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Deep learning‑based diffusion 
tensor image generation model: 
a proof‑of‑concept study
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This study created an image-to-image translation model that synthesizes diffusion tensor images 
(DTI) from conventional diffusion weighted images, and validated the similarities between the 
original and synthetic DTI. Thirty-two healthy volunteers were prospectively recruited. DTI and DWI 
were obtained with six and three directions of the motion probing gradient (MPG), respectively. The 
identical imaging plane was paired for the image-to-image translation model that synthesized one 
direction of the MPG from DWI. This process was repeated six times in the respective MPG directions. 
Regions of interest (ROIs) in the lentiform nucleus, thalamus, posterior limb of the internal capsule, 
posterior thalamic radiation, and splenium of the corpus callosum were created and applied to maps 
derived from the original and synthetic DTI. The mean values and signal-to-noise ratio (SNR) of the 
original and synthetic maps for each ROI were compared. The Bland–Altman plot between the original 
and synthetic data was evaluated. Although the test dataset showed a larger standard deviation of all 
values and lower SNR in the synthetic data than in the original data, the Bland–Altman plots showed 
each plot localizing in a similar distribution. Synthetic DTI could be generated from conventional DWI 
with an image-to-image translation model.

With the remarkable advancement of artificial intelligence (AI), deep learning technology is being increas-
ingly used in medical imaging, including magnetic resonance imaging (MRI), computed tomography (CT), 
and positron emission tomography1. The image-to-image translation is a popular topic of deep learning2. For 
the central nervous system, several studies have been conducted to generate synthetic images, for example, 
generating contrast-enhanced MRI of brain tumors from non-contrast-enhanced MRI3, generating CT imag-
ing from MRI4, and removing motion artifacts from cerebral angiography5. These techniques are expected to 
reduce the examination time, omit minor invasive procedures such as contrast administration, and reduce or 
prevent radiation exposure.

Previous studies have focused on generating morphological images; however, few studies have been conducted 
on synthesizing metabolic or physiological images. Recently, methionine PET was developed from contrast-
enhanced T1-weighted imaging of subjects with brain tumors6. This study estimated the amino acid metabolism 
of brain tumors and categorized high- and low-grade gliomas. Hence, the image-to-image translation technique 
could be applied to metabolic images. In addition to PET, metabolic and physiological information can be 
estimated from MRI using diffusion tensor images (DTI). DTI is an advanced sequence of diffusion weighted 
images (DWI), requiring equal or more than six directions of the diffusion gradient7. DTI has the advantage of 
being able to predict physiological information, including tissue density, directional strength, continuity of nerve 
fibers7, and brain connectivity8,9. However, DTI examinations take longer than conventional DWI. Therefore, 
the DTI sequence has not been included in routine MR examinations.

If DTI can be obtained as a synthetic image from conventional DWI using an AI technique, detailed physi-
ological information about the brain can be easily assessed within a short inspection time. However, to date, no 
studies have generated metabolic or physiological MR images, such as DTI, using image-to-image translation 
techniques. Therefore, this study aimed to create an image-to-image translation AI model that synthesizes DTI 
from conventional DWI. Further, we aimed to validate the similarities between the original and synthetic DTI.
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Materials and methods
Subjects
The Ethical Committee of Osaka Metropolitan University Graduate School of Medicine approved this study 
(IRB:#2021–109), and all participants provided written informed consent before participation. This study com-
plies with the Declaration of Helsinki. Thirty-two healthy volunteers (males, 16; mean age, 30 years; range, 
20–38 years) without a history of brain disease or intracranial surgery were prospectively recruited at our insti-
tution between July 2021 and January 2022. No subjects were excluded.

MRI acquisition
MRI was performed using a 3.0-T scanner (Magnetom Vida; Siemens, Erlangen, Germany). The DTI included 
images with the b-value of 0 and 1000 s/mm2. Further details are provided in Table 1 and Online Appendix-S1. 
Three-dimensional T1-magnetization prepared rapid acquisition with gradient-echo images were obtained as 
anatomical images. Whole-brain DTI with 76 sections were acquired using a 2-dimensional single-shot echo 
planar imaging sequence with six direction of motion probing gradient (MPG). DTI was denoised and corrected 
for Gibbs ringing artifacts, motion and eddy currents, susceptibility-induced distortions, and bias field inho-
mogeneities using the MRtrix3 software (http://​www.​mrtrix.​org/). DWI with three directions of the MPG was 
also performed using the same parameters and imaging planes. The b1000 images of DWI were registered to the 
corresponding DTI with a 6-degree of freedom rigid transformation using the FLIRT function of the FMRIB 
Software Library version 6.0 (FSL; Oxford, UK; www.​fmrib.​ox.​ac.​uk/​fsl) since slight misregistration may have 
occurred between the DTI and DWI sequences, which affects the precision of the image-to-image translation. 
In contrast, the b0 images of DWI were not registered to the DTI; hence, registered b1000 images of DWI and 
original b0 image of DTI were utilized for generating maps of synthetic DTI.

