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Electrically‑driven modulation 
of flow patterns in liquid crystal 
microfludics
Kamil Fedorowicz 1,2* & Robert Prosser 1,2

The flow of liquid crystals in the presence of electric fields is investigated as a possible means of flow 
control. The Beris‑Edwards model is coupled to a free energy incorporating electric field effects. 
Simulations are conducted in straight channels and in junctions. Our findings reveal that local flow 
mediation can be achieved by the application of spatially varying electric fields. In rectangular 
straight channels, we report a two‑stream velocity profile arising in response to the imposed electric 
field. Furthermore, we observe that the flow rate in each stream scales inversely with the Miesowicz 
viscosities, leading to the confinement of 70% of the throughput to one half of the channel. Similar 
flow partitioning is also demonstrated in channel junction geometries, where we show that using 
external fields provides a novel avenue for flow modulation in microfluidic circuits.

Microfluidics is a rapidly evolving interdisciplinary field that has revolutionised flow manipulation and analysis 
at the micro- and  nanoscales1. Its applications include medical  sensors2, drug  delivery3, optofluidic  modulators4, 
colour  filters5,  velocimetry6, and small-scale  valves7,8. In contrast to traditional, bulky measurement devices, 
microfluidic instruments are more portable, offer more cost-effective analysis and can reduce the time required 
to conduct sample  screening9.

Early microfluidic devices relied on Newtonian  fluids10. The combination of small length scales and low 
characteristic speeds results in laminar flows at very small ( << 1 ) Reynolds  numbers11,12; in this regime, the 
stress is a linear function of the strain rate. This simple relation allows for the predictable and repeatable flow 
behaviour relied on by early chemical analysis  devices12.

However, further developments of microfluidic devices have often relied on the exploitation of more complex 
structured fluids such as colloids and polymer  solutions13. The micro-structural elements of these materials are 
large, and their response to deformation often involves both strain and strain-rate  effects14. Structured fluids 
may therefore exhibit a number of rheological behaviours; in static configurations, normal stresses and memory 
effects may arise in response to microstructure  deformation14; for flowing systems, the viscosity need not be 
constant and can depend on the shear  rate10,15, surface  treatment16,17 or external  fields18,19. The interplay of these 
phenomena provides an opportunity to develop flow-control strategies, the success of which is predicated on a 
thorough understanding of the physics governing the  fluids10,20.

In this work, we focus our attention on a sub-group of complex fluids, namely liquid crystals (LC). The 
anisotropic elements comprising the liquid crystal form structures with a directional order, whose mean ori-
entation is called the director. Variable viscosity can be obtained by controlling director orientation through 
surface  treatment17 or external  fields19, and these have been used to drive the development of liquid crystal-based 
microfluidic  devices6,20,21. Sengupta et al.22 were the first to control flow-director coupling via surface treatment, 
thereby regulating the velocity profiles in rectangular channels. Similar results have been obtained by Steffen 
et al.23 and by Fedorowicz and  Prosser24, who have demonstrated the effects of microstructure elasticity on 
velocity profile and pressure drop.

In more complex domains, the competition between viscous and elastic effects, combined with geometric 
curvature, can be used to obtain a localised metering valve-like  behaviour25. In extreme curvature cases (sharp 
right-angle bends), shear banding arises from the co-existence of subdomains where the director aligns either 
with the flow direction, or with the velocity gradient direction. The effective viscosity in the former region is much 
smaller and this produces a preferred path for most of the flow. A qualitatively similar effect was demonstrated 
by Sengupta et al.22 in straight channels, where shear bands were instead driven by temperature variations. The 
viscosity of liquid crystals is also strongly dependent on the presence of an electric  field19. This observation was 
exploited by Na et al.18, who demonstrated electrically mediated local flow control in hierarchical branched 
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channels; although their work was primarily experimental, simulation of the phenomenon was achieved using 
a Newtonian fluid with an inhomogeneous viscosity to mimic the effect of Miesowicz viscosities. Electrically 
programmed flows have also been used in the design of hierarchical filtration and sampling  devices26–28.

