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Blood transcriptomics analysis 
offers insights into variant‑specific 
immune response to SARS‑CoV‑2
Markus Hoffmann 1,2,3,8*, Lina‑Liv Willruth 1,8, Alexander Dietrich 1,8, Hye Kyung Lee 3, 
Ludwig Knabl 4, Nico Trummer 1, Jan Baumbach 5,6, Priscilla A. Furth 2,3,7, 
Lothar Hennighausen 2,3 & Markus List 1*

Bulk RNA sequencing (RNA‑seq) of blood is typically used for gene expression analysis in biomedical 
research but is still rarely used in clinical practice. In this study, we propose that RNA‑seq should 
be considered a diagnostic tool, as it offers not only insights into aberrant gene expression and 
splicing but also delivers additional readouts on immune cell type composition as well as B‑cell and 
T‑cell receptor (BCR/TCR) repertoires. We demonstrate that RNA‑seq offers insights into a patient’s 
immune status via integrative analysis of RNA‑seq data from patients infected with various SARS‑
CoV‑2 variants (in total 196 samples with up to 200 million reads sequencing depth). We compare 
the results of computational cell‑type deconvolution methods (e.g., MCP‑counter, xCell, EPIC, 
quanTIseq) to complete blood count data, the current gold standard in clinical practice. We observe 
varying levels of lymphocyte depletion and significant differences in neutrophil levels between SARS‑
CoV‑2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the tools 
MiXCR and TRUST4 to show that—combined with sequence alignments and BLASTp—they could be 
used to classify a patient’s disease. Finally, we investigated the sequencing depth required for such 
analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our study reveals 
that computational cell‑type deconvolution and BCR/TCR methods using bulk RNA‑seq analyses 
can supplement missing CBC data and offer insights into immune responses, disease severity, and 
pathogen‑specific immunity, all achievable with a sequencing depth of 10 million reads per sample.

Peripheral blood is the tissue of choice in clinical diagnostics and biomedical research due to minimally inva-
sive sample collection. As blood perfuses all organs, it provides insights into various diseases and medical 
 conditions1,2. In general, we can investigate active pathways and organismal responses to stimuli (e.g., a viral 
infection) on a transcriptomic  level3,4 by using well-established sequencing techniques such as bulk RNA 
sequencing (RNA-seq). A blood sample contains various cell types with different expression profiles. Complete 
blood counts (CBCs) are routinely assessed in the clinical setting and provide specific information regarding 
the proportions of cells  present5. Within the white blood cell compartment, the percentages of neutrophils, 
lymphocytes, monocytes, eosinophils, and basophils provide insight into the type and response to infection and 
underlying disease and/or  therapy6–14. However, CBCs are frequently unavailable in publicly accessible datasets, 
limiting insights into the status of the immune system.

Employing either bulk RNA-seq or single-cell RNA-seq (scRNA-seq, i.e., profiling gene expression at the 
individual cell level)15 can provide a detailed description of cellular composition, all based on the expression 
levels of  genes16,17. Performing scRNA-seq on each patient and cell type is not feasible due to the logistics and 
high costs of scRNA-seq18. To gain insights into the individual immune reactions to disease from RNA-seq 
data alone, it is essential to determine the composition of immune cells and gene expression in patient samples. 
CBCs—if available—provide a fundamental understanding of changes in the immune system; however, they do 
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not specify more fine-grained segmentation into functional subgroups, which often drive disease progression. 
Hence, computational techniques such as MCP-counter19,  xCell20,  EPIC21, and  quanTIseq22 (see “Methods” and 
Suppl. Materials 1 and 2 for differences, strengths, and weaknesses of each method) deconvolve bulk RNA-seq 
using signatures or gene sets of cell-type specific genes. They give a robust estimate of the abundance of various 
immune cell types within and across patient samples. Recent  benchmarks23 of these methods also compared 
their predictions with experimentally derived flow cytometry fractions and in silico generated pseudo-bulk 
samples, where ground-truth cell-type proportions are known. Such insights into the status of an immune system 
are helpful for diagnostics, prognosis, and treatment selection with demonstrated potential in  oncology24 and 
other  diseases10,12. Especially in studying tumor microenvironments, deconvolution methods have proven to be 
effective, as they enable researchers to estimate the proportions of tumor-infiltrating immune  cells25,26. Here, 
we compare four different deconvolution approaches using bulk RNAseq to analyze changes in the white blood 
cell compartment over time in individuals infected with SARS-CoV-2. Previous works have already profiled the 
immune cell environment in early COVID-19 patients using scRNA-seq and detected a large decrease in T  cells27.

