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An artificial intelligence based 
abdominal aortic aneurysm 
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patient outcomes
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Abdominal aortic aneurysms (AAA) have been rigorously investigated to understand when their 
clinically-estimated risk of rupture—an event that is the 13th leading cause of death in the US—
exceeds the risk associated with repair. Yet the current clinical guideline remains a one-size-fits-all 
“maximum diameter criterion” whereby AAA exceeding a threshold diameter is thought to make the 
risk of rupture high enough to warrant intervention. However, between 7 and 23.4% of smaller-sized 
AAA have been reported to rupture with diameters below the threshold. In this study, we train and 
assess machine learning models using clinical, biomechanical, and morphological indices from 381 
patients to develop an aneurysm prognosis classifier to predict one of three outcomes for a given 
AAA patient: their AAA will remain stable, their AAA will require repair based as currently indicated 
from the maximum diameter criterion, or their AAA will rupture. This study represents the largest 
cohort of AAA patients that utilizes the first available medical image and clinical data to classify 
patient outcomes. The APC model therefore represents a potential clinical tool to striate specific 
patient outcomes using machine learning models and patient-specific image-based (biomechanical 
and morphological) and clinical data as input. Such a tool could greatly assist clinicians in their 
management decisions for patients with AAA.

Abbreviations
AAA   Abdominal aortic aneurysm
AI  Artificial intelligence
CNN  Convolutional neural network
DICOM  Digital imaging and communication
FEA  Finite element analysis
ILT  Intraluminal thrombus
ML  Machine learning

Abdominal aortic aneurysm (AAA) is an irreversible localized dilatation of the aorta that, if left untreated, may 
lead to rupture, an event that is the 13th leading cause of death in the United  States1. Upon diagnosis of AAA, 
a clinician will intervene based on a single one-dimensional measurement—the maximum diameter criteria 
(5.0 cm for women, 5.5 cm for men)—when the risk of rupture is thought to be higher than the risk of repair. 
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However, a significant number of small (sub-threshold) AAA have been reported to rupture (between 7 and 
23.4%)1–3, suggesting that the maximum diameter criteria have high false-negative rates. Additionally, there is an 
unknown false positive rate for patients that would die from other causes before their aneurysm would rupture, 
regardless of aneurysm size. These considerations highlight the deficiencies of the more than 60-year-old one-
size-fits-all maximum diameter criterion to reliably assess AAA patient prognosis.

Assessing the biomechanical status of AAA—with a growing number of studies over the past ~ 25 years—has 
been motivated by viewing aneurysm rupture as a biomechanical event wherein the transmural wall stresses 
acting on the AAA exceeds the strength of its  wall1,4. These studies have included experimentally assessing the 
material properties of degenerated AAA wall  tissue5,6 and commonly involved intraluminal  thrombus7–9 as well 
as comprehensive patient-specific computational finite element models to assess wall stress  distributions7,10–14. 
In addition, a rupture potential index was introduced by our group as a local ratio of calculated wall stress and 
estimates of wall  strength7,15. Major limitations of all biomechanical-based studies include high variations in the 
stress analysis approaches of AAA models and the fact that nearly all of the aneurysms that have been analyzed 
in the literature were “clinically-sized” (greater than in the maximum diameter  criteria16), narrowing relevance 
to only post-threshold, end-stage AAA. In addition to the lack of significant clinical translation of biomechani-
cal tools in clinical management of AAA to date, there has not been a single conclusive study reporting a causal 
effect between elevated wall stress and rupture site, one group attempted to show this effect, but was unable to 
find a  relationship17. Further interrogation of retrospective imaging datasets and clinical data is necessary to 
draw out potential biomarkers that can classify and striate patient outcomes on whether an aneurysm is at risk 
of rupture or in need of eventual clinical intervention.