The aim of this paper is to expand the functionality of electric fields in controlling microfluidic systems, and 
to build on recent related  research28–30. We use homogeneous and non-homogeneous electric fields to control 
liquid crystal flows in rectangular channels as a potential means of flow control. Additionally, we consider LC 
flows through manifolds in the presence of non-homogeneous electric field in order to complement the experi-
mental results of Na et al.18. Governing equations and geometries analysed in this paper are introduced in the 
“Methodology” section. The impact of the external fields on LC rheology and the flow modulation properties is 
discussed in the “Results” section. The paper summary and potential future developments are presented in the 
“Discussion” section.

Methodology
Governing equations
The fluid motion is described by the conservation equations of mass and linear momentum. The density of the 
liquid crystal fluid is assumed to be constant, and with incompressibility the continuity equation reduces to

u is the velocity vector, whose evolution is described through the linear momentum balance

where ρ is the density, DDt denotes the material derivative and p is the pressure. τ represents the total (viscoelastic) 
stress tensor. In the case of liquid crystals, there is a coupling between the stress and microstructure arrangement; 
in the Beris-Edwards  framework31,32, the stress tensor reads:

µ is a Newtonian viscosity, D = ∇u+(∇u)T

2  is the strain rate tensor and H denotes the molecular field which arises 
in response to microstructure distortions. The order parameter tensor Q describes the mean local  orientation16; 
distortion in the orientational ordering is opposed by the elastic stress

fLdG is the Helmholtz free energy, whose exact form will be discussed later in the paper. Finally, the presence 
of an electric field produces an additional stress component dependent on the alignment between the external 
field and the order parameter  tensor28

E denotes the electric field, ǫ0 and ǭ are the vacuum and the average nematic permittivity, and ǫmol is the molecular 
 anisotropy33.

Computation of the order parameter tensor Q is achieved via an angular momentum equation balancing 
viscous torques against the molecular  field31,34:

The viscous torque acting to rotate the nematic element towards the Leslie  angle34,35 (controlled by the tumbling 
parameter ξ ) is given by

where ω = ∇u−(∇u)T

2  is the vorticity. Ŵ is the rotational viscosity and the competing molecular field H is defined 
 as31,35

where δ
δQ

 denotes the functional derivative. In the absence of flow effects, the action of H minimises the Helm-
holtz free energy, denoted by fLdG , which in the Beris-Edwards framework has distortional, bulk-free nematic 
and electric components:
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KQ is an elastic constant and a, b, c are phenomenological  parameters16,36. The director orientation is governed 
by the competition between elastic and flow effects, the relative strength of which is expressed through the 
Ericksen number: Er = u0L0

ŴK  , where u0 and L0 are the velocity- and length-scales relevant to the problem. In our 
simulations we use u0 as the mean flow speed in the channel, while L0 is the channel height.

In the absence of orientational distortions and electric fields, the ordering of a static nematic sample is gov-
erned by the bulk free energy. The molecular field contribution of the bulk free energy has no impact on the 
preferred  orientation24, and its action is limited to driving the system towards the order parameter that minimises 
fnematic , given by

The competition between the flow and nematic effects acting on the order parameter is expressed through the 
Deborah number De = u0

ŴbL0
 . Since b ≈ 106 J/m3 , u0 ≈ 10−4 m/s and L0 ≈ 10−4 m in typical LC  flows22, this 

paper considers only De << 1 flows, as this regime is relevant to microfluidic applications.
At small Deborah numbers, the bulk free energy drives the system towards the uniaxial state, in which the 

order parameter tensor can be represented  as33

where n is the director and represents the local mean orientation of the nematic elements.
The last term in Eq. (9) represents the contribution of the electric field to the Helmholtz free energy. Since 

the term ǭE · E is independent of Q , it does not impact ordering and is therefore often  omitted17. The nature 
of electric-nematic interactions is qualitatively described by the sign of ǫmol ; positive (negative) ǫmol drives the 
nematic axes to align parallel (perpendicular) to the direction of the external  field17. In this paper, the relative 
importance of viscous to electric effects is measured by the Hartman number Ha = u0

ŴL0ǫ0ǫm(E·E).Due to the anisotropic properties of liquid crystals, there is a two-way coupling between their alignment and 
the electric  field37,38, which increases the complexity of the problem. In order to simplify the analysis, we follow 
the approach taken in previous works concerned with the electro-rheological properties of liquid  crystals28,39–41, 
and assume that the electric field is independent of the director orientation. This simplification was found to 
have little effect on the director arrangements in static problems that involve the competition between electric 
and elastic  effects17,42.