Data partition
Thirty-two subjects were randomly divided into training, validation, and test datasets of 26, 2, and 4 subjects, 
respectively.

AI model overview
DTI data require equal or more than six MPG directions7. Thus, this study synthesized one MPG direction of 
DTI from DWI (three MPG directions of the x-, y-, and z-axes) and repeated this six times according to each 
MPG direction. To develop the AI model, DWI (signal intensities of the x-, y-, and z-axis MPG were used as three 
channels) and one MPG direction of DTI in the same plane (identical signal intensities were input to the three 
channels) were paired as a png file. Since the order and direction of the MPG were same relative to the gantry for 
all subjects using the MR machine provided by Siemens, the DTI data could be classified according to the MPG 
direction. Since signal intensities above 255 on DWI were anticipated to be noise, a signal intensity threshold of 
255 was set for DWI to scale the data, to simplify it for the AI model to process. The signal intensities were not 
normalized since the raw values were important for predicting physiological information.

A deep-learning model was developed based on pix2pix, a generative adversarial network, which is an image-
to-image translation model that uses paired images in the training and validation datasets2. In this model, 
the generator adopts a U-Net-based architecture10 and the discriminator adopts a convolutional PatchGAN 
classifier11. The model was trained using the training dataset, adjusted to the validation dataset, and evaluated 
on the test dataset.

An overview of the AI model is presented in Fig. 1. The learning process was performed six times, because 
one AI model was needed for one MPG direction. Thus, six AI models were created for each MPG direction. 
The details are presented in Online Appendices-S2 and S3.

Visualization of DTI and region of interest (ROI) placement
The separated six MPG directions and 76 slices of the synthetic DTI of the test dataset were 4-dimensionally 
concatenated as synthetic DTI data. From the original and synthetic DTI, fractional anisotropy (FA), mean 

Table 1.   MRI acquisition parameters. MPRAGE: T1-magnetization prepared rapid acquisition with gradient 
echo, DTI: diffusion tensor imaging, DWI: diffusion weighted imaging, TR: repetition time, TE: echo time, TI: 
inversion time, FOV: field of view, MPG: motion probing gradient.

Parameter MPRAGE DTI DWI

TR (ms) 1800 4500 4500

TE (ms) 2.92 81 81

TI (ms) 900

FOV (mm) 240 × 240 220 × 220 220 × 220

Imaging matrix 256 × 256 128 × 128 128 × 128

Slice thickness (mm) 0.9 2 2

b value (s/mm2) 0 and 1000 0 and 1000

MPG directions 6 3

Number of sections 76 76

http://www.mrtrix.org/
http://www.fmrib.ox.ac.uk/fsl
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diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and color-coded maps were generated using the 
DTIFIT function of FSL software. In this process, the same b vector information and b0 images were used in the 
original and synthetic DTI.

The ROIs of the lentiform nucleus (LN), thalamus, posterior limb of the internal capsule (PLIC), posterior 
thalamic radiation (PTR), and splenium of the corpus callosum (SCC) were automatically segmented for each 
subject using the ICBM DTI-81 atlas. Then, the ROIs were applied to the FA, MD, AD, and RD maps derived 
from the original and synthetic DTI to calculate the mean values and signal-to-noise ratio (SNR) within each 
ROI (Fig. 2). The ROI creation method is shown in Online Appendix-S4.

Statistical analyses
The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of the separated DTI data were 
calculated2,12. PSNR > 40 indicated a low degree of degradation, whereas SSIM > 0.8 indicated a high degree of 
similarity12,13. For the test dataset, the mean values of the original and synthetic FA/MD/AD/RD maps within 
each ROI were calculated. The SNR within each ROI was calculated using the following formula: SNR = mean sig-
nal intensity/standard deviation (SD). These values were compared between the original and synthetic DTI using 
a paired-t test (P < 0.05, indicating statistical significance). A visual inspection of noise quality was conducted 
by three radiologists, who were blinded to the original and synthetic DTI; they reviewed the color-coded, FA, 
MD, AD, and RD maps and selected the noisier images for each map. The Bland–Altman plot between the mean 
values of the FA/MD/AD/RD maps derived from the original and synthetic DTI was evaluated. The analyses were 
performed using R (version 4.0.0, 2020; R Foundation for Statistical Computing) or GraphPad Prism version 
9.4.1 software (GraphPad Software, San Diego, CA, USA; https://​www.​graph​pad.​com/​scien​tific-​softw​are/​prism/).