Quantification of AAA morphometrics   has also been utilized to capture and propose one-, two-, and three-
dimensional  indices11,18 to investigate the potential correlation between shape and AAA  status19–21. These have 
included various diameter  ratios22, AAA wall surface  area19,  volume21,  asymmetry18, and  tortuosity19, intraluminal 
thrombus (ILT)  thickness9 and volume, and measures of local surface curvatures (Gaussian and mean princi-
pal)21. However, these studies have again been limited in that they have relied on clinically sized aneurysms due 
to the availability of medical imaging data.

The advent of artificial intelligence (AI) tools, mainly machine learning (ML) algorithms, provide the pos-
sibility of diagnosis and guidance on clinical management for various  diseases23,24. Clinical decision support 
and management is critical in AAA prognosis as it has been reported that the average 4-year cost of surveillance 
is $40,528 and that smaller-sized aneurysms are still at risk of  rupture25. Therefore, such AI/ML-based tools 
for AAA prognostics in particular could have a very big impact. Studies using clinical inputs paired with ML 
have shown promise in providing an objective clinical decision support  tool23,26, but there is a need to incorpo-
rate image-derived metrics such as the biomechanical status and morphology to improve models and clinical 
relevance.

In this study, a novel aneurysm prognosis classifier (APC) was constructed based on a ML model that was to 
striate patient outcomes for stable, repair, and ruptured AAA. A rigorous imaging-based analysis was performed 
to compute morphological and biomechanical indices to use alongside key clinical indices for use in the ML clas-
sification models. The models were then trained using all three sets of indices along with known patient outcomes 
(stable, repair, and rupture). Additional analysis is presented that provides insight to the importance of pairing 
imaging-based studies (biomechanical and morphological) with clinical indices towards the development of a 
clinical decision support tool for patient prognosis of AAA.

Methods
Clinical and image data
This study was approved by the ethics committee of the University of Pittsburgh. The study methods, protocols, 
and data access were performed in accordance with the University of Pittsburgh Institutional Review Board (IRB) 
that are specific to the guidelines and regulations provided by the Human Research Protection Office within 
the Department of Health and Human Services under #STUDY19060084 to analyze the retrospective database. 
Informed consent was given by each and/or their legal guardian(s) by the University of Pittsburgh Medical 
Center. The retrospective dataset generated and/or analyzed during the current study are not publicly available 
due to limitations of the scope of the IRB but are available from the corresponding author on reasonable request.

An anonymized set of clinical and imaging data was delivered via Globus cloud services (Argonne National 
Laboratory, Chicago, IL) by the Health Record Research Request (R3) in collaboration with the University 
of Pittsburgh Medical Center and the Department of Biomedical Informatics at the University of Pittsburgh 
(Fig. 1A). Longitudinal data from 381 unique AAA patients from a minimum of two different time points and 
with known clinical outcomes were provided by R3. The two unique time points was used as a filtering criterion 
to ensure that a clinical outcome was known (repair or rupture) and stable if the last available medical image 
did not have clinical intervention or a rupture event (i.e., a single timepoint would not inform the study team 
of patient outcomes). There was a total of 352 stable aneurysms (defined as not having intervention or rupture 
during their longitudinal study), 16 clinical interventions, and 13 rupture events in the cohort. The first time 
point used for each patient was chosen based on a filtering criterion prioritizing the highest quality CT image set 
available. The clinical data (see Supplementary Table 1) included patient demographics, pharmaceutical use, and 
co-morbidities. The binary clinical indices were binary encoded and used ‘1’ for when a condition was present 
and ‘0’ for the absence of the condition for all co-morbidities. The clinical dataset was pre-processed using a 
custom python script to extract and organize clinical variables into columns for each patient. The known clinical 
outcomes were encoded to denote ‘0’ for stable, ‘1’ for repaired, and ‘2’ for ruptured aneurysms.
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Image segmentation pipeline with automated U-NET and semi-automated image processing
A U-NET image classifier was recently reported by our group to automatically segment AAA regions of interest 
from medical  images27. In that work, training was performed using a custom python script for U-NETs to run on 
both a local workstation optimized for multi-GPU training with four NVIDIA (NVIDIA Inc., Santa Clara, CA) 
A5000 ’s graphics cards and an Amazon Web Services Elastic Computing Node EC2 (Amazon Inc., Seattle, WA). 
The trained and validated image classifier was implemented in the current workflow to identify the AAA wall, 
ILT, and lumen (Fig. 1B)27. Semi-automated image segmentation using a custom in-house MATLAB script was 
performed for any image sets that had poor aneurysm wall and/or lumen boundary isolation using the U-NET.