Numerical solution
Numerical solutions were obtained using the OpenFOAM solver rheoFoamLC43. The solver has been previ-
ously used to model liquid crystal flows in other complex  geometries44, and is capable of capturing  defects25,45. 
Combination of the extended definition of the free energy (Eq. (9)) with Eq. (8) provides a modification of the 
angular momentum equation (Eq. (6)) that incorporates the electric field.

 Geometries
We consider the flow of liquid crystals in the following geometries: 

1. Fully developed three dimensional channels depicted in Fig. 1a (the reference frame, test configurations and 
relevant nomenclature used throughout the paper is also displayed). Due to the high aspect ratio ( w/h = 10 ), 
the velocity gradient (and thus the shear stress) in the y direction is much larger than its z counterpart. For 
this reason, we impose a uniform y− aligned electric field of varying strength (upper inset in Fig. 1a), as this 
direction is able to produce a wide spectrum of effective viscosities; a schematic of the typical velocity profile 
is also provided in the inset. Additionally, we consider flows with a non-uniform electric field, as depicted 
in the lower inset of Fig. 1a. By introducing a flow-aligned electric field in the bottom half of the channel, 
we expect locally to promote the flow—the schematic velocity profile here reflects this expectation.

2. Simple manifolds. Studies of this geometry are inspired by the previous work of Na et al.18, whose experi-
ments on manifolds with four branches demonstrate the control of the local flow rate via the electric field. 
Here, we consider a simplified design, with a manifold consisting of two inlet channels feeding into an outlet 
channel. We explore flow programming capabilities by varying the alignment between the electric field, the 
flow field and the nematic axes. The electric field is aligned in the flow direction in the upper channel, and 
in the velocity gradient direction in the lower channel (depicted by the arrows in Fig. 1b). The strength of 
the field in each limb is also a control variable.

Boundary and initial conditions We use no-slip boundary conditions for the velocity on all walls in each 
configuration. Perfect ordering of the LC is assumed on the boundary (Q = 1) and homeotropic anchoring with 
infinite strength is imposed in the rectangular channel; this is consistent with our previous  research24,25,44,45 and 
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other researchers who have investigated the rheology of liquid crystals (Denniston and  Yeomans32,34, Rey and 
 coworkers46–48, and Sengupta and  coworkers22,23).

A fixed pressure gradient is imposed in the straight channel simulations to drive the flow. The velocity 
scale is calculated based on ∂p

∂x as ũchannel0 = ∂p
∂x

h2

Ŵ
 . In the case of connecting junctions simulations, a fixed and 

equal pressure is imposed at both inlets, and a zero pressure BC is imposed at the outlet. The selection of 
the fixed pressure boundary condition reflects the action of real pumps. In order to ensure consistent com-
parisons between flows driven by the identical pressure differences, we define the characteristic velocity scale 
as ũjunction0 = �p

34H
H2

Ŵ
= �p

34
H
Ŵ

 , where �p
34H  is the average pressure gradient across the whole geometry and 

34H(= 24H horizontal+ 6H vertical) provides a scale for the centre-line channel length across which the pres-
sure drop �p takes place. Zero gradient velocity boundary conditions are imposed at both inlet and outlet.

All simulations are initialised with the Q−tensor in the isotropic state and a zero velocity field. We expect 
the initial condition to have little impact on the steady state behaviour because of the relatively high Ericksen 
number flows considered in this work.