In this study, we (1) compared computationally estimated immune cell abundances to CBC counts, the current 
gold standard. Moreover, we (2) investigate the immune cell abundances in patients infected with SARS-CoV-2 
variants that differed in severity and tracked their progression over time, comparing them to a baseline model 
(i.e., seronegative samples taken from individuals that reportedly were never infected with SARS-CoV-2) to 
elucidate immune response differences and their progression over time to a healthy state. Additionally (3), we 
characterized the BCR and TCR profiles in infected patients. Finally (4), we compare how the performance of 
these methods is influenced by sequencing depth, i.e., how many reads have been sequenced for each sample.

Methods
Datasets
We utilized publicly available data from human buffy coat white blood cells from four distinct bulk RNA-seq 
experiments: GSE190680 (variants: Alpha, Alpha + EK (i.e., Alpha with an additional E484K mutation in the spike 
protein), Gamma)28, GSE162562 (seronegative)29, GSE201530 (variant: Omicron BA.1)30, and GSE205244 (vari-
ants: Omicron BA.1 and Omicron BA.2)31 (Suppl. Table 1a). Variants had samplings of days 0–5, 6–10, 11–15, 
16–30, and > 30 after hospitalization or onset of symptoms (Suppl. Table 1a,b). All samples were processed by 
nf-core RNA-seq v. 3.8.1 using default  parameters32. All 252 samples were controlled for quality by utilizing the 
reports of  FastQC33 and  MultiQC34, and only those (196 samples in total) with sufficient quality were included 
in the subsequent analyses (Suppl. Table 1b, Suppl. Table 2)35,36. Samples came from different studies but were 
processed in the same laboratory and with the same staff to avoid technical  differences37.

Immune deconvolution methodology
Cell-type deconvolution is a computational method applied to bulk RNA-seq data to estimate the abundance of 
cell types in a biological sample and is primarily used in the context of immune cells. In this study, we employ 
several tools bundled in the immunedeconv tool (using default settings established there), as it was previously 
shown that no single tool generally outperforms all others across all immune cell  types23 (for marker genes, see 
Suppl. Fig. 1a,b and https:// doi. org/ 10. 6084/ m9. figsh are. 24442 423. v1). Computational cell type deconvolution 
methods generally produce fractions or scores representing the abundance of specific cell types in the samples, 
which we use here for inter-sample comparisons between patients infected with different SARS-CoV-2 variants 
(see Suppl. Materials 119–22).

BCR/TCR repertoire methodology
BCR/TCR repertoire analysis refers to the study of the diverse collection of BCRs and TCRs present within an 
individual’s B and T cell repertoire (i.e., all unique antigen-specific receptors expressed on the surface of T cells 
and B cells), respectively. These receptors play a crucial role in the adaptive immune system by recognizing and 
binding to specific antigens derived from pathogens or abnormal cells, thus serving as biomarkers for past or 
current infections. Each BCR and TCR has a unique amino acid sequence, which contributes to the vast diversity 
and specificity of the immune response. We used two methods—MiXCR38 and  TRUST439—to investigate bulk 
RNA-seq data by reconstructing B and T cell repertoires (Suppl. Materials 240–42).

We used the Python package  scirpy43 to analyze results from both methods. To extract only BCR/TCR 
sequences that differ from those found in a healthy population, we utilized the following steps: we computed a 
pairwise distance matrix for input sequences to identify sequences forming clonotypes and likely targeting simi-
lar antigens. Our objective was to identify sequences targeting SARS-CoV-2 antigens, enabling us to determine 
which BCR and TCR sequences respond to the virus. As sequences present in seronegative samples cannot target 
the SARS-CoV-2 virus, we can disregard them and focus on sequences exclusive to infected patients, further 
refining our search for the specific anti-SARS-CoV-2 receptor sequence. We use the ClustalW  algorithm44 to 
perform multiple sequence alignment (see Suppl. Materials 345–48). In the final steps, we employed the protein 
BLAST (BLASTp)  tool49,50 to annotate clusters and sequences (e.g., those surpassing the cutoff and unlinked to 
sequences originating from healthy samples) to associate discovered sequences with specific viruses.

