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Continuous and discontinuous 
compressible flows 
in a converging–diverging channel 
solved by physics‑informed neural 
networks without exogenous data
Hong Liang 1, Zilong Song 1, Chong Zhao 2 & Xin Bian 3*

Physics-informed neural networks (PINNs) are employed to solve the classical compressible flow 
problem in a converging–diverging nozzle. This problem represents a typical example described by 
the Euler equations, a thorough understanding of which serves as a guide for solving more general 
compressible flows. Given a geometry of the channel, analytical solutions for the steady states do 
indeed exist, and they depend on the ratio between the back pressure of the outlet and the stagnation 
pressure of the inlet. Moreover, in the diverging region, the solution may branch into subsonic flow, 
supersonic flow, or a mixture of both with a discontinuous transition where a normal shock occurs. 
Classical numerical schemes with shock fitting and capturing methods have been developed to solve 
this type of problem effectively, whereas the original PINNs are unable to predict the flows correctly. 
We make a first attempt to exploit the power of PINNs to solve this problem directly by adjusting 
the weights of different components of the loss function to acquire physical solutions and in the 
meantime, avoid trivial solutions. With a universal setting yet no exogenous data, we are able to solve 
this problem accurately; that is, for different given pressure ratios, PINNs provide different branches 
of solutions at both steady and unsteady states, some of which are discontinuous in nature. For an 
inverse problem such as unknown specific-heat ratio, it works effectively as well.

Keywords  Unsteady compressible flow, Normal shock, Physics-informed neural networks, Direct numerical 
simulation

Euler equations embrace the conservation laws for inviscid fluids, which are often compressible at high speed1. It 
is infeasible to derive an analytical solution for this type of equations except in a few special cases. A discontinu-
ous solution associated with shock wave may be generated due to the hyperbolic and non-linear properties of 
the partial differential equations (PDEs) when the fluid moves at speeds comparable to its speed of sound2. This 
further poses challenges for the development of numerical schemes and therefore, have induced many ingenious 
efforts in the past a few decades3,4. There is generally a trade-off between accuracy and stability in the numerical 
methods5. The low order methods can produce stable but less accurate results, where sharp profiles of shocks 
are smoothed. To the contrary, the high-order methods are able to generate relatively accurate results, but are 
often troubled by instabilities and Gibbs phenomenon near the discontinuities6. Furthermore, the requirement 
of stability also imposes a strict CFL limit to the numerical methods, resulting in small time steps in simulations. 
These facts render the simulations by traditional numerical methods both human-intelligence concentrated and 
computationally intensive7–10.

Recently, machine learning methods, in particular, the deep neural networks (DNNs) have received enormous 
attentions and are trying to replace human pounding by network training and inferring. Due to the tremendous 
successes in other fields, they also quickly became an alternative approach to solve PDEs11–14. When solving the 
Euler equations, DNNs can be embedded into the traditional numerical methods to facilitate accurate results15–17. 
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As another paradigm driven by the date science, DNNs can be trained by a large amount of analytical/experi-
mental/simulation data, corresponding to the so-called supervised learning. Once trained, the DNNs can offer 
solutions for the PDEs in interpolated and even slightly extrapolated space of parameters much faster than the 
traditional numerical schemes. However, data are not always abundant in realistic applications or only partially 
accessible at best. To address this issue, physics-informed neural networks (PINNs) are proposed and trained 
by combining physics laws in the form of PDEs together with available data18. In contrast to the undecorated 
DNNs, PINNs can be trained with data in shortage or even missing to solve a forward problem described by 
known PDEs. This corresponds to an unsupervised or weakly supervised learning. Moreover, PINNs can also deal 
with an inverse problem at ease, where some coefficient values in the PDEs are unclear, such as the viscosity in 
the Navier-Stokes equations19. Since its invention, there have already been many innovative works to improve 
the accuracy and efficiency of PINNs20–25. Concerning the discontinuous solutions of PDEs, quite a few work 
have been conducted with PINNs. In the seminal work of PINNs18, a viscous term is added to smooth the shock 
produced by the Burgers’ equation. Mao et al.26 choose to distribute more sampling points in the discontinu-
ous region identified beforehand, forming a cluster of points for a better training. Compared with uniformly 
or randomly sampled distribution of points, their strategy achieves a higher precision. The conservative PINNs 
proposed by Jagtap et al.27 solve the continuous and discontinuous regions separately, where in the discontinuous 
part a larger network and more data are selected for training. Their work demonstrates that a special division of 
the training area can get more accurate solutions than that of other conventional divisions. Moreover, Patel et al. 
propose control-volume based PINNs28 and combine them with a finite volume method, when no derivative 
exists in the discontinuous part. They define a loss function for a single control volume and obliterate derivative 
operation by integrating the equation, to ensure a correct solution. It is worth mentioning that the Boltzmann 
equation with the Bhatnagar-Gross-Krook model has been incorporated into PINNs so that both continuum 
and rarefied gas flows can be resolved 29,30.

Different from previous works, we aim to employ PINNs to solve a forward problem of compressible flows 
without exogenous data. The input data for the boundary and initial conditions of the PDEs are not part of the 
solution and not considered as training/labeled data. Therefore, this corresponds to an unsupervised learning. In 
addition, we also apply PINNs to solve a representative inverse problem such as the unknown specific-heat ratio, 
where abundant data are provided in the solution domain. This corresponds to a supervised learning. In particu-
lar, we are interested in a typical flow problem taking place in a so-called Laval nozzle or converging–diverging 
(CD) nozzle. Its actual solution depends on the ratio between the pressures at the outlet and inlet, and in the 
diverging region it may branch into subsonic flow, supersonic flow, and a mixture of both with discontinuous 
transition where a normal shock takes place. Since both analytical and numerical solutions for steady states exist 
in textbooks1,3, this problem serves as an ideal benchmark to examine PINNs’ performance for continuous and 
discontinuous compressible flows. A thorough understanding of the procedure for seeking solutions of this simple 
problem may provide a guidance to solve more general compressible flows, whether there is auxiliary data or not.

