5] 0.00501[3]

θ̂ 0.00175[1] 0.00222[6] 0.00220[5] 0.00186[2] 0.00209[4] 0.00193[3]

MRE
α̂ 0.04321[2] 0.04505[4] 0.05540[6] 0.04299[1] 0.04895[5] 0.04452[3]

θ̂ 0.02694[1] 0.03031[6] 0.03025[5] 0.02759[2] 0.02951[4] 0.02831[3]

∑
Ranks 9[1.5] 30[5] 33[6] 9[1.5] 27[4] 18[3]

400

AVE
α̂ 1.25809 1.25388 1.25603 1.23663 1.25625 1.254

θ̂ 1.25261 1.25165 1.24691 1.25091 1.24915 1.2503

Bias
α̂ 0.03746[1] 0.03969[3] 0.04717[5] 0.03891[2] 0.04930[6] 0.04197[4]

θ̂ 0.02442[1] 0.02517[3] 0.02624[6] 0.02462[2] 0.02590[5] 0.02581[4]

MSE
α̂ 0.00223[1] 0.00250[3] 0.00358[5] 0.00225[2] 0.00387[6] 0.00283[4]

θ̂ 0.00096[2] 0.00100[3] 0.00107[6] 0.00095[1] 0.00106[4.5] 0.00106[4.5]

MRE
α̂ 0.02997[1] 0.03175[3] 0.03774[6] 0.03113[2] 0.03944[4] 0.03358[5]

θ̂ 0.01954[1] 0.02014[3] 0.02100[6] 0.01970[2] 0.02072[5] 0.02065[4]

∑
Ranks 7[1] 18[3] 34[6] 11[2] 30.5[5] 25.5[4]
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For the purposes of comparison, the OFHL model is contrasted with popular half-logistic extensions, such 
as Kumaraswamy half-logistic (KHL), exponentiated half-logistic (EHL), Marshal-Olkin half-logistic (MOHL), 
power half-logistic (PHL), and half-logistic (HL) distribution. The MLEs of the model parameters and the 
goodness-of-fit (GoF) metrics, including Akaike Information (AIC), Schwarz Information (SIC), Consistent 
Akaike Information (CAIC), and Hannan-Quinn Information (HQIC) criteria, are shown in Tables 5 and 6. 
The best match for the actual dataset may be the model having the least quantities of the aforementioned GoF 
metrics. For the investigated distributions, we also assess the Anderson–Darling (A*), Cramer-Von Mises (W*), 
Kolmogorov–Smirnov (K–S) statistic and associated P-value (PV).

Furthermore, we fitted the OFHL distribution by utilizing the six estimation procedures and the results are 
reported in Tables 7 and 8. The estimated PDF, SF, P-P and Q-Q plots of OFHL model for two datasets are con-
trasted in Figs. 4, 5, 6 and 7 respectively. To sum up, the OFHL model demonstrates that it is the most appropriate 
model for the two datasets by illustrating how it may be applied in a real-world scenario.

Using the TTT (Total time on test) plot recommended by Aarset30, the form of the hazard function of the 
datasets was assessed and the results demonstrate that both datasets display different shapes of hazard rate. 
Iftikhar et al.31 also employed this technique for assessing the graphical overview of hazard rate of the data. It 
was introduced for the two real data sets in Fig. 3.

Final comments on the data analysis results

•	 From the Tables 5 and 6, we can infer that our suggested distribution performs better as compared to other 
competing models.

•	 In dataset I and dataset II, OFHL model has the highest p-value as well as smallest AD, CVM and KS distance.

Table 4.   Partial and overall rankings of all estimation methodologies.

Parameter n MLE ADE CVME MPSE OLSE WLSE

α = 0.25, θ = 0.75

20 2 3 6 1 6 4

40 1 3 6 2 5 4

100 2 3 5 1 6 4

200 1.5 3.5 6 1.5 5 3.5

400 1 3 6 2 5 4

α = 1.50, θ = 0.50

20 5 2 6 1 3 4

40 2 3 5 1 6 4

100 2 4 5 1 6 3

200 1 4 5 2 6 3

400 1.5 4 6 1.5 5 3

α = 1.25, θ = 1.25

20 3 2 6 1 5 4

40 1 4 6 2 5 3

100 2 1 5.5 3 5.5 4

200 1.5 5 6 1.5 4 3

400 1 3 6 2 5 4
∑

Ranks 27.5 47.5 85.5 23.5 77.5 54.5

Overall Rank 2 3 6 1 5 4

Table 5.   The MLEs and GoF metrics for Covid-19 dataset.