3D surface reconstruction and morphological analyses
The segmented wall, lumen, and ILT regions from axial slices were converted into a binary mask for further 
processing to create 3D surface reconstructions and eventual meshing for computational analysis described 
further in the next section. Point clouds for each axial slice were created from the outer boundary for the wall 
and inner boundary for the lumen. The spacing between axial slices was calculated from the respective positions 
within the image stack and the regions were scaled from the pixel to millimeter (mm) conversion ratio found in 
the DICOM header file. Point clouds for the wall and lumen were meshed using Poisson surface reconstruction 
by computing the normal of each vertex with a neighborhood of 25  vertices28. Morphological analysis to yield 
one-, two-, three-, and higher dimensional indices for each aneurysm in the dataset was performed on the 3D 
reconstructed surfaces (Fig. 1C). The morphological indices that were measured were chosen based on previously 
reported literature and are found in Supplementary Table 2.

Finite element analysis and extraction of biomechanical indices
The finite element analysis (FEA) used in this study followed well-established methodology and incorporates 
previously published, experimentally measured material properties of the aneurysm wall and  ILT6,7,9. The initial 

Figure 1.  Pipeline to prepare the tabulated APC input datasets. (A) De-identified clinical and imaging data 
acquired from R3 is followed by image segmentation (B), 3D reconstruction and morphological analyses 
(C) and biomechanical analysis (D). The output from this pipeline includes a cleaned-up clinical dataset C, 
morphological metrics M, and biomechanics-based metrics B that are used as inputs to the APC machine 
learning model.
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surface from the point clouds were converted into polysurfaces (for the lumen and wall) that were imported 
into ANSYS ICEM (ANSYS Inc., Cannonsburg, PA) where the geometries were meshed with both 2D shell 
elements (for the wall) and 3D volumetric elements (for the ILT). A uniform AAA wall thickness of 1.9 mm 
was  assumed7,27. The computational mesh was constructed using 2D shell elements (S3R) for the wall and 3D 
tetrahedral elements (C3D4) for the ILT. The AAA wall was assumed to be hyperelastic and  anisotropic7, while 
the ILT was assumed to be hyperelastic and  isotropic9. An established, validated hyperelastic isotropic material 
model was used for the  ILT29, and an established anisotropic model was used for the AAA wall  material7 using 
a user-defined function. The isotropic ILT model uses a material model consisting of two parameters  c1 = 2.6 N/
cm2, and  c2 = 2.6 N/cm2,  respectively7,9,29. The biaxial behavior was previously modeled and descried by Vande 
Geest et al.7 where the strain energy assumption is defined by the following form (1):

Where  b0,  b1,  b2, and  b3 are 0.14, 477.0, 416.4, and 408.3 kPa,  respectively6. The strain energy terms involving 
the constants  b4, characterize material shear and  b5, and  b6 the shear-normal behaviors (included for complete-
ness, but is not required for fitting experimental stress–strain data)7,30. The distal and proximal ends of the AAA 
were constrained in the x, y, and z directions and an ideal systolic pressure of 120 mmHg was applied to the sur-
face of the lumenal elements. All simulations were performed in Abaqus Standard (implicit mode) with Microsoft 
Visual Studio 2017 (Microsoft Inc., Redmond, WA) and Intel Fortran Compiler (Intel Inc., Santa Clara, CA) 
employing a user-defined function to prescribe the anisotropic material properties of the AAA  wall7 (Fig. 1D). 
Lastly, von Mises wall stresses were computed (nodal average) and reported for both peak and mean wall stresses.