A typical three-dimensional CD nozzle with axis-symmetry is shown in Fig. 1a. We assume that the velocity 
has only one component in the x direction V(x) and it changes with the area A(x) of the cross section, which var-
ies smoothly and slowly. Therefore, one-dimensional equations are adequate to describe the flows. The smallest 
area named as throat controls the flow rate when the flow is supersonic in the diverging part. According to the 
pressure ratio between the back pressure Pb at the outlet and stagnation pressure P0 at the inlet, flow character-
istics vary, as shown in Fig. 1b. In particular, flows with a mixture of subsonic-supersonic-subsonic properties 
take place, as curves D or E, when Pb is moderate. Normal shock waves are generated for the transition from 

Figure 1.   (a) one dimensional approximation to the flow within a converging–diverging (CD) nozzle; (b) 
pressure distributions and flow characteristics along the CD nozzle according to various ratios between the 
back/outlet pressure and stagnation/inlet pressure. Curves A and B correspond to subsonic flows; curve F 
corresponds to a subsonic-supersonic flow; curve C corresponds to the critical subsonic flow, where the flow 
is subsonic all over except that at the throat it reaches exactly the speed of sound; curve D and E correspond to 
flows with norm shocks in-between supersonic-subsonic transitions.
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supersonic back to subsonic flows to raise the inner pressure up to conform with the back pressure at the outlet. 
The generation of shock wave is a non-isentropic process and manifests itself as a discontinuity in the context of 
continuum mechanics, which renders reliable solutions of the traditional numerical methods difficult.

In this work, we adopt a specific version of PINNs with a universal setting to resolve the flows in the CD 
nozzle with only initial and boundary conditions, whether there is a shock wave or not, without any auxiliary 
data. By varying Pb , it offers different branches of solutions correctly. If there is a normal shock, it identifies the 
shock location accurately and meanwhile provides a sharp solution. This is in contrast to the previous work 26, 
where the discontinuous profile is given already as the initial condition. The structure of the paper is arranged 
as follows. In "The method" section, flow equations together with the structure and parameters of PINNs are 
introduced. In "Steady state solutions" section, hard constraints on the boundaries are introduced and weights 
of different loss functions are universally determined so that different flow characteristics are predicted at steady 
states. One inverse problem with unknown specific-heat ratio for the discontinuous flow is also demonstrated. In 
"Time-dependent solutions" section, unsteady flows are solved and the influence of different hyper-parameters 
of the neural networks is analyzed to successfully improve the accuracy of solutions. In "Solutions in conserva-
tive form" section, governing equations in conservative form are discussed and finally, In "Conclusions" section 
a summary is made.

The method
The one-dimensional Euler’s equations are adopted to describe the flows and more specifically, a simple dif-
ferential form is initially considered

Here ρ , v, T, and P are density, velocity, temperature, and pressure, respectively. R is the universal gas constant. We 
fix the stagnation properties such as density ρ0 , temperature T0 , and pressure P0 at the inlet (left) and adjust the 
the back pressure Pb at the outlet (right), to generate different flow regimes in the CD nozzle, as shown in Fig. 1. 
A typical set of stagnation values are ρ0 = 1.52kg/m3 , T0 = 286.1K , and P0 = 1.247× 105N/m2 , respectively.

Flow properties are made dimensionless by ρ0 , T0 and throat area A∗ as follows:

Therefore, the sound speed at stagnation is a0 =
√
γRT0 , where γ = 1.4 is the specific-heat ratio of air. Further-

more, P′ = P/P0 , v′ = v/a0 , and x′ = x/
√
A∗ , t ′ = ta0/

√
A∗ . Eq. (1) become dimensionless as

In the rest of this paper, all physical quantities shall appear in dimensionless form. Therefore, we remove all “ ′  
”s in the equations for convenience.

We define the cross-section of the CD nozzle as a parabolic function along the x axis: 
A(x) = 1+ 2.2 ∗ (x − 1.5)2 , where the minimum area A∗ = 1 takes place at x = 1.5 , as shown in Fig. 2. This 
geometry is nothing special and only taken for convenience. The methodology presented later also applies to 
more general geometries.

The structure of the neural networks (NNs) is presented in Fig. 3, where it is trained without any auxiliary 
data, except for the boundary and initial conditions. The loss function of the NNs is expressed as follows

where LossBC , LossIC , and LossF correspond to the sub-loss function of boundary conditions, initial conditions, 
and PDEs, respectively. Note that LossIC is activated only when the unsteady solution is required for the flow. This 
is also true for time t as input for the neural networks. The sub-loss function of the PDEs has four components 
originated from the four equations in Eq. (2)
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Here F1(x, t) , F2(x, t) , F3(x, t) , and F4(x, t) represent residuals of the mass, momentum, energy, and state equa-
tions, respectively. We assume that pressure P and density ρ are two individual variables so that the NNs have 
both variables as outputs. Accordingly, P and ρ form a sub-loss function F4(x, t) via the residual from the equa-
tion of state. Each component of the loss function has an associated weight ωi and in part they determine the 
optimization of the network parameters:

By default wi = 1 for i = 1, 2, 3, 4 . All the sub-loss functions are expressed in the form of mean squared errors 
(MSEs)
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Figure 2.   A converging–diverging nozzle with cross-section area A described by a parabolic function of x 
along the axis with x ∈ (0, 2.25) , where the throat has the minimum area A∗ = 1 at x = 1.5 . ρ0 , T0 and P0 are 
the stagnation density, temperature, and pressure at the inlet (left), respectively. Pb is the back pressure at the 
outlet (right). We adjust Pb to vary the pressure ratio and to generate different flow regimes in the nozzle.

Figure 3.   The structure of PINNs. On the left is a simple feedforward neural network to be trained while on the 
right is the physics information expressed in PDEs. A loss function composed of boundary conditions, initial 
conditions, and physics equations together guides the training of the neural network.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3822  | https://doi.org/10.1038/s41598-024-53680-2

www.nature.com/scientificreports/

where Fi
(

xj , tj
)

 is the corresponding residual at point (xj , tj) among all NF training points. The actual expressions 
of LossBC and LossIC are problem-dependent and shall be described in later sections. Because the NNs adopt the 
chain rule of derivatives, we do not need to approximate the partial differential terms by any special numerical 
scheme as in the traditional numerical methods. In fully connected neural networks, the relationship between 
the output and input can be described by explicit mathematical expressions and thus, the partial derivatives of 
the output with respect to the input can be simply expressed. Therefore, each residual Fi can be expressed stead-
ily. In the process of minimizing the loss function towards zero, the back propagation algorithm optimizes the 
parameters (weights and biases) of the NNs.31. In this context, the optimization process is also named as training. 
Once trained, the NNs can predict values ρ , v, T, and P for any given x and t.