Computational domain The fully developed three dimensional channel flow is calculated using a two-dimen-
sional rectangular structured mesh �y = 40−1h , �z = 400−1w = 20−1h , where �y and �z are the length scales 
of the volume element in the y− and z− directions, respectively. Finally, the same mesh density was used in the 
simulations of the connecting junctions; �y = �x = 40−1H . Grid independent solutions have been obtained 
throughout.

Material parameters Material parameters used in all simulations are of similar values to those reported 
in previous  studies22,25: µ = 0.2 Pa · s , K = 40 pN , a = −0.2 MJ/m3 , b = 4 MJ/m3 , c = 4 MJ/m3 , ξ = 1 , 
Ŵ = 7 (Pa · s)−1 ; these values are representative of the 5CB liquid crystal, which is frequently used in microflu-
idic  research49,50.

For the given set of the bulk free energy constants a, b, c , the calculation of the equilibrium order parameter 
with Eq. (10) gives Qeq = 0.62 . A mapping between the Beris-Edwards and Leslie-Ericksen models (see  refs24,32 
for details) enables calculation of the Miesowicz viscosities, which are 0.21 Pa · s and 0.52 Pa · s for the flow and 
velocity-gradient aligned uniform orientations, respectively. These values will become relevant in later sections 
to estimate the degree of flow imbalance in cases where the non-uniform director fields are encountered.

Results
Impact of the flow and electric fields on the director alignment
Following a similar procedure as in our previous  work24, we can separate the effects contributing to the evolution 
of the microstructure orientation and to the order parameter. In the uniaxial, constant order parameter limit, the 
time derivative of the Q tensor evolution depends only on the director evolution: DQDt = QDnn

Dt  . Assuming Q = 1 , 
and representing both the director and electric field vectors in terms of their individual polar angles with respect 
to the flow: ( n = [cos(θ), sin(θ), 0] ), E = |E|[cos(α), sin(α), 0] ), DQDt  can be expressed as:

Noting that B : B = 1 , we can obtain the evolution equation for the director angle by taking the double contrac-
tion of B with each contribution of the angular momentum equation (Eq. 6). The contribution of the electric 
field to the angular momentum balance is given by

(12)
DQ

Dt
=

[− sin(2θ) cos(2θ) 0
cos(2θ) sin(2θ) 0

0 0 0

]

Dθ

Dt
= B

Dθ

Dt
.

Figure 1.  Geometries considered in this paper: (a) rectangular channel; (b) two-dimensional manifold with 
two inlet channels. Blue arrows indicate the direction of the applied electric field and red arrows denote inlet 
locations. The origin of the coordinate system is denoted with red dot. High aspect ratio rectangular channels 
with w = 10h are considered and we have set h = H = 10µm throughout all simulations. Insets in (a) illustrate 
the direction of applied electric field and the expected velocity profiles (shown dotted); a further discussion will 
be presented in the “Results” section.
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α − θ measures the misalignment between E and n . Similarly, the contribution of viscous effects to the angular 
momentum balance in a one-dimensional flow reads

The contribution of viscous effects vanishes when the director aligns in the flow direction ( θ = 0 ). The impact 
of elastic effects is given by

It is worth noting that since H(fnematic) : B = 0 , the nematic energy contribution has no impact on the direc-
tor orientation. Combining Eqs. (12–15), we construct a transport equation for the director angle, which in 
dimensionless form reads

In general, the director is oriented at the free-stream angle θ∞ far from the wall, while the boundaries impose 
homeotropic alignment. For a strong (Ha << 1) electric field, the two zones are separated by a well defined 
boundary layer. Since the electric field dominates the flow contribution ( |Ha−1 sin(2(α − θ))| >> |2 ∂u

∂y sin
2 θ | ), 

director distortions arise solely from the misalignment between E and nwall (for α  = π
2  ). The boundary layer 

thickness can be then estimated from Eq. (16) as δ ≈ O(
√

Ha
Er ) = O(

√

K
L20ǫ0ǫm(E·E)

) ; this result has been confirmed 
by numerical simulations (not reported here).