Statistical analysis of tabulated variables
The Kaplan–Meier estimator was used to model the survivability in our patient cohort to measure the number 
of patients that underwent clinical intervention or had rupture events. Correlation matrices between individual 
input variables and patient outcomes were constructed using a MATLAB code to qualitatively visualize and 
quantitatively assess whether positive or negative correlation relationships existed. Additionally, an ANOVA 
statistical test was performed for each variable to assess differences between clinical outcome groups using the 
three possible comparisons; i.e., stable vs. repair, stable vs. rupture, and repair vs. rupture. The primary purpose 
of this analysis was to determine whether a non-AI-based approach could discriminate patient outcomes for 
each group as well as the APC ML model.

Machine learning model training and testing
A dataset was prepared for APC ML model training by organizing the three categories of indices (biomechanical, 
morphological, and clinical) into a comma delimited file with the last column corresponding to each patients’ 
clinical outcome. Training was performed using ensemble boosted tree algorithms in MATLAB and python 
libraries using sci-kit/sklearn31 and  XGBoost32. Training was performed using combinations of categories to 
elucidate the importance of features (Fig. 2). The lowest level of training (Level 1) was performed separating each 
category (biomechanical, morphological, and clinical) individually with patient outcomes. Intermediate level of 
training (Level 2) was performed using paired categories: clinical and biomechanical, clinical and morphological, 
and biomechanical and morphological with clinical outcomes. The highest level of training (Level 3) combined 
all categories with each patient’s respective clinical outcome. Training was performed using internal seven-fold 
cross-validation techniques reserving 20% of the data for testing. Receiver operator characteristic (ROC) curves 
were generated for each clinical outcome and the area under the curve was calculated that represents the dis-
criminability of the classification model. Confusion matrices and ROC curves were generated for each training 
level and the area under the curve (AUC) was calculated to inform the ability of each model to predict outcomes 
(stable, repair or ruptured). Feature importance was computed for all trained models with their respective weights 
to truncate the number of variables used for training and testing. A threshold of 0.02 for feature importance was 
used to reduce the number of overall variables used in the classification model (i.e., weights below 0.02 were not 
considered in the final model).

To reduce the model bias or potential overfitting effects, a hold-out approach was performed by having a 
separate training and testing dataset. The rationale for this is that the algorithm that is produced should not 
have ‘seen’ any of the testing data during the training phase. Although the purpose of internal cross validation 
through simulating various splits, the hold-out validation model allows for a ‘real-world’ look at inputting new 
data into the trained model. To this end, the hold-out validation approach reserved ~ 80% of the entire dataset 
(n = 285 for the stable group, n = 11 for the repair group, n = 9 for the ruptured group) exclusively for training 
and ~ 20% (n = 68, n = 4, and n = 4, respectively) reserved for testing using a randomization procedure within each 
group. The hold-out validation method was applied to the combined biomechanical, morphological, and clinical 
categorical indices, rather than training for Levels 1–3. The testing dataset was input into the trained models to 
assess the ability to predict patient outcomes. Lastly, we compared the classification results of stable, repair, and 
rupture groups against the maximum diameter criterion for female and male subjects to further interrogate the 
model against the current clinical standard.

Results
The survival curve shows that no patients in our study had surgical repair or rupture within the first year of 
aneurysm discovery, where the number of patients at risk was 17% or 65 patients over a 10-year period (Fig. 3). 
Additionally, the survival curve reveals that 4 years after aneurysm discovery, the rate of repair or rupture 
stabilizes (i.e., levels-off without further events), and 83% of the studied patients made it 10 years without 
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Figure 2.  There were different combinations of ML training (Levels 1–3) that were used for three categories: 
clinical (C), biomechanical (B), and morphological (M). The ML models were iteratively trained using various 
algorithms to reduce the number of variables for the finalized classification model. For the holdout validation, a 
testing dataset not seen by the ML training set was used to validate and classify patient outcomes. The proposed 
use for APC is to weigh in clinician input to come to a finalized clinical decision that could reduce the frequency 
of surveillance, offer early clinical intervention, or recommend immediate clinical intervention.