Steady state solutions
We commence to solve for flow problems within the CD nozzle at steady states, therefore the terms containing 
partial derivative with respect to time in Eq. (2) and (4) are temporarily discarded. For the steady states, we can 
obtain accurate solutions via analytical methods and make use of them to evaluate the performance of PINNs. 
In "Diverging channel" section we solve the flows in the diverging part of the nozzle by imposing the critical 
states of the throat as boundary conditions. In "Converging-diverging nozzle" section,   we capture the shock 
wave by modifying the NNs and obtain accurate solutions at a high resolution of sampling points. In "Effects of 
resolution" section, we investigate the effects due to the number of training points on the accuracy of solutions. 
In this section, the input to the neural network is only x. The parameter settings of the neural network used in 
each subsection are summarized in Table 1 and will be elaborated in the text.

Diverging channel
The flow characteristics are relatively simple in the converging- part of the CD nozzle, whereas it is rather complex 
in the diverging part. Therefore, we first impose the physical quantities at the throat as inlet boundary conditions 
and calculate flows in the diverging part alone. The analytical solutions to this problem are expressed as follows,

which are valid for both subsonic and supersonic flows. As they are not in explicit form, some iterative proce-
dures are necessary and we adopt a web-based applet to calculate accurate solutions with 8 decimal digits as 
references32.

More specifically, we take the critical state of air reaching the speed of sound at the throat. Accordingly, the 
inlet boundary conditions for the diverging channel are

Given the geometry, analytical solution may be subsonic, supersonic and a mixture of both with a discontinu-
ous shock. Both subsonic and supersonic solutions are smooth and unique, such as C and F curves on Fig. 1b, 
and are available from Eq. (9). Moreover, there are infinitely many solutions, each of which has a discontinuous 
shock, such as D and E curves on Fig. 1b and more are not shown. Each solution is unique corresponding to one 
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(ρx=1.5, vx=1.5,Tx=1.5, Px=1.5) = (0.634, 0.912, 0.833, 0.528).

Table 1.   List of NNs’ parameters for steady state solutions. The size of the neural network is uniformly 3 
hidden layers, each layer has 30 neurons. In "Effects of resolution" section, we examine various numbers of 
training points.

Subsection

Parameters

BC points Training points Adam epochs LBFGS epochs

3.1 1 200 2000 500

3.2 2 2000 20000 5000

3.3 2 N.A. 20000 5000

3.4 2 2000 25000 5000
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specific boundary condition at the outlet. Out of curiosity, however, we intentionally leave the outlet boundary 
for free, to interrogate what PINNs generate.

The computational domain is for x ∈ [1.5, 2.25] and the loss function expressed as MSEs for the inlet bound-
ary is defined as

with:

Here the values with subscript “ NN ” are the ones predicted by the NN, while the bare values are imposed ones. 
NNs’ parameters for weight and bias are initialized by Glorot scheme33. This convention also applies later on. The 
NN has 3 hidden layers, each layer has 30 neurons, and tanh is the activation function. We choose NBC = 1 and 
NF = 100 points in the x direction, for the inlet boundary and collocation points within the physical domain, 
respectively. To investigate clearly the influence of other parameters on the results, we intentionally choose all 
training points uniformly distributed.

The training proceeds with Adam optimizer of learning rate 0.0001 for 2000 epochs and continues with 
L-BFGS optimizer for 500 epochs34,35. The Adam optimizer can quickly find the vicinity of the optimal solution 
in the early stage of training, while the L-BFGS can further optimize the parameters and improve the accuracy 
of the model in the subsequent training. Initial training with Adam optimizer and then training with L-BFGS 
can take full advantage of these two optimization algorithms to improve the convergence speed and accuracy of 
the model. For problems of varying complexity, different numbers of epochs are used by trial and error. A typical 
evolution of the loss function is shown in Fig. 4, where each component descends clearly towards minimization 
with more training epochs. After completion of the training, 50 evenly distributed points in the computational 
domain are selected for predicting ρ , Ma = v/c = v/

√
γRT  , T and P, which corresponds to a simple forward 

pass of the NNs. Since both sets of points are evenly distributed, the prediction points are actually a subset of 
the training points. This convention also applies later on, unless otherwise stated.

With the same setting, we run multiple instances of PINNs to predict the flow solutions. Surprisingly, for each 
instance we may obtain one of two different solutions randomly. One is for supersonic flows and the other is for 
subsonic flows, as shown in Fig. 5. Moreover, both the subsonic and supersonic solutions of PINNs are in excel-
lent agreement with the analytical ones, described by Eq. (9). After many instances of training and prediction, 
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Figure 4.   Evolution of the loss function for a typical instance of PINNs for solving the flows in the diverging 
channel: with Adam and L-BFGS optimizers, each component of the loss function descends towards 
minimization with more training epochs.
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this observation is repeatable, that is, without providing the outlet boundary condition, PINNs are always able 
to find one of the two smooth solutions. We attribute this uncertain outcome to the random initialization of the 
NN’s parameters33. Nevertheless, without an appropriate boundary condition for the outlet, PINNs deliberately 
circumvent the discontinuous solutions. This setup is not well-defined mathematically, as the outlet bound-
ary condition is left free, there are potentially infinite numbers of solutions including discontinuous ones. We 
speculate that the local minima for discontinuous solutions on the landscape of the loss function are relatively 
much higher, and therefore we obtain only two continuous solutions.

Converging–diverging nozzle
We continue to consider the whole geometry of the CD nozzle. Stagnation values of density, temperature, and 
pressure are given at the inlet, while a back pressure Pb is provided at the outlet. Depending on the value of Pb , 
different flow characteristics occur. For smooth solutions of both subsonic and supersonic flows, the analyti-
cal expressions in Eq. (9) are utilized. For a solution with a normal shock in the diverging part, we refer to the 
Rankine–Hugoniot equations as follows:

Figure 5.   Solutions for flows in the diverging channel. Only inlet boundary conditions are imposed while the 
outlet boundary conditions are intentionally left free. Each running instance of PINNs generates an accurate 
supersonic or subsonic solution randomly, due to the inherent randomness during the initialization of the NN’s 
parameters. Furthermore, PINNs deliberately avoid the subtle branch of infinite many solutions, which involve 
discontinuous shocks.
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which relates the physical values before and after the shock. A similar solution strategy is adopted to calculate 
two accurate and smooth solutions with 8 decimal digits pieced together at the shock as references32.