Subsampling to a lower sequencing depth
RNA-seq always comes with a tradeoff between costs and information gain. Given the high sequencing depth 
(up to 200 million reads per sample) of the samples investigated here, we were interested in establishing a lower 
bound for obtaining robust results. To this end, we downsampled the samples to fifty, ten, seven, five, three, and 
one million reads using  samtools51. Subsequently, we repeated both the immune deconvolution analysis and the 
BCR/TCR (only on fifty and ten million reads) analyses. First, we generated TPMs expression matrices from 
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the downsampled FASTQ files using  salmon52 and revisited the immune deconvolution methods, then executed 
MiXCR and TRUST4 on the downsampled data and performed the subsequent analyses as described above.

Results
In this study, we highlight the potential of RNA-seq data in clinical practice. Typically used for studying gene 
expression, RNA-seq data offers crucial insights into the status of the immune system via computational cell type 
deconvolution as well as the analysis of BCR and TCR sequences. While such advanced analysis techniques are 
increasingly widespread in oncology, we focus here on demonstrating their applicability in infectious diseases 
by example of SARS-CoV-2 infection. We re-analyzed data from 196 SARS-CoV-2 patients over time from the 
initial hospitalization through  recovery28,30,31. First, we deconvolve the bulk RNA-seq data into immune cell-type 
fractions that changed as the patients went from the initial hospitalization through recovery. We show that the 
estimated values of the immune deconvolution methods approximate the CBC information. We further elucidate 
that with computational immune deconvolution methods, we can reveal changes between patients infected with 
SARS-CoV-2 variants with differing severity of  disease53,54. Next, we illustrate how we can utilize BCR and TCR 
computational analysis to classify the patients’ cause of disease and investigate the effect of sequencing at various 
depths on the robustness of our results.

Approximated immune cell abundances by immune deconvolution methods are close to real 
complete blood count data
In Fig. 1, we observe a consistent positive correlation across lymphocytes and neutrophils using the four deconvo-
lution methods with the CBC data for patients with the Alpha and Alpha + EK (Alpha with an additional E484K 
mutation at the spike protein) variant infections. Monocytes show overall lower correlation values, likely due to 
lower abundance overall. The strength of these correlations varies as scores fluctuate in magnitude based on the 
cell type and method employed (Suppl. Fig. 2). The chart highlights that the EPIC method’s outcomes closely 
align with the CBC data, standing out, particularly in its highest accuracy between all methods for monocytes. 
While both quanTIseq and xCell yield commendable results for neutrophils and lymphocytes, MCP-counters 
predictions for both cell types appear to be less reliable. Importantly, when consolidating the findings from all 
methodologies, the immune deconvolution results consistently align with the CBC data. Additionally, xCell, 
quanTIseq, and EPIC show highly correlating results in lymphocytes and neutrophils. However, neutrophils and 
monocytes especially appear to be harder to estimate using deconvolution. Method choice can play an impor-
tant role here, as only EPIC is able to detect monocytes consistently. This reaffirms that immune deconvolution 
could serve as an instrument for assessing immune cell levels derived from RNA-seq data, though results do 
vary between methods and cell types.

Immune deconvolution revealed differences in patients with different severity of disease 
progression
During the SARS-CoV-2 pandemic, different SARS-CoV-2 variants emerged (e.g., ancestral, Alpha, Alpha + EK, 
Gamma, Omikron BA.1, and Omikron BA.2), which differed in transmissibility and severity. Variants that 
emerged during the end of the pandemic were associated with less severe  disease55. The Alpha variant was 
reported to demonstrate an increase in transmissibility due to the N501Y mutation in comparison to the wild-
type  virus56. The Alpha + EK variant was reported to more efficiently evade a neutralizing antibody response due 
to the additional E484K mutation but was not associated with more severe disease. The Gamma variant carried 
both N501Y and E484K mutations and was reported to enhance transmissibility with potential antibody resist-
ance, but, again, disease severity was reported unchanged. The Omicron BA.1 and BA.2 variants, with numerous 
spike protein mutations, mediated immune escape. However, while their transmissibility increased, these variants, 

Figure 1.  Pairwise correlation heatmap, comparing cell-type estimates of four deconvolution methods 
and complete blood count (CBC) values separately for lymphocytes, monocytes, and neutrophils. Pearson’s 
correlation coefficients are written in each box, with an indication (*) in case the correlation is significant 
(p-value < 0.05). Comparisons of deconvolution methods with CBCs are highlighted in bold outlines.
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in general, demonstrated less severe disease outcomes. This pattern of viral evolution has been reported previ-
ously as a virus adapts to its human hosts over time, favoring transmission over  severity55.