Figure 3.  Survivability analysis of the AAA patient cohort displays that 83% of patients survived 10 years after 
being diagnosed with AAA. Number of aneurysms that were considered in each time point indicated under 
number at risk.
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either rupture or need for repair. The average times-to-event for repair and rupture were 2.50 ± 1.55 years and 
3.25 ± 2.15 years, respectively. It was also found that stable cases went without treatment for an average duration 
of 6.19 ± 3.47 years for that cohort.

Supplementary Table 3 reports the general demographics and clinical indices for each group of patients (sta-
ble, repair, and rupture). The full patient cohort was on average 67.4 ± 9.18 years old and expressed a variety of 
common AAA comorbidities. Supplementary Table 4 provides statistical comparisons of biomechanical and mor-
phological data between each group pairs (stable vs. repair, stable vs. rupture, repair vs. rupture). A correlation 
matrix was created for the full list of variables (Supplementary Fig. 1) and the truncated list of variables based on 
the Gini importance threshold of 0.02 used during the training phase for the classification model (Supplementary 
Fig. 2). There were no variables that independently correlated (positively or negatively) with patient outcome.

AUC values for predictions of stable, repair, and rupture of the various models for Levels 1, 2 and 3 are 
shown in Table 1. For example, for Level 1 training, the AUC for the “Repair” group was 0.65 for clinical data 
training alone, 0.81 for biomechanical data training alone, and 0.73 for morphological data training alone. For 
the Level 2 training, the AUC for the “Repair” group was 0.82 for both clinical and biomechanical data train-
ing and clinical and morphological data training, and 0.76 for biomechanical and morphological data training. 
However, the classification models that underwent Level 2 training failed to predict rupture events demonstrated 
in Supplementary Fig. 3, where no predictions were seen in the confusion matrices. The ROC curves that were 
generated represent the ability of the model to discern each outcome, and a higher corresponding AUC (closer 
to 1) provides how well the model is performing for a given patient outcome. For the Level 3 trained ML model, 
the AUC was 0.88 when predicting stable aneurysms, 0.87 when predicting clinical intervention, and 0.79 when 
predicting rupture (Supplementary Fig. 3). The confusion matrices at each level of training revealed an inability 
to predict repair and rupture events for Levels 1 and 2 training (Supplementary Fig. 3). Level 3 training was able 
to accurately predict patient aneurysm events (2.6% for repair and 1.3% rupture, even with the low number of 
patients with these outcomes), but had a higher level of misclassification (e.g., predicting 16.1% as rupture when 
it was stable). It was also shown that 0.78% of the patients were classified as ‘stable’ when they ruptured (Sup-
plementary Fig. 3). Feature importance was calculated using the Chi-squared method and ANOVA reporting 
the top 15 variables (Supplementary Fig. 4).

For the hold-out validation approach (splitting the training and testing dataset prior to training), the AUC 
values for the stable, repair, and rupture groups were 0.82, 0.78, 0.83, respectively, for the training dataset, and 
0.90, 0.80, and 0.91, respectively, for the test set (Fig. 4). The hold-out testing dataset included a combination of 
stable, repair, and rupture patients (n = 68, n = 4, and n = 4, respectively). The APC model classified 50% of the 
rupture accurately but misclassified a single patient as stable and another as repair, where the rupture subset was 
all male and a diameter of 5.29 ± 0.25 cm. The APC model classified 75% of the repair accurately but misclassified 
a single patient as rupture, where the repair subset was all male and had a diameter of 5.09 ± 0.32 cm. Lastly, the 
APC model classified 72.1% (n = 49) of the stable cases accurately but misclassified 10.3% (n = 7) as repair and 
17.6% (n = 12), where 92.6% were male and 7.4% female with an average diameter of 4.56 ± 1.4 cm.