The computational domain is: x ∈ [0, 2.25] . The following boundary conditions are applied in PINNs:

Therefore, the loss function for the boundary conditions is expressed as MSEs as follows:

with:

The NN has 3 hidden layers and each layer 30 neurons. NBC = 2 and NF = 200 are evenly distributed in the x 
direction. The training proceeds with Adam optimizer for 2000 epochs and continues with L-BFGS optimizer 
for 500 epochs. After training, 50 evenly distributed points are selected for predicting solutions.

Firstly, Pb = 0.07726 , the flow is subsonic in the converging part and completely supersonic in the diverging 
part. The solutions from PINNs are shown in the Fig. 6, where the reference solutions according to Eq. (9) are 
also presented for comparison. We observe that PINNs with a default setting offer excellent accuracy for this type 
of compressible flow, where there is smooth transition from a subsonic flow to a supersonic flow at the throat 
x = 1.5 , corresponding to curve F on Fig. 1b.

Furthermore, we set Pb = 0.81017 . According to Eqs. (9) and (12), a normal shock wave is expected at 
x = 1.875 in the diverging part of the nozzle. With a default setting, PINNs offer solutions that are far away 
from the references, as shown in Fig. 7. An examination at the evolution of the loss function during training 
reveals that the troublemakers are the losses for the boundary condition and momentum equation, as shown 
in Fig. 8. Increasing the number of training epochs for ten times from 2500 to 25000 epochs does not improve 
the descent of the loss function. Enhancing the number of sampling points ten times from 200 to 2000 does not 
help either (results are not shown).

A few notes are in order. Since we employ PINNs as a direct numerical simulation tool without prior data, 
they not aware of the shock location in advance and can not distribute more sampling points around the shock. 
This renders an accurate prediction of the discontinuous flow by PINNs challenging. After a closer inspection on 
Fig. 7b, we observe that the velocity/Mach number profile is almost flat around zero. This indicates that during 
the training the optimizer of NNs ignores the residual of momentum equation. Leaving a flat velocity implies 
all velocity terms can be discarded from F1 , F2 and F3 in Eq. (4), since ∂v/∂x ≈ 0 . We interpret v(x) = constant 
as a trivial, but wrong solution. For the loss of F1 and F3 , the term ∂A/∂x is known from the geometry, which 
demands the residuals towards zero, as shown in Fig. 8. However, with the trivial solution of v(x) = constant , 
the pressure cannot satisfy two Dirichlet boundary conditions for the inlet and outlet simultaneously that is , 
∂P/∂x = 0 is impossible, as shown in Fig. 7d. With ∂v/∂x ≈ 0 , ∂P/∂x is the only term left in F2 , which does 
not descend towards zero. Consequently, the losses for boundary condition and F2 are both large and do not 
descend easily, as shown in Fig. 8.

Motivated by the observations and speculations above, we introduce two small modifications into the vanilla 
version PINNs. Firstly, we choose to redistribute the weights between the components of the loss function for 
the PDEs as ω1 : ω2 : ω3 : ω4 = 1 : 20 : 1 : 1 , to enhance the descent of momentum residual. In addition, we 
employ hard constraints of pressure to satisfy the Dirichlet boundary conditions exactly, instead of minimizing 
the MSEs. Specifically, the values of the pressure are fixed to be 1 and 0.81 at the inlet and outlet, so that the loss 
about the pressure boundary condition is fixed to be 0 during the training process, instead of being optimized 
like the other parts of the loss. A more detailed description of the hard constrained boundary conditions can be 
found36. The NN still has 3 hidden layers and each layer has 30 neurons. Moreover, 2000 uniformly distributed 
points in the x direction are selected as training points. The training proceeds with Adam for 20000 epochs 
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and continues with L-BFGS for 5000 epochs. The upgraded evolution of loss function during training is shown 
in Fig. 9, where a clear descent for all components is observed. Furthermore, new predictions of PINNs are 
in Fig. 10, where a normal shock wave is observed at x = 1.875 and meanwhile sharp profiles are reproduced 
accurately for ρ , Ma, T and P with 50 points. We emphasize that with this new setting, the location of the shock 
is identified by PINNs automatically without any other efforts. We note that both the modified weights and hard 
constraints on the Dirichlet boundary conditions are necessary for the accurate solutions.

Lastly, we set Pb = 0.95055 so that a subsonic flow is expected in the entire nozzle. Results of two versions of 
PINNs are presented in Fig. 11. We observe that PINNs with a default setting provides a trivial and wrong solu-
tion of v(x) ≈ 0 and also incorrect solutions for ρ , T and P. With modified weights of on the momentum loss 
and hard constrains on the Dirichlet boundary conditions, PINNs are able to predict accurately the continuous 
subsonic flow in the entire nozzle, which turns trend after the throat at x = 1.5 . This corresponds to curve B 
on Fig. 1b.

With this new setting, PINNs are also able to reproduce Figs. 5 and 6, results of which are omitted. Therefore, 
we shall continue to use this version of PINNs for the rest of the work.

Effects of resolution
In this section, the effects of the number of training points for PINNs are explored. We exemplify this study by 
Pb = 0.81017 , where a normal shock is expected in the diverging part of the nozzle. Four different numbers of 
training points are selected: 200, 500, 1000 and 2000, which are uniformly distributed in the x direction. After 
training, physical quantities at 50 uniformly distributed points are selected for predictions. As shown in Fig. 12, 
with all four resolutions of training, results are stable and accurate for density, Mach number, temperature 
and pressure. It is worth noting that there is no Gibbs phenomenon, which is typically observed in traditional 
numerical methods.