Sufficiently far from the wall, the director angle satisfies Ha−1 sin(2(α − θ))− 2 ∂u
∂y sin

2 θ = 0 , so θ depends 
on the direction and strength of the electric field. When E is aligned with the flow ( α = 0 ), θ∞ = 0 irrespective 
of the Hartman number, as shown by the continuous lines in Fig. 2a. Conversely, when E||nwall ( α = π/2 ), the 
free stream angle is a function of the Hartman number

The result indicates that as the electric field becomes stronger (Ha decreases), the director is driven towards 
the wall-imposed alignment (dashed lines Fig. 2a) because the combination of electric field and homeotropic 
anchoring overcomes viscous torques. The boundary layer disappears in the limit Ha−1 → ∞ (Ha effects >> 
strain rate effects), where the director is aligned in the wall-normal direction throughout the domain.

When neither the flow nor the electric contributions are negligible, no clear limiting behaviour can be estab-
lished and Eq. (16) must be solved numerically. Figure 2b shows that similarly to flows where E = 0 , the boundary 
layer becomes thinner as the Ericksen number increases. The presence of electric fields further strengthens the 
Ericksen number effect. The collocation of red and blue dots in Fig. 2b show that δ reduces both when E||u and 
E||nwall , indicating that the direction of E has little impact on δ . The boundary layer is largest when the electric 
fields disappear ( Ha → ∞ ), and δ ∝ Er−0.5 as described by the de-Gennes shear flow characteristic  length16,22. 
Re-scaling the wall normal direction by ỹ = y

√
Er removes the explicit dependency of Eq. (16) on the Ericksen 

number; in the re-scaled coordinates the boundary layer structure depends only on the (modified) strain rate 
and Hartman number.

Depending on the orientation of E , there are different mechanisms that drive the reduction in the boundary 
layer thickness. When E is aligned with the flow, δ decreases because the electric effects strengthen the viscous 
contribution, so the orientational transition of n occurs over a narrower region. Conversely, when E||nwall , δ 
decreases because the director rotates over a smaller distance (from π/2 to tan−1(Ha) ) to reach the free-stream 

(13)Helectric = ŴH(felectric) : B = Ŵǫ0ǫm|E|2 sin(2(α − θ)).

(14)S = S : B = −2
∂u

∂y
sin2 θ .

(15)Helastic = ŴH(felastic) : B = ŴK∇2θ .

(16)
∂θ

∂t
= Ha−1 sin(2(α − θ))− 2

∂u

∂y
sin2 θ + Er−1∇2θ .

(17)θ∞ = tan−1(Ha−1).

Figure 2.  (a) Spatial variation of the director angle for different Ha and α at Er = 1 ; (b) boundary layer 
thickness ( δ is measured as the layer width where 95% variation of the director angle occurs) as a function of Er; 
(c) normalised director angle for different Ha and α at Er = 1 . ∂u

∂y = 1 throughout all simulations for simplicity.
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value. Figure 2c shows that when the director angle is appropriately scaled θnorm = θ−θ∞
θwall−θ∞

 , director profiles 
collapse onto each other, which shows that the boundary layer scaling is independent of the direction of the 
electric field.

Analysis conducted in this paper uses ξ = 1 , in which limit the Beris-Edwards model produces a fixed steady 
state solution in the absence of electric  fields34. This need not be the case when ξ < 1 , where the Beris-Edwards 
model can produce director tumbling, or metastable states oriented in the vorticity  direction51,52. In the Supple-
mentary Information section, we show that the action of the electric field interferes with these effects by affecting 
the oscillatory behaviour (Figs. S1 and S2 in the SI section). In the limit of a very small Deborah number (in 
which case tumbling effects are the strongest), the critical Hartman number to promote the oscillatory behav-
iour scales with the inverse of the equilibrium order parameter. Otherwise, when the ordering effects are weak 
( De = O(1) ), there are periodic variations in both the director angle and the order parameter that are damped 
by the electric field (Figs. S3 and S4 in the SI). Figure S5 in the SI shows that the critical Hartman number to 
promote a fixed value solution only weakly depends on the Deborah number.