We hypothesize that non-hospitalized patients infected with an Omicron variant might demonstrate an 
immune response closer to healthy, non-infected individuals than to hospitalized patients infected with earlier 
SARS-CoV-2 variants. To explore this hypothesis, we first compared trends in the abundance of B cells, Neu-
trophils, T cell CD4+, and T cell CD8+ in the SARS-CoV-2 variants and the seronegative samples using four 
different deconvolution tools (quanTIseq, MCP-counter, EPIC, and xCell, see “Methods”) (Figs. 2 and 3). We 

Figure 2.  The abundance of immune cells (given by percentage or method-specific score) detected by the 
immune deconvolution methods quanTIseq, MCP-counter, EPIC, and xCell over all time points combined for 
the immune cells B cell, Neutrophil, T cell CD4+, and T cell CD8+.
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found that all four methods, in general, recapitulated the same trends. The immune cell fractions or scores across 
all methods and immune cell types evolved over time to more closely resemble seronegative samples as healthy 
patients. We also observed that non-hospitalized patients infected with an Omicron variant more closely resem-
bled the seronegative patients as compared to the hospitalized patients infected with earlier variants, especially 
as compared to the time when they were initially hospitalized.

Figure 3.  Cell-type fractions separated over brackets 0–5, 6–10, 11–15, 16–30, and > 30 days after 
hospitalization or onset of symptoms detected by the immune deconvolution methods quanTseq, MCP-counter, 
EPIC, and xCell for the immune cells B cell, Neutrophil, T cell CD4+, and T cell CD8+. The Gamma variant has 
been removed in this analysis due to poor sample size per time bracket (Suppl. Table 1a,b).
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We further categorized samples into different time brackets after hospitalization or onset of symptoms (days 
0–5, 6–10, 11–15, 16–30, and > 30). Over time, the projected immune cell fractions appeared to progressively 
align with those observed in seronegative samples, consistent with patient recovery over time (Fig. 3). Patients 
diagnosed with Alpha and Alpha + EK, variants associated with more severe disease, demonstrated a lengthier 
time until their immune cell fractions approximated those of seronegative individuals (Suppl. Fig. 3).

B cell and T cell repertoire analysis offers insights into past or current infections
In general, when an infection occurs, an ’immunological footprint’ in the form of specific BCR and TCR reper-
toires can be identified. In this section, we investigated whether bioinformatics BCR and TCR repertoire analysis 
approaches (i.e., a combination of MiXCR and TRUST4) of transcriptomic data, coupled with a computational 
tool that associates known BCR and TCR repertoires with causes of diseases (i.e.,  BLASTp49,50), could be used 
to classify a disease cause for an admitted patient (see “Methods”).

With the computational tool MiXCR, we identified 534 unique receptor sequences, while we identified 569 
sequences with TRUST4 across the variants. Of these, 492 sequences were identified by both tools, while 42 
and 77 sequences were uniquely identified by MiXCR and TRUST4, respectively. This means that 81% of the 
sequences were found by both tools, 7% only by MiXCR, and 13% only by TRUST4 (Suppl. Fig. 4). We decided 
to use only the sequences identified by both tools for further analyses to ensure more reliable results. In the next 
step, we eliminated sequences that exhibited homology to seronegative samples to account for BCR and TCR 
sequences that probably lack specificity for SARS-CoV-2, given that no seronegative sample should possess them 
(see “Methods”, Suppl. Fig. 5). Among the residual sequences, we discerned fifteen that did not display similar-
ity to any sequence also found in seronegative samples. A subsequent BLASTp assessment of these sequences 
identified anti-SARS-CoV-2 immunoglobulin hits within the top 100 matches for seven sequences (Fig. 4a, 