An inverse problem
Here we demonstrate the effectiveness of PINNs for an inverse problem. We consider the case of a normal shock 
taking place in the diverging part of the CD nozzle, which corresponds to the forward problem presented on 

Figure 6.   PINNs’ solutions for supersonic continuous flows: with Pb = 0.07726 , the solutions of ρ , Ma, T, and 
P are smooth, with subsonic flow in the converging part while supersonic flow in the diverging part. References 
are taken from the analytical solutions governed by Eq. (9).
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Figure 7.   PINNs’ solutions for subsonic and supersonic discontinuous flows. With Pb = 0.81017 , the analytical 
solutions of ρ , Ma, T, and P are governed by by Eqs. (9) and (12). Solutions should be smooth and subsonic in 
the converging part and become discontinuous at x = 1.875 in the diverging part, where a normal shock wave 
is expected. PINNs with default settings fail to reproduce the correct solutions and increasing the number of 
training points and/or epochs does not help.

Figure 8.   Evolution of the loss function of PINNs for solving the flows in the CD nozzle with Pb = 0.81017 , 
where a normal shock is expected in the diverging part: with Adam and L-BFGS optimizers, components 
of the loss function are reluctant to descend towards minimization, especially those for boundary (BC) and 
momentum equation (F2).
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Figure 9.   Evolution of the loss function of PINNs for solving the flows in the CD nozzle with Pb = 0.81 , where 
a normal shock is expected in the diverging part: with Adam and L-BFGS optimizers. With more weight on 
the momentum equation and hard constrain on the Dirichlet boundary conditions, all components of the loss 
function descend easily.

Figure 10.   PINNs’ solutions for subsonic and supersonic flows with discontinuity. With Pb = 0.81017 , the 
analytical solutions of ρ , Ma, T, and P are governed by by Eqs. (9) and (12). Solutions should be smooth and 
subsonic in the converging part and become discontinuous at x = 1.875 in the diverging part, where a normal 
shock wave is expected. PINNs with a proper weight on the momentum loss function and hard constraint on the 
Dirichlet boundary conditions identify shock location and reproduce accurately discontinuous flows at ease.
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Fig. 10 with Pb = 0.81017 . We take 50 solution points of pressure uniformly as known and demand PINNs to 
deliver profiles of ρ , Ma and T, and as well as the specific heat ratio γ in the equation of state. On Fig. 13, we 
present the convergence for each sub-loss function as the number of training epochs increases. Meanwhile, we 
observe that the prediction of γ reaches correctly the target value 1.4 in the end. Results of ρ , v(Ma) and T in the 
inverse problem are indistinguishable from those on Fig. 10 and therefore, are omitted here.

Time‑dependent solutions
A more realistic flow in a CD nozzle has transit states from rest to the steady state. There are no analytical solu-
tions for this time-dependent flow, which makes a numerical procedure necessary. In this section, we leverage 
the power of PINNs to tackle this time-dependent problem, possibly with normal shocks. In Sect. 4.1, PINNs 
are employed to solve the time-dependent flows, for which steady state is supersonic in the diverging part of the 
nozzle. In Sect. 4.2, the influences of NNs’ parameters, such as the size, the number of training points and differ-
ent distributions of training points on the solution accuracy are discussed. In Sect. 4.3, different initial conditions 
for the time-dependent flows are investigated, for which steady state has a normal shock.

Subsonic‑supersonic continuous flow
In this section, we solve the unsteady flow in the nozzle for the initial and boundary conditions given as follows

As shown in the previous section, the flow is supersonic in the diverging part of the nozzle for a steady flow. For 
a time-dependent flow, the computational domain in space and time is x ∈ [0, 2.25] and t ∈ [0, 8] , respectively. 
Furthermore, the loss function for ICs expressed as MSEs is defined as

(
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= (1.0, 0.0, 1.0, 1.0),
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Figure 11.   PINNs’ solutions for subsonic flows. For Pb = 0.95055 , a subsonic flow is expected in the entire 
nozzle as curve B on Fig. 1b. PINNs with a default setting cannot deal with continuous problem properly, 
whereas PINNs with modified weights and hard constrains on the Dirichlet boundary conditions predict the 
flows accurately.
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with:

In addition, the boundary conditions for pressure are implemented as hard constraints as before. The NN has 
3 hidden layers and each layer has 30 neurons. Moreover, 100 points are selected for boundary conditions and 
150 points for initial conditions. The training starts with Adam optimizer for 10000 epochs and continues with 
L-BFGS for 15000 epochs.

The results of PINNs at 5 discrete time instants are shown in Fig. 14, where the flow quickly reaches supersonic 
state in the diverging part and become steady state for t � 6 . We note that the time evolution for each physical 
value ( ρ , Ma, T, and P) is always monotonic along the x direction. However, the same evolution of all physical 
values indicate overshoot in time, that is, steady profiles of ρ , Ma, T, and P for t � 6 are in-between profiles at 
t = 1 and t = 2 . Furthermore, we present continuous maps for the physical values in both space and time in 
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Figure 12.   The number of training points is 200,500,1000 and 2000, respectively. The prediction has 50 points. 
They are all evenly distributed in the x direction.
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Fig. 15. Similarly as in the discrete instants in Fig. 14, all four physical values in the continuous color maps are 
monotonic along the x direction, but overshoot in time before reaching steady states.

The training loss of PINNs for this problem is shown in Fig. 16, where a catenation of L-BFGS after Adam is 
effective to reduce the loss to a much lower level.

Exploration of neural networks’ parameters for discontinuous flows
The computational domain is given as x ∈ [0, 2.25] and t ∈ [0, 25] . The initial and boundary conditions for the 
time-dependent flow are as follows

The steady state with these boundary conditions was studied in Sect. 3.2, which corresponds to a flow with a 
normal shock at x = 1.875 in the diverging part. When solving the unsteady process with discontinuity, we find 
that the NNs with the previous setting result in a poor prediction for the solutions at steady state. It is understand-
able, as we have one extra dimension of time for the physical quantities to evolve. Therefore, we commence to 
explore the effects of the parameters of NNs and examine PINNs’ solutions at steady states after going through 
the time-dependent states.