Rectangular channel with a uniform electric field
For the high aspect ratio channels ( w >> h ) considered in this paper, there are much larger velocity gradients 
in the y−direction than the z− direction. Therefore, for a fixed pressure gradient, the flow speed is more sensi-
tive to changes in the effective viscosity in the xy plane. Imposing a y−aligned electric field provides a wide 
spectrum of director orientations depending on Ha (Fig. 3a). The resultant effective viscosities range between 
minimum and maximum Miesowicz viscosities ( 0.21Pa · s and 0.52Pa · s , respectively), as shown in Fig. 3b. 
The viscous resistance is reflected in the velocity profile, which for a fixed pressure gradient, can have different 
maxima depending on the strength of effective field (Fig. 3c). Velocity profiles have similar shapes due to the high 
Ericksen number limit, in which elasticity has little impact on the director arrangement and the flow; this need 
not be the case when Er = O(1) . Finally, our result confirms that the velocity gradient is small in the xz plane 
with the exception of the near-wall boundary layer. As a result, the majority of the viscous resistance within the 
channel arises in response to shear in the xy plane; this confirms that an application of the y−aligned electric 
fields is optimum for flow programming.

Rectangular channel with a non‑uniform electric field
In this section, a nematic’s sensitivity to an imposed electric field is coupled the induced anisotropic viscosity 
to generate spatially non-uniform viscosity distributions. ure 4a provides velocity predictions for cases where 
the electric field variation occurs in the spanwise (z) direction. At Ha << 1 and Er ∼ O(10) , the electric field 
dominates flow driven and elastic effects. Figure 4b shows that for z/w > 0 , the director aligns with the velocity 
gradient direction; for z/w < 0 , alignment is in the flow direction. The resulting viscous inhomogeneity leads 
to the two-stream velocity profile denoted by the red and blue lines in Fig. 4a; the peak flow speed occurs in the 
lower half of the domain where u||E . As the Hartman number increases, the flow contribution becomes dominant 
and the director remains nearly aligned with the flow throughout the channel; the effective viscosity across the 
channel is nearly uniform, and so is the throughput (black continuous line in Fig. 4a).

An application of the electric field can be used locally to promote the flow in selected locations: at small Ha, 
over 70% of the throughput occurs in the lower half-channel, as shown in Fig. 4c. This value is consistent with 
a simple estimate based on the assumption that the throughput is inversely proportional to the local viscosity. 
For the material parameters selected in this paper, we expect 71%(= 0.52

0.52+0.21 ) of the throughput to occur in 
the channel’s lower half, where the director aligns in the flow direction (Fig. 4d). Equal throughput distribution 
is recovered at high Ha; switching between equal and unequal flow rates in each channel halves occurs here 
at around Ha ∼ O(10−1) . As the Ericksen number increases, the impact of the elasticity can be neglected, so 
the switchover between the equal and unequal flow distributions becomes quicker; this is confirmed in Fig. 4c 
(continuous line line).

Figure 3.  (a) Schematic depiction of director arrangement depending on the Hartman number (increasing Ha 
to the right); (b) effective viscosity ( Pa · s ) as a function of the Hartman number; (c) Velocity profile at y = 0 for 
a range of Hartman numbers. Er = 100 throughout all simulations.
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Manifolds
A natural application of the observed flow asymmetries is as a type of metering valve. As a prototype we apply 
an inhomogeneous electric field to a manifold configuration, with the field oriented in the velocity (velocity 
gradient) directions in the upper (lower) channels, respectively. In practice, a spatially variable electric fields 
on small scales can be generated through dielectrophoresis microfludic  chips53. A constant pressure difference 
is applied between the inlet and outlet channels, and we only modify the strength of the electric field. A zero 
gradient boundary condition for the Q−tensor is imposed on all boundaries so that the analysis can focus on 
the competition between viscous and electric  effects16.