Figure 4.  (A) number of sequences, out of fifteen identified at full sequencing depth, that matched anti-SARS-
CoV-2 sequences (BLAST hits) and their presence across different variants. Note: The values in the matrix do 
not add up to fifteen, as one sequence can be present in multiple variants. (B) number of sequences identified at 
full sequencing depth compared to those identified at a sequencing depth of 50 million reads. We differentiate 
between sequences present in seronegative samples and those absent in seronegative samples. (C) shows a 
similar comparison as (B) between sequences identified at full sequencing depth compared to sequences 
identified at a sequencing depth of 10 million reads.
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Suppl. Table 3), with most sequences stemming from samples with the BA.2 variant. The residual eight sequences 
predominantly align with generic immunoglobulin sequences. Two sequences among the seven identified exhibit 
significant importance, as indicated by their notably low E-values. These values suggest the rarity of achieving a 
similar score by chance for these sequences. The first sequence (CYSTDSSGNHRGVF), identified in a study by 
Graham et al.57, was among over 100 mononuclear antibodies (mAbs) characterized for their interaction with 
epitopes from individuals infected with SARS-CoV-2. This study also demonstrated that some of these mAbs 
possess the ability to neutralize SARS-CoV-2. The second noteworthy sequence (CQQRSNWPPTWTF) emerged 
from a study by Jennewein et al.58. In this study, 198 antibodies were identified, with fourteen being distinguished 
as neutralizing antibodies (nAbs) against SARS-CoV-2. The study further explored how some of these nAbs can 
block the binding of ACE-2, thereby inhibiting viral entry into cells. The sequence logo derived from all fifteen 
sequences highlights conserved motifs at the start (S), the end (VF), and a recurring pattern (DSS) in the center. 
In contrast, the intervening positions exhibit significant variability, underscoring the pronounced diversity among 
these sequences (see Suppl. Fig. 6).

Sequencing depth analysis reveals differences in the robustness of conclusions between 
deconvolution and TCR/BCR results
Despite a reduction in sequencing depth, the trends observed in immune deconvolution outcomes remained 
consistent. Notably, there were still significant discrepancies in the levels of immune cells when comparing 
Alpha and Alpha + EK infections to seronegative cases with a sequencing depth of 50 million (Suppl. Fig. 7a) and 
with an even lower sequencing depth of 10 million (Suppl. Fig. 7b). Furthermore, temporal analysis reaffirmed 
these findings, indicating the recurrent trend where, across all variants, there is a convergence toward the levels 
observed in seronegative samples (Suppl. Figs. 3, 8a,b). Through this analysis, we demonstrated that a lower and 
even a very low sequencing depth of 10 million is indeed sufficient to discern the trends in immune cell levels 
and highlight the differential impacts of various variants on the immune system. Furthermore, when evaluating 
the immune deconvolution scores alongside the CBC data for patients infected with the Alpha and Alpha + EK 
variants, we aimed to find a lower bound of sequencing depth that still produces robust deconvolution results 
by downsampling reads even further to 1 million reads (Suppl. Fig. 9). Interestingly, correlation values between 
CBCs and deconvolution estimates remained largely stable in lymphocytes and neutrophils down to a sequencing 
depth of 1 million reads. quanTIseq did not detect any monocytes at lower sequencing depths, and MCP-counter 
and xCell show large drop-offs for correlation of monocytes at 1 million reads, down to R = 0.22, likely due to 
the low abundance of monocytes in our dataset (Suppl. Fig. 2).

In the repeated BCR/TCR analysis with a significantly reduced sequencing depth of 10 million, we identi-
fied only 95 unique BCR and TCR sequences. This is markedly fewer than in the prior analysis, but the decline 
is anticipated due to the reduced sequencing depth, which results in fewer overall sequences from the RNAseq 
experiments. Of the 95 sequences, 18 (19%) were solely identified by MiXCR, seven (7%) exclusively by TRUST4, 
and 70 (74%) were detected by both tools. This indicates that the majority of the sequences were still identifi-
able by both tools (Suppl. Fig. 10). After eliminating sequences resembling those in seronegative samples, we 
pinpointed eight unique sequences. Among these, seven were matched to anti-SARS-CoV-2 immunoglobulin 
sequences (Suppl. Table 4, Suppl. Fig. 11).