We employ four sets of parameters as listed in Table 2, where we have two architectures of NNs: 3 hidden 
layers × 30 neurons and 4 hidden layers × 50 neurons. For the training points, we have 100× 100 regular points 
uniformly distributed in the whole space-time domain x × t ∈ [0, 2.25] × [0, 25] . As an attempt to enhance 
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Figure 13.   Evolution of sub-loss functions and γ as the number of training epochs increases for the inverse 
problem.
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resolution, we add 30× 30 extra points uniformly distributed in the space-time domain of the diverging region 
of the nozzle x × t ∈ [1.5, 2.25] × [0, 25] . For the initial and boundary conditions, 150 and 100 points are uni-
versally applied, respectively. Each training starts with Adam optimizer for 10000 epochs and continues with 
L-BFGS for 15000 epochs.

For the time being, we discard PINNs’ results at transit states and present solutions at steady states. We 
observe that the first setup of NNa reproduces the steady states qualitatively, as shown in Fig. 17, where an norm 
shock can be identified albeit at a location biased towards upstream. The overall profiles of ρ , Ma, T and P are 
accurate for the subsonic region before the shock, and deteriorate evidently after the shock. Next, we consider 
two individual improvements over the NNs: one is with enhanced number of layers and neurons corresponding 
to setup NNb ; another is with enlarged number of sampling points in the diverging region of the nozzle corre-
sponding to setup NNc . Both setups improve the results substantially, but the solutions are still not sufficiently 
accurate, as shown in Figs. 23 and 24 in Appendix A. Furthermore, we look at PINNs’ results with setup NNd in 
Fig. 18, which represents the combined efforts of improvement on the NN’s achitecture and increased number 
of training points. We observe that solutions from PINNs solving an unsteady process predict the steady states 
correctly, with the same accuracy as the solutions of a steady flow solved by PINNs.

Lastly, we present the complete evolution of ρ , Ma, T and P in Fig. 19. From the color maps of physical val-
ues in the whole space-time domain, we may divide approximately the evolution into three stages in time. At 
the first stage for t � 5 , the flow has clearly subsonic characteristics: all four physics values develop rapidly, but 
always have continuous profiles. At the second stage between 5 � t � 8.5 , supersonic characteristics of the flow 
arise at downstream of the throat at x = 1.5 , but the physical values are still continuous. At the third stage for 
t � 8.5 , discontinuous phenomena emerge. Later on, physical values settle for t � 10 , where a sharp interface 
for physics values is evident at x = 1.875.

Two initial conditions for discontinuous flows
The transient flows may be very different under distinct initial conditions. Therefore, we consider the effects due 
to two initial conditions. The first initial condition as before is repeated as follows

Figure 14.   PINNs’ solutions for time-dependent subsonic-supersonic flows at t = 0, 1, 2, 3, 6, 8 . Density, Mach 
number, temperature and pressure reach steady states for t � 6.
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This corresponds to the scenario when the inlet is already open and the outlet is closed before the flow. Therefore, 
the density and pressure inside the nozzle are identical as the stagnation values of the inlet. As second initial 
condition, we consider that the outlet is open and the inlet is closed before the flow. Therefore, the density and 
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x ,Tt=0
x , Pt=0

x

)

= (1.0, 0.0, 1.0, 1.0).

Figure 15.   PINNs’s solutions for time-dependent subsonic-supersonic flows with continuous evolutions for 
density, Mach number, temperature and pressure.

Figure 16.   Training loss of PINNs for the continuous time-dependent flows.
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pressure inside the nozzle are identical as the values of the outlet. The values for the second initial condition 
are as follows

For both cases, the temperature initially has a stagnation value of T = 1.0 in the entire nozzle and the boundary 
conditions are identical as follows

We observe that both flows develop rapidly from the two different initial conditions. After t = 1 , the two 
paths of transition states of all physical values are already very similar, as shown in Figs. 25 and 26 in Appendix B. 
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Table 2.   List of four sets of NNs’ parameters. For initial and boundary conditions 150 and 100 points are 
applied universally. The extra points are within the space-time domain of the diverging part. Corresponding 
results are shown in Figs. 17 and 18 for NNa and NNd ; Figs. 23, 24 in Appendix A for NNb and NNc.

Index name

Parameters

Layers × neurons Regular points Extra points

NNa 3× 30 100× 100 N.A.

NNb 4× 50 100× 100 N.A.

NNc 3× 30 100× 100 30× 30

NNd 4× 50 100× 100 30× 30

Figure 17.   PINNs’ results with setup NNa for steady states from unsteady process: 3 hidden layers and each 
layer 30 neurons; Regular 100× 100 training points for space-time domain x × t ∈ [0, 2.25] × [0, 25].
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Therefore, here we only present the two sets of results for t ∈ [0, 1] in Figs. 20 and 21. With the first initial condi-
tions, ρ , v and T evolve quickly but smoothly except for P, as there is a discontinuous jump between the boundary 
value and inner initial values at the outlet. Nevertheless, the pressure becomes continuous after t = 0.2 , as shown 
in Fig. 20d. With the second initial conditions, v and T values evolve quickly but smoothly except for ρ and P, 
as there are discontinuous jumps between the boundary value and inner initial values at the inlet. Nevertheless, 
both the density and pressure become continuous after t = 0.2 , as shown in Fig. 21a,d.

Solutions in conservative form
In classical numerical methods a conservative form of the PDEs is in favor and numerical solutions of the non-
conservative form tend to be unstable. Therefore, we consider the solution procedure of PINNs in the context 
of conservative form, which is given as follows
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Figure 18.   PINNs’ results with setup NNd for steady states from unsteady process: 4 hidden layers and each 
layer 50 neurons; Regular 100× 100 training points for space-time domain x × t ∈ [0, 2.25] × [0, 25]. Extra 
30× 30 training points for space-time domain x × t ∈ [1.5, 2.25] × [0, 25].
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Accordingly, we have to adjust the outputs of the NNs to be U1,U2,U3 and P, as shown in Fig. 22. To facilitate 
the construction of loss function, we have to rewrite Ki as a function of the NNs’ outputs, namely, Ui , as follows

where we have used the fact P = ρT from the equation of state. Therefore, each component of the loss function 
is as follows
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Figure 19.   PINNs’s results for time-dependent subsonic-supersonic flows with discontinuous evolutions for 
density, Mach number, temperature and pressure. The setup of PINNs is with NNd as listed in Table 2.
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Here F1(x, t) , F2(x, t) , F3(x, t) , and F4(x, t) represent residuals of the mass, momentum, energy, and state equa-
tions, respectively. For automatic differentiation, we have to expand all terms Ki in Eq. (22) with Ui from Eq. (21). 
These expansions quickly become unpleasant with many dividing operations, which poses challenges for gradi-
ent calculations and optimizations of the NNs’ parameters. Despite our best efforts, the loss function does not 
descend easily and no meaningful predictions are made by PINNs with the conservative form. Switching from 
Adam to L-BFGS optimizer does not help and the loss remains at the level well above 10−4 , and therefore the 
outputs of PINNs are physically meaningless and are not shown here.