Figure 1.   Explanation and overview of the deep learning-based model. Step 1 is the image-generation phase. 
The generator generates one slice of synthetic DTI of one MPG direction from one slice of DWI (three channels: 
x-, y-, and z-axis MPG). The original DWI is then concatenated with the synthetic DTI. Step 2 is the learning 
phase of the discriminator. The concatenated image of one slice of original DWI and synthetic DTI from step 
1 or a concatenated image of one slice of original DWI and original DTI from training data are input to the 
discriminator. The discriminator correctly distinguishes the synthetic and original DTI; therefore, the loss 
value is set to be small if the discriminator is correct, whereas it is set to be large if the discriminator is wrong. 
The resulting loss value is backpropagated to the discriminator and the parameters are updated. Step 3 is the 
learning phase of the generator. The generator generates synthetic DTI with such a high similarity to the original 
DTI that they can be mistakenly recognized by the discriminator. Hence, the loss value is set to be large if the 
discriminator is correct, whereas it is set to be small if the discriminator is wrong. In addition, the L1 loss value 
from the original and synthetic DTI are obtained. These loss values are combined to form the loss value of 
the generator, and the parameters of the generator are updated. Steps 1 through 3 are repeated as the learning 
progresses for one MPG direction with the epoch number of 100. DTI: diffusion tensor imaging, MPG: motion 
probing gradient, DWI: diffusion weighted imaging.

https://www.graphpad.com/scientific-software/prism/
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Results
The training dataset included 1976 image pairs of one direction of MPG image and DWI from 26 subjects (male, 
13; mean age ± SD, 29 ± 5.3 years). The validation dataset included 152 image pairs from two subjects (one male 
[32 years old] and one female [24 years old]). The test dataset included 304 image pairs from four subjects (male, 
2; mean age ± SD, 30 ± 5.8 years).

PSNR and SSIM of the separated DTI data were 32.7 and 0.92, respectively.
The results of the visual inspection for noise quality, as detailed in Online  Appendix-S5, indicated that all 

synthetic DTI maps exhibited more noise compared to their original counterparts.
Table 2 presents the mean values and SNR of the original and synthetic DTI within each ROI. Only the AD of 

the PTR and SCC showed significant differences between the original and synthetic maps (P = 0.047 and 0.017, 
respectively), whereas the SD of all analyses was larger in the synthetic maps than in the original maps. The SNR 
of the FA map within the LN was significantly higher in the synthetic data (P = 0.012), whereas the SNR in the 
other ROIs tended to be lower in the synthetic data than in the original data. Figure 3 shows the Bland–Altman 
plot of the FA, MD, AD, and RD values within the LN, thalamus, PLIC, PTR, and SCC. Except for the plot cor-
responding to subject 3, each plot showed a similar distribution. In the evaluation of MD and RD, most values 
were distributed under zero, indicating that the synthetic MD and RD tended to show higher values than the 
original data. In the evaluation of AD, values of the white matter were localized above zero, indicating that syn-
thetic AD tended to have lower values than the original data.

Discussion
In this study, DTI was synthesized from conventional DWI using an image-to-image translation model, and the 
imaging similarity of physiological parameters between the synthetic and original images were evaluated. The 
variation in all values was larger, and the SNR tended to be lower in synthetic DTI than in original DTI. Except 
for one subject, the Bland–Altman plots showed that each plot had a similar distribution. The synthetic data of 
MD and RD showed higher values than the original data, whereas the synthetic data of AD in the white matter 
showed lower values than the original data.

Synthetic DTI generated using conventional DWI has two main advantages: reduced scan time and reduced 
motion artifacts. Acquiring synthetic DTI can reduce the scan time compared with acquiring ordinal DTI. 
Reduced scan time would enable acquiring several MPG directions (64 or more], once the AI model has been 
established14. In fact, using the MR scanner at our institution, the scan times for acquiring DTI with six and 64 
MPG directions were 55 s and 5 min 16 s, respectively, whereas that of conventional DWI was shorter compared 
with DTI. This is particularly beneficial for patients who have difficulty in remaining still during lengthy MR 
examinations15. Shorter scan times can lead to improved imaging quality since there is a decreased likelihood of 
motion artifacts resulting from movement during the scan.