Discussion
A trained ML classification model was developed here using image-based indices (biomechanical and morpho-
logical) and clinical indices with the ability to predict patient outcomes that included stable, intervention, and 
rupture patient outcomes. It is important to note that the ML classifier was able to pick up small changes within 
the cohort to correctly predict repair and rupture events. Three levels of training were performed using each 
type of indices independently (Level 1), paired combinations of types (Level 2), and all three types of indices 
together to classify and striate patient outcomes (Level 3). It was found that Level 1 training was generally poor 
without the proper discriminability to predict all classes of patient outcomes. Using clinical data alone resulted 
in the lowest performing classification model highlighting the limitations of this data category. Conversely, the 
classification algorithms were seen to greatly improve when using image-base indices derived from biomechan-
ics and morphological quantification. Given that the Level I and II training were poor using the internal cross-
validation approach, the holdout validation was not performed.

Biomechanical and morphological analyses of AAA have been previously studied to identify potential bio-
markers for rupture  prediction1,13,15,33–35. Peak and mean wall stresses have been shown in some of these studies 

Table 1.  Training and testing AUC results of the final model with truncated variables. Levels 1–3 use all 
patients for training and testing. The “split data” row used a subset of data reserved for training and testing.

Training Testing

Stable Repair Rupture Stable Repair Rupture

Level 1

C 0.56 0.65 0.50 0.74 0.66 0.80

B 0.77 0.81 0.67 0.79 0.80 0.71

M 0.73 0.73 0.71 0.84 0.82 0.81

Level 2

C + B 0.79 0.82 0.74 0.94 0.92 0.89

C + M 0.81 0.82 0.76 0.90 0.88 0.86

B + M 0.81 0.76 0.95 0.90 0.81 0.86

Level 3 C + B + M 0.88 0.87 0.79 0.94 0.92 0.93

Split Data C + B + M 0.82 0.78 0.83 0.90 0.80 0.91
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to be elevated in symptomatic and ruptured  aneurysms12–14,30. Further efforts to combine ML methods with 
biomechanical and morphological techniques have been utilized to predict rupture  events36,37. The previous 
image-based studies suffer from a general bias of using larger, clinical-sized aneurysms that are near or exceed 
the maximum diameter criterion reducing the potency of using such analyses for clinical translation. Traditional 
image-based techniques have not yielded the necessary throughput for clinical relevance and translation due 
to the time required for processing and the limited availability of imaging data from smaller-sized aneurysms, 
minimizing the utility of such analyses. Therefore, it is imperative that predictions of adverse rupture events 
incorporate a temporal component (e.g. time-to-event) of medical images that are sub-threshold to aid clini-
cians in identifying patients that are at high-risk of aneurysm growth toward clinical intervention or rupture. 
The APC model potentially provides a data-driven clinical decision support tool that compiles clinical data and 
image-based data from biomechanical and morphological analyses. The reported feature importance compared 
to Lindquist et al. reveals similar variables that include peak wall stress, and maximum ILT thickness. The APC 
model was trained with a different set of variables (e.g., our group did not compute ILT stress while Lindquist 
et al. did not compute various morphological indices that we included in the model), therefore, it is likely that 
inclusion of exclusion of some variables would result in a different feature importance map. Future studies should 
consider incorporating such analyses in the clinical management of AAA to potentially reduce surveillance 
interval or offer early repair when a patient’s predicted prognosis denotes repair or rupture.

Other efforts for predicting growth and rupture of aneurysms have been performed using classification models 
to identify patient outcomes with mixed results in discriminating patient  outcomes37,38. Jiang et al.39 developed a 
ML-based growth and remodeling surrogate model to identify local and global changes to aneurysm shape that 
incorporate temporal changes to a patients aneurysm with clinical data for personalization. The current study 
used a comprehensive list of clinical, biomechanical, and morphological variables that were later truncated for 
a more parsimonious model to reduce the potential for overfitting models and removing redundancies within 
variable types. It is important to note that the computational approaches used here differ from other groups in 
assembling the FEM. Others reported ML models did not incorporate anisotropic material properties for the 
aneurysm wall or include the effects of intraluminal thrombus for biomechanical analysis, both potential sources 
of error in wall stress prediction. However, it is unclear whether the complexity of the model (anisotropic wall 
material properties and isotropic ILT material properties) is required without interrogating other models. It 
is unknown whether a minimum threshold for physiologic realism exists without performing computational 
analyses and may be of interest to the field with further interrogation. Vande Geest et al.7 demonstrated that 
aneurysm wall anisotropy increased wall stresses compared isotropic material properties. In the current study 
our wall stresses were higher than the wall stresses presented in a recent study performed by Lindquist et al. that 
used isotropic wall properties (e.g. 18.7 N/cm2 vs. 17.2 N/cm2 for stable and 23.1 N/cm2 vs. 18.8 N/cm2, cur-
rent study vs. Lindquist et al.38, respectively). Due to dataset limitations regarding size and diversity of patient 
outcomes, most studies incorporating ML-based training of models test and train outcomes on using same 
 dataset36,37, which is another major limitation. We attempted to alleviate this common pitfall by splitting that 
dataset into training and testing data (at an 80%/20% ratio) to simulate new data inputs into a trained model to 
assess performance. The results using this “hold-out validation” was a trained model that was able to classify all 
three patient outcomes successfully (AUCs > 0.80).