Conclusions
We applied physics-informed neural networks or PINNs to directly solve steady and time-dependent compress-
ible flows within a converging–diverging channel, corresponding to an unsupervised learning. With different 
boundary conditions, the flow may be completely subsonic, subsonic via a smooth transition to supersonic, or 
further from supersonic via a discontinuous transition back to subsonic.

Firstly, for a simple diverging channel, when sonic boundary conditions are imposed at the inlet and the 
outlet are left intentionally free, PINNs provide a subsonic or a supersonic continuous solution randomly and 
deliberately avoid solutions with discontinuity. The stochastic outcomes result from the randomness during 
initialization of the neural networks (NNs); Secondly, for a converging–diverging nozzle, PINNs with a default 
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Figure 20.   PINNs’ results at 6 instants of short time for time-dependent discontinuous flows with the first 
initial conditions: before the flow the inlet is open while the outlet is closed.
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setting cannot capture transition from supersonic to subsonic flows with a discontinuity for the normal shock, 
although given proper boundary conditions at both the inlet and outlet. Instead, the loss function is unwilling 
to descend during training and consequently, a trivial solution with zero velocity and incorrect continuous pro-
files for other physical values are obtained. The two examples above indicate that during training the optimizer 
somehow “minimizes its efforts” before minimizing the loss function: it is inclined to offer smooth solutions 
(right or wrong) and reluctant to find discontinuous solutions. Hence, a small remedy of PINNs is pertinent.

Figure 21.   PINNs’ results at 6 instants of short time for time-dependent discontinuous flows with the second 
initial conditions: before the flow the inlet is closed while the outlet is open.

Figure 22.   The structure of PINNs for Euler equations in conservative form.
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After a close inspection on the descent of each component of the loss function and predictions of the physical 
values, we promote to put 20 times more weight on the minimization of the momentum equation and meanwhile 
enforce hard constraints on the boundary conditions of pressure. This exertion is coincident with a recent effort 
put forward by Perdikaris’ group37, where a dynamic weight is proposed to balance the gradients among differ-
ent components of the loss function, to mitigate gradient vanishing. For the problems considered in this work, 
we acknowledge a constant heavy weight for the momentum loss being adequate for accurate solutions, after a 
couple of numerical experiments with trial and error.

With 90 neurons and 100 training points, the so-modified version of PINNs is able to deliver accurate solu-
tions at steady states for subsonic flows, supersonic flows and mixture of both with a norm shock as sharp tran-
sition from supersonic to subsonic flows. For unsteady processes, with 200 neurons and 16900 training points, 
PINNs are able to predict accurately the time-dependent flows until steady states. Whether for steady or unsteady 
flows, PINNs are able to identify the locations of shocks accurately and offer very sharp profiles for the transi-
tions. In low-order CFD methods, one may need to refine the grid points after the sharp transition is located. 
In high-order CFD methods, one may encounter the the Gibbs phenomenon near the transition. Following an 
optimization routine, PINNs avoid the above two drawbacks. These results are promising, as they encourage us to 
apply PINNs to solve more discontinuous physics phenomena and to replace/supplement traditional numerical 
schemes to a certain extent. Finally, when the PDEs are expressed in the conservative form, which is in favor by 
traditional numerical schemes, the output terms of the NNs and their corresponding loss function are entangled 
and not viable for an effective optimization. Consequently, the predictions offered by PINNs are incorrect. This 
indicates that PINNs prefer the simple differential form of the PDEs over the conservative form, as the former 
is more appropriate for straightforward automatic differentiation during optimization.

We envisage two research lines beyond this work. One is to explore PINNs as a direct numerical solver for 
more general compressible flows in two and three dimensions, especially with shock phenomena. From the per-
formance on one-dimensional flows, it seems promising for PINNs to solve more compressible/discontinuous 
flows, where no exquisite shock-capturing schemes are essential. Another one is to supply PINNs with partially 
available experimental data, such as a few pressure values via sensors within the flow, to recover other physics 
values and/or to estimate unknown coefficients in the PDEs, such as wall frictions.

The code used in this manuscript can be found at the following link. https://​github.​com/​szl-c/​pinn_​CDnoz​zle

 Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 21 November 2023; Accepted: 3 February 2024

References
	 1.	 White, Frank M. Fluid mechanics Vol. 8 (McGraw Hill, 2016).
	 2.	 Dafermos, Constantine M. Hyperbolic conservation laws in continuum physics Vol. 3 (Springer, 2005).
	 3.	 Anderson, John D. Computational fluid dynamics (McGraw-Hill, Inc., 1995).
	 4.	 LeVeque, Randall J. Finite volume methods for hyperbolic problems Vol. 31 (Cambridge university press, 2002).
	 5.	 Shu, C.-W. A brief survey on discontinuous Galerkin methods in computational fluid dynamics. Adv. Mech. 43(6), 541–553 (2013).
	 6.	 Jiang, G.-S. & Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996).
	 7.	 Wang, Z. J. High-order methods for the Euler and Navier-stokes equations on unstructured grids. Prog. Aerosp. Sci. 43(1–3), 1–41 

(2007).
	 8.	 Jiang, L., Jie, W., Yang, L. & Dong, H. Gas kinetic flux solver based finite volume weighted essentially non-oscillatory scheme for 

inviscid compressible flows. Appl. Math. Mech. 44(6), 961–980 (2023).
	 9.	 Jian, Yu., Yan, C. & Jiang, Z. Revisit of dilation-based shock capturing for discontinuous Galerkin methods. Appl. Math. Mech. 39, 

379–394 (2018).
	10.	 Hou, Y., Jin, K., Feng, Y. & Zheng, X. High-order targeted essentially non-oscillatory scheme for two-fluid plasma model. Appl. 