Model MLEs AIC SIC CAIC HQIC A* W*
KS
(p-value)

OFHL
α̂ = 1.0083

θ̂ = 0.2807
536.9064 542.2706 537.0206 539.0814 0.3623 0.0622 0.0659 (0.7316)

KHL
α̂ = 4.1539

β̂ = 0.4101 θ̂ = 0.7520
538.6304 546.6768 538.8611 541.8929 0.3696 0.0652 0.0696 (0.6758)

EHL α̂ = 2.6444 θ̂ = 0.3941 537.9374 543.3016 538.0517 540.1124 0.4242 0.0733 0.0807 (0.4824)

MOHL α̂ = 5.6637 θ̂ = 0.4716 548.9523 554.3166 549.0666 551.1274 1.0985 0.1729 0.0778 (0.5307)

PHL α̂ = 3.7335 θ̂ = 0.4397 544.1177 549.482 544.232 546.2927 0.7854 0.1256 0.0883 (0.3679)

HL θ̂ = 0.2539 573.5781 576.2602 573.6158 574.6656 0.5124 0.0839 0.1969 (0.0014)
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Table 6.   The MLEs and GoF metrics statistics for Survival time dataset.

Model MLEs AIC SIC CAIC HQIC A* W* KS (p-value)

OFHL α̂ = 0.4835 θ̂ = 1.7273 117.6707 121.2840 117.9564 119.0177 0.3646 0.0515 0.1005 (0.7155)

KHL α̂ = 0.9908 β̂ = 6.4098 θ̂ = 0.2035 122.1589 127.5789 122.7442 124.1794 0.5803 0.0872 0.1116 (0.5905)

EHL α̂ = 0.8617 θ̂ = 0.9243 121.7464 125.3597 122.0321 123.0934 0.6964 0.1061 0.1252 (0.4453)

MOHL α̂ = 0.5095 θ̂ = 0.7523 120.4358 124.0491 120.7215 121.7828 0.5319 0.0794 0.0926 (0.8018)

PHL α̂ = −1.268 θ̂ = 0.7631 120.7452 124.3585 121.0309 122.0922 0.5637 0.0846 0.1061 (0.6524)

HL θ̂ = 1.0012 120.4103 122.2170 120.5033 121.0838 0.6958 0.1061 0.1583 (0.1882)

Table 7.   Estimate of Parameters and GoF metrics for Covid-19 dataset using various estimation approaches.

α̂ θ̂ −L A* W* KS p-value

MLE 1.0083 0.2807 266.453 0.3623 0.0622 0.0659 0.7316

ADE 1.0020 0.2749 266.525 0.3659 0.0628 0.0557 0.8906

CVME 0.9878 0.2734 266.611 0.3593 0.0618 0.0491 0.9567

MPSE 0.9672 0.2824 266.623 0.3367 0.0585 0.0637 0.7720

OLSE 0.9737 0.2741 266.677 0.3501 0.0605 0.0475 0.9675

WLSE 0.9985 0.2753 266.524 0.3634 0.0624 0.0556 0.8912

Table 8.   Estimate of Parameters and GoF metrics for Survival time dataset using various estimation 
approaches.

α̂ θ̂ −L A* W* KS p-value

MLE 0.4835 1.7273 56.8353 0.3646 0.0515 0.1005 0.7155

ADE 0.4438 1.8046 57.0714 0.4028 0.0583 0.0857 0.8673

CVME 0.4295 1.8668 57.2771 0.4248 0.0621 0.0763 0.9378

MPSE 0.4461 1.7612 57.0547 0.3938 0.0567 0.0921 0.8065

OLSE 0.4132 1.8843 57.5716 0.4419 0.0650 0.0748 0.9462

WLSE 0.4369 1.8282 57.1610 0.4121 0.0599 0.0819 0.8986

Figure 4.   (i) Fitted density plot of OFHL distribution. (ii) The fitted survival plot and empirical survival plot of 
OFHL for Covid-19 dataset.
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Conclusion
In the current study, we propose a novel two parameter model, namely two-parameter odd Fréchet Half-Logistic 
(OFHL) distribution; its mathematical features have been thoroughly described. The OFHL distribution is more 
adaptable for analyzing lifespan data as compared to other models. The suggested model contains a broad variety 
of forms, which boosts its flexibility in modeling different types of data, as inferred from the PDF and hazard 
rate plots. Several conventional estimation approaches, including MLE and five other methods, were used to 
estimate the unknown parameters of the proposed model. A simulation study with 1000 iterations was conducted 
to analyse and evaluate the performance of the estimation approaches and it was found that as n increases, the 
estimated biases, MSEs and MREs of the parameters α and θ under the MPSE estimation approach quickly 
decreases, demonstrating the effectiveness of the MPSE procedure. Further, the superiority and effectiveness of 
the suggested model over some of its competitors was further established using real-world data analysis, which 
demonstrates that the underlying model fits the data more accurately than the other distributions. We anticipate 
that the findings from this study will be valuable for practitioners in a variety of fields.

Figure 5.   (i) Fitted density plot of OFHL distribution. (ii) The fitted survival plot and empirical survival plot of 
OFHL for Survival time dataset.

Figure 6.   P–P plots of the OFHL for Covid-19 and Survival time datasets.
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Data availability
The data that supports the findings of this study are available within the article.
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