Figure 4.  (A) ROC for training (n = 305), (B) internal cross validation of the training models, (C) Sankey 
diagram of the training dataset (predictions and true class), (D) ROC for holdout testing (n = 76), (E) holdout 
testing of the trained model, (F) Sankey diagram of testing dataset (predictions and true class).
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There are limitations to the current study that need to be addressed regarding the development of the APC 
model. Due to the volume of images delivered from the R3 query, CT image quality based on slice thickness was 
prioritized for the image-based analyses. The first diagnostic AAA image set within a patient’s history would 
have been ideal to maximize the time to clinical outcome but was not prioritized as image quality was prioritized. 
However, the initial diagnosis of AAA is at an unknown point in the natural history of the aneurysm, and with 
variability of imaging protocols at various hospital sites, it is impossible to standardize the initial image set for 
all AAAs studied. In addition, three classes of patient outcomes were chosen based on the available follow up 
for the cohort studied. It is plausible that the ‘stable’ aneurysm cases may eventually grow to a size where clini-
cal intervention, rupture, or patient death unrelated to AAA may have occurred, however, this information was 
not available within the database that was provided by R3. A potential limitation of the biomechanical analysis 
was the lack of patient-specific blood pressure as it was unavailable for the study team. However, our group has 
historically only considered utilizing idealized systolic pressure to standardize by reducing potential noise from 
unreliable blood pressure measurements during hospital visits. Even though hold-out validation was utilized 
during the training and testing phase of the model generation, the APC model still relies on internal cross valida-
tion. In addition, a class imbalance within the dataset as most of the patients were stable and had no incidence 
of clinical intervention of rupture. The study team attempted to alleviate potential overfitting effects through 
splitting and folding the data during training and holding out roughly 25% of the data for validation. Future 
work to generate a dataset to perform rigorous external cross validation will be explored by interrogating the 
APC model presented in this study to truly assess the generalizability of the approach. Further, training models 
to incorporate time-to-event attached to their known outcome can potentially improve clinical utility of this tool.

This study provides, for the first time, a machine learning classification-based methodology utilizing clinical, 
morphological, and biomechanical data to striate AAA patients based on clinical outcomes. The novel approach 
enhances the ability for clinicians to understand the patient’s health status through other clinical indices and 
the physical parameters derived from image-based studies to quantify the biomechanical and morphology. We 
believe that this classification software tool can be refined to the point that it can better guide clinicians in their 
management of AAA than just the maximum diameter criterion.

Conclusion
The APC model demonstrated the ability to striate AAA patients according to outcomes and represents a poten-
tially important step towards the creation of a reliable, noninvasive, objective clinical decision support tool for 
aneurysm management. Throughout training of the hierarchical levels targeting every combination of catego-
ries, it was found that clinical indices alone are insufficient to striate patient outcomes and that imaging-based 
biomechanical and morphological quantification contributes significantly to ML approaches.

Data availability
The retrospective dataset generated and/or analyzed during the current study are not publicly available due to 
limitations of the scope of the IRB but are available from the corresponding author on reasonable request.
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