Math. Mech. 44(6), 941–960 (2023).
	11.	 Michoski, Craig, Milosavljevic, Milos, Oliver, Todd, & Hatch, David. Solving irregular and data-enriched differential equations 

using deep neural networks. arXiv preprintarXiv:​1905.​04351 (2019).
	12.	 Wang, B., Wang, Q., Zhou, Q. & Liu, Y. Active control of flow past an elliptic cylinder using an artificial neural network trained by 

deep reinforcement learning. Appl. Math. Mech. 43(12), 1921–1934 (2022).
	13.	 Bezgin, D. A., Schmidt, S. J. & Adams, N. A. Weno3-nn: A maximum-order three-point data-driven weighted essentially non-

oscillatory scheme. J. Comput. Phys. 452, 110920 (2022).
	14.	 Liu, Z., Yang, Y. & Cai, Q. Neural network as a function approximator and its application in solving differential equations. Appl. 

Math. Mech. 40(2), 237–248 (2019).
	15.	 Magiera, J., Ray, D., Hesthaven, J. S. & Rohde, C. Constraint-aware neural networks for riemann problems. J. Comput. Phys. 409, 

109345 (2020).
	16.	 Schwander, L., Ray, D. & Hesthaven, J. S. Controlling oscillations in spectral methods by local artificial viscosity governed by neural 

networks. J. Comput. Phys. 431, 110144 (2021).
	17.	 Bezgin, D. A., Schmidt, S. J. & Adams, N. A. A data-driven physics-informed finite-volume scheme for nonclassical undercompres-

sive shocks. J. Comput. Phys. 437, 110324 (2021).
	18.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward 

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
	19.	 Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–40 (2021).
	20.	 Jeremy, Yu., Lu, L., Meng, X. & Karniadakis, G. E. Gradient-enhanced physics-informed neural networks for forward and inverse 

PDE problems. Comput. Methods Appl. Mech. Eng. 393, 114823 (2022).
	21.	 Wang, S., Xinling, Yu. & Perdikaris, P. When and why Pinns fail to train: A neural tangent kernel perspective. J. Comput. Phys. 

449, 110768 (2022).
	22.	 Mattey, R. & Ghosh, S. A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard 

equations. Comput. Methods Appl. Mech. Eng. 390, 114474 (2022).

https://github.com/szl-c/pinn_CDnozzle
http://arxiv.org/abs/1905.04351


23

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3822  | https://doi.org/10.1038/s41598-024-53680-2

www.nature.com/scientificreports/

	23.	 Wang, Sifan, Sankaran, Shyam, & Perdikaris, Paris. Respecting causality is all you need for training physics-informed neural 
networks. arXiv preprintarXiv:​2203.​07404 (2022).

	24.	 Wight, C.L. & Zhao, J. Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks. 
Global Science Press, (3) (2021).

	25.	 Xiong, Fansheng, Liu, Li, Liu, Shengping, Wang, Han, & Yong, Heng. Gradient-weighted physics-informed neural networks for 
one-dimensional euler equation (2022).

	26.	 Mao, Z., Jagtap, A. D. & Karniadakis, G. E. Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. 
Eng. 360, 112789 (2020).

	27.	 Jagtap, A. D., Kharazmi, E. & Karniadakis, G. E. Conservative physics-informed neural networks on discrete domains for conserva-
tion laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 365, 113028 (2020).

	28.	 Patel, R. G. et al. Thermodynamically consistent physics-informed neural networks for hyperbolic systems. J. Comput. Phys. 449, 
110754 (2022).

	29.	 Lou, Q., Meng, X. & Karniadakis, G. E. Physics-informed neural networks for solving forward and inverse flow problems via the 
Boltzmann-BGK formulation. J. Comput. Phys. 447, 110676 (2021).

	30.	 Zhang, L., Ma, W., Lou, Q., & Zhang, J. Simulation of rarefied gas flows using physics-informed neural network combined with 
discrete velocity method. Phys. Fluids, 1;35(7) (2023)

	31.	 Goodfellow, Ian, Bengio, Yoshua & Courville, Aaron. Deep learning (The MIT Press, 2016).
	32.	 www.​dept.​aoe.​vt.​edu/​ deven​por/​aoe31​14/​calc.​html.
	33.	 Glorot, X., & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth 

international conference on artificial intelligence and statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010).
	34.	 Kingma, D.P., & Adam, J.B. A method for stochastic optimization. arXiv preprintarXiv:1412.6980 (2014).
	35.	 Zhu, C., Byrd, R. H., Peihuang, L. & Nocedal, J. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained 

optimization. ACM Trans. Math. Softw. TOMS 23(4), 550–560 (1997).
	36.	 Lu, L. et al. Physics-informed neural networks with hard constraints for inverse design. SIAM J. Sci. Comput. 43(6), B1105–B1132 

(2021).
	37.	 Wang, S., Teng, Y. & Perdikaris, P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. 

SIAM J. Sci. Comput. 43(5), A3055-3081 (2021).

Acknowledgements
The authors appreciate discussions with Dr. Bonan Xu and Mr. Yongzheng Zhu.

Author contributions
The research output comes from joint efforts. All authors read and approved the final manuscript.

Funding
X. Bian received the starting grant from 100 talents program of Zhejiang University. This work is partially sup-
ported by Hangzhou Shiguangji Intelligient Electronics Technology Co., Ltd, Hangzhou, China.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​53680-2.

Correspondence and requests for materials should be addressed to X.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://arxiv.org/abs/2203.07404
http://www.dept.aoe.vt.edu/%20devenpor/aoe3114/calc.html
https://doi.org/10.1038/s41598-024-53680-2
https://doi.org/10.1038/s41598-024-53680-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Continuous and discontinuous compressible flows in a converging–diverging channel solved by physics-informed neural networks without exogenous data
	The method
	Steady state solutions
	Diverging channel
	Converging–diverging nozzle
	Effects of resolution
	An inverse problem

	Time-dependent solutions
	Subsonic-supersonic continuous flow
	Exploration of neural networks’ parameters for discontinuous flows
	Two initial conditions for discontinuous flows

	Solutions in conservative form
	Conclusions
	References
	Acknowledgements