PSNR and SSIM are often used to evaluate the imaging similarity generated from an image-to-image transla-
tion technique. According to previous studies12,13, the PSNR and SSIM of synthetic DTI data appear to indicate 
moderate similarities. Since this study had a small sample size, recruiting more subjects may improve the PSNR 
and SSIM. However, it is unclear whether the PSNR and SSIM are adequate for evaluating medical imaging, and 

Figure 2.   The separated six MPG directions and 76 slices of the synthetic DTI of the test dataset are 
4-dimensionally concatenated as one synthetic DTI data. From the original and synthetic DTI, original and 
synthetic FA map, MD map, AD map, RD map, and color-coded map are generated. ROIs of the LN, thalamus, 
PLIC, PTR, and SCC are applied to the maps. MPG: motion probing gradient, DTI: diffusion tensor imaging, 
FA: fractional anisotropy, MD: mean diffusivity, AD: axial diffusivity, RD: radial diffusivity, ROI: region of 
interest, LN: lentiform nucleus, PLIC: posterior limb of the internal capsule, PTR: posterior thalamic radiation, 
SCC: splenium of the corpus callosum.
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a gold standard for evaluating physiological imaging has not yet been established. Therefore, a new index for 
evaluating synthetic medical imaging is required for future studies.

Consistent with the current study, FA is known to be higher in the white matter than in the gray matter, 
whereas MD shows similar values in the gray and white matter16. However, in synthetic DTI, the variation in all 
values was larger, and the SNR tended to be lower than that of the original DTI. When we reviewed DTI maps 
visually, the synthetic DTI maps were noisier than the original DTI maps. To further investigate, we conducted 
the same analysis using denoised and corrected DWI. Nevertheless, the SSIM and PSNR values of the synthetic 
images remained virtually unchanged (detailed data not shown), indicating that denoising and artifact correction 
of the input DWI did not notably influence the quality of the synthetic images. Our image-to-image transla-
tion model separately learned to generate images in each MPG direction and then concatenated the synthetic 
images of the six MPG directions. Thus, this model cannot learn how to reduce the noise that occurs during the 
creation phase of each map. Due to the increased noise, we could not evaluate the differences between synthetic 
and original DTI using other methods, such as tractography or connectome analyses17. Therefore, additional 
ingenuity may be required to reduce the noise in maps produced by DTI.

For the subject-wise evaluation, the values of one subject (subject 3) seemed to be clustered among the 
test dataset in the Bland–Altman plot, indicating that the maps of synthetic DTI may have been affected by 
conventional DWI. Despite thorough visual comparative review of subject 3’s original DWI against others, 
specific causative factors, such as noise or artifacts, remained unidentified. Hence, when using synthetic DTI, 
a subject-wise coefficient or reference region may be required for imaging harmonization. When we evaluated 
the distribution of the plots of the MD, AD, and RD values, the synthetic data in the MD and RD maps tended 
to show higher values and those in the AD maps of the white matter showed lower values than the original data. 
The number of MPG directions may have affected the map values18. A previous study suggested that at least 20 
and 30 MPG are necessary for robust estimations of FA and MD, respectively19. Since this study focused on a 
new technique that created synthetic DTI from conventional DWI, a minimum number of MPG directions was 
selected. Increasing the number of MPG directions may improve the similarities between the values derived 
from original and synthetic DTI.

This study has several limitations. Firstly, the sample size and the number of MPG directions were small. 
Increasing the number of participants or obtaining more MPG directions may improve the quality of the syn-
thetic DTI. Secondly, synthetic physiological MR images have not been previously reported; thus, a method for 
evaluating synthetic medical imaging has not been established. Further validation of the results of this study is 
required. Conversely, since image-to-image translation techniques have recently been developed and are expected 
to show further development in various fields, including the medical field, the current results could serve as a 
reference for future studies. Thirdly, while a 2D GAN model, which utilizes versatile 2D RGB images, was used 
in this study due to the small dataset, developing a 3D model might enhance the synthesis of DTI and is worth 
exploring in future research. Models like StarGAN, which can handle multiple domains, may also improve 

Table 2.   Each value and SNR of original and synthetic maps within the gray and white matter. Values indicate 
mean ± standard deviation. SNR: signal–noise-ratio, FA: fractional anisotropy, MD: mean diffusivity, AD: 
axial diffusivity, RD: radial diffusivity, LN: lentiform nucleus, PLIC: posterior limb of capsule, PTR: posterior 
thalamic radiation, SCC: splenium of corpus callosum.