Figures 5a and 5b demonstrate that the distribution of incoming streams can be mediated by the imposed 
electric fields. At low Ha, significant discrepancies in throughput between the two inlet channels are observed; 
up to 70% of the total flow occurs in the flow-aligned branch. The V̇(z > 0)/V̇  vs Ha dependency varies in the 
same manner as in the case of straight channels (Fig. 4c), and hence the plot is not included. This similarity sug-
gests that physical barriers (such as walls) are not necessary in order to obtain flow partitioning provided that 
the electric field is sufficiently strong.

Figure 5c shows the pressure variations at the centreline between the inlet and the point where the manifold 
branches meet (denoted by the letter A in Fig. 5a, b). Despite the pressure drop in the upper and lower branch 
is identical, it appears that the pressure drop around the bend region (around x/H = 15 ) is much smaller in 
the lower channel at low Ha. This is due to the flow-aligned director field in the corner of the lower channel 
(Fig. 5a), which in combination with small flow speeds (lower than in the analogous location in the upper branch) 
produces a small pressure drop around the corner. The result suggests that there can be differing patterns in the 
pressure drop depending on the direction of the electric field, and a detailed investigation of this phenomenon 
is a subject of the future work.

Figure 4.  (a) Effect of the applied external field (glyphs) on the centreline velocity profile as a function of 
Hartman and Ericksen numbers; (b) schematic illustration of the effect of electric field (blue arrows) on the 
velocity (red arrows) at small Ha; (c) throughput fraction ( ̇V ) through the lower half of the channel at Er >> 1 
and Er = 14 ; d) flow alignment (measured by n2x = cos

2(θ) ) at Ha = 1.4 · 10−1 at Er = 14.

Figure 5.  Velocity contour plot and glyphs of the director field at (a) Ha = 0.17 ; (b) Ha >> 1 ; (c) relative 
pressure drop in the upper and lower channels between the inlet and the entrance to the outlet channel (denoted 
by the letter A the contour plots) at Ha = 0.17 ; the vertical line denotes the bend location. x̃ is the distance from 
the entrance along the channel centreline, and is schematically illustrated by the yellow line in (b).
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Discussion
In this study we have investigated the physics of liquid crystal flow modulation with the use of electric fields. In 
flows with homeotropic anchoring, a uniform electric field aligned with the velocity amplifies Ericksen num-
ber effects, resulting in a narrower boundary layer where the director reorients. In contrast, elastic effects are 
strengthened when the electric field is parallel to the wall anchoring, and the director aligns at an Ha-dependent 
angle far away from the boundary. Similarly to the E||u case, the director boundary layer shrinks, which happens 
because the director rotates over a smaller angular distance. The mechanism of externally-controlled director 
alignment can be used for to manipulate the effective viscosity and thus the flow rate in rectangular channels.

The situation becomes more complex when the external field is non-uniform; both viscous and elastic effects 
may be relatively influenced, and the ultimate outcome is closely linked to the exact configuration of the field. 
With appropriate control, an uneven throughput distribution within the channel is produced, leading to a type of 
electrically-driven shear banding; this novel phenomenon has not, to the best of our knowledge, been previously 
demonstrated in liquid crystal flows. Shear banding manifests as a distinct two-stream velocity profile in straight 
channels, with the velocity in each partition being inversely proportional to the local viscosity. In typical liquid 
crystals, η⊥ can exceed η|| by a factor of  five17, providing significant potential for flow tuning.

Finally, we have demonstrated how the electric fields can be used in simple manifolds as a type of metering 
valve in order to control the flow proportions in mixing applications such as drug delivery. It remains an open 
question whether the concepts presented in this work may be extended to more complex geometries (e.g. mani-
folds consisting of more than two branches). Such configurations would improve the ability to control mixing 
operations of multiple fluid streams at a fixed pumping load.

We identify two primary directions for the future work: (1) investigations of manifolds and similar geometries 
in three dimensions, while accounting for the elastic effects at the wall; (2) incorporation of the Maxwell equa-
tions to the problem in order to obtain more accurate solutions. The latter point will be particularly important 
in situations where the electric field varies spatially.

Data availability
All data generated or analysed during this study are included in this published article and the Supplementary 
Information.
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