Original DTI Synthetic DTI p value SNR of original DTI SNR of synthetic DTI p value

FA

LN 0.28 ± 0.01 0.36 ± 0.06 0.07 1.76 ± 0.07 2.20 ± 0.10 0.012

Thalamus 0.28 ± 0.01 0.30 ± 0.07 0.66 2.59 ± 0.08 2.44 ± 0.23 0.26

PLIC 0.59 ± 0.03 0.58 ± 0.03 0.84 5.09 ± 0.78 4.55 ± 0.09 0.22

PTR 0.52 ± 0.04 0.50 ± 0.11 0.69 3.75 ± 0.29 3.59 ± 0.65 0.71

SCC 0.58 ± 0.03 0.54 ± 0.08 0.33 2.51 ± 0.21 2.50 ± 0.19 0.88

MD

LN 7.08 × 10–4 ± 0.18 × 10–4 6.95 × 10–4 ± 1.00 × 10–4 0.81 12 ± 2.77 5.16 ± 1.53 0.004

Thalamus 8.79 × 10–4 ± 0.42 × 10–4 8.89 × 10–4 ± 1.43 × 10–4 0.86 2.72 ± 0.82 2.63 ± 0.30 0.77

PLIC 7.08 × 10–4 ± 0.15 × 10–4 7.15 × 10–4 ± 1.05 × 10–4 0.9 20.5 ± 1.35 7.53 ± 1.39  < 0.001

PTR 7.94 × 10–4 ± 0.23 × 10–4 7.50 × 10–4 ± 0.99 × 10–4 0.44 14.66 ± 2.03 7.15 ± 1.05 0.007

SCC 8.03 × 10–4 ± 0.26 × 10–4 7.70 × 10–4 ± 0.95 × 10–4 0.53 4.37 ± 0.62 3.79 ± 0.54 0.17

AD

LN 9.32 × 10–4 ± 0.22 × 10–4 9.61 × 10–4 ± 0.87 × 10–4 0.57 5.26 ± 0.36 4.84 ± 0.96 0.48

Thalamus 1.14 × 10–3 ± 0.35 × 10–4 1.15 × 10–3 ± 1.30 × 10–4 0.73 3.08 ± 0.79 2.95 ± 0.38 0.60

PLIC 1.25 × 10–3 ± 0.21 × 10–4 1.24 × 10–3 ± 1.04 × 10–4 0.77 7.83 ± 0.78 6.33 ± 0.86 0.04

PTR 1.32 × 10–3 ± 0.37 × 10–4 1.19 × 10–3 ± 0.48 × 10--4 0.048 5.57 ± 0.37 5.51 ± 0.76 0.87

SCC 1.44 × 10–3 ± 0.07 × 10–4 1.28 × 10–3 ± 0.64 × 10–4 0.017 4.07 ± 0.39 3.73 ± 0.2 0.19

RD

LN 5.96 × 10–4 ± 0.19 × 10–4 5.62 × 10–4 ± 1.06 × 10–4 0.56 6.44 ± 0.72 3.42 ± 1.50 0.016

Thalamus 7.51 × 10–4 ± 0.46 × 10–4 7.57 × 10–4 ± 1.49 × 10–4 0.92 2.33 ± 0.62 4.17 ± 1.98 0.17

PLIC 4.35 × 10–4 ± 0.28 × 10–4 4.54 × 10–4 ± 1.13 × 10–4 0.73 5.96 ± 0.61 2.66 ± 1.09 0.015

PTR 5.32 × 10–4 ± 0.39 × 10–4 5.30 × 10–4 ± 1.27 × 10–4 0.97 6.07 ± 1.09 3.04 ± 1.53 0.038

SCC 4.86 × 10–4 ± 0.38 × 10–4 5.13 × 10–4 ± 1.16 × 10–4 0.65 1.93 ± 0.13 2.88 ± 1.33 0.23
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image quality. However, it is expected that the use of a 3D AI model or a specific image generation model would 
require a larger dataset.

Conclusion
Although further improvements and validation are required, generating synthetic DTI from conventional DWI 
using an image-to-image translation model is possible. Overall, our study would promote efficient diagnosis and 
prevent adverse effects associated with the radiological modalities.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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