The sequences identified by the two BCR/TCR analyses, with full sequencing depth and low sequencing 
depth, differ between results. Additionally, there is a variation in the positions of the SARS-CoV-2 specific 
hits. At greater sequencing depth, these hits are more commonly found within the top ten. In contrast, when 
the sequencing depth is reduced, they are more likely to be ranked higher, and, as a result, the findings become 
somewhat less substantiated.

A statistical comparison like comparing the p-values for the immune deconvolution is not possible here as 
MiXCR and TRUST4 do not generate significance values, and the BLAST E-values represent the number of 
random hits that can be generated in a database of a certain size and, therefore are not suitable to compare the 
significance of our results but merely the reliability of each sequence match individually. Instead, we declare 
sequences detected using full sequencing depth as ground truth and compare their overlaps with sequences at 
lower sequencing depths (Fig. 4b,c), where sequences that are found in infected samples are considered positive 
cases (see Suppl. Materials 4 for details). With 50 million reads, we could only detect two sequences in infected 
samples that were also detected at full sequencing depth, while eight other sequences were, in fact, also present 
in Seronegative samples at full depth, leading to a sensitivity of 0.2. With 10 million reads, no more true positive 
cases could be detected, and the sensitivity dropped to 0.

In both analyses, we were able to find seven anti-SARS-CoV-2-related hits that appear in the first one hundred 
BLAST results. Notably, even though MiXCR and TRUST4 identified fewer sequences overall due to the reduced 
depth, the count of SARS-CoV-2 specific sequences remained consistent.

In conclusion, a sequencing depth of 10 million was adequate to detect SARS-CoV-2-related sequences, just 
like with greater sequencing depths. However, the latter produces more robust outcomes, as sensitivity to detect 
infection-related sequences drops drastically at lower depths.

Discussion
We found that the immune deconvolution tools, including quanTIseq, MCP-counter, EPIC, and xCell, generally 
predict similar trends in immune cell composition (B cells, Neutrophils, T cell CD4+, and T cell CD8+) across 
SARS-CoV-2 samples that reflect differences in severity and over time. However, we can also see large differences 
between individual samples. While the immune cell abundances presented in this manuscript were not validated 
by flow cytometry, the deconvolution methods themselves were previously evaluated using flow cytometry 
 measurements23,59. Our computational results predict a progressive alignment of immune cell fractions with 
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those of seronegative samples, correlating with decreased disease severity and/or individual disease progression. 
However, individuals with severe disease courses like Alpha and Alpha + EK show extended recovery timelines 
before reaching these levels, indicating a potential marker of disease severity. A confounder that should be 
considered in the analysis could be that SARS-CoV-2 can invade immune cells and could potentially skew the 
results of the immune deconvolution  results60. While computational deconvolution methods are able to robustly 
estimate trends in immune-cell composition correctly, they do show a large variance in prediction accuracy 
on a sample level. This drawback is especially important when trying to use such methods in a personalized 
fashion. Here, prediction accuracy is not high enough to give precise results of immune-cell composition in 
patients. However, so-called second-generation deconvolution  methods25 promise to increase prediction quality 
by employing scRNA-seq datasets as an additional resource in deciphering the cell-type composition of bulk 
RNA-seq datasets. Such tools may also reveal changes in the functional state of immune cells and thus surpass 
information provided by CBC measurements.

We further introduced an approach for diagnosing infections using RNA-seq with bioinformatic analysis of 
BCR and TCR repertoires. We speculate that patterns of BCR and TCR repertoires could be associated with dif-
ferent disease settings. The current system is built on known BCR and TCR repertoires associated with diseases, 
which means it can only be used for identifying known  infections61,62. As data on BCR and TCR repertoires 
from different clinical settings is deposited and available for analysis, it is possible the information can be used 
to improve understanding of immune response in individual patients. At present, ethical considerations of 
detailed genomic analysis in individual patients can limit the types of information gathered and their distribu-
tion. However, anonymized data obtained through clinical trials with informed consent may still be useful in 
exploring how changes in TCR and BCR repertoires evolve during disease and recovery.

Our analyses demonstrate that a reduced sequencing depth of 10 million is sufficient to identify overarching 
trends in immune cell levels and anti-SARS-CoV-2 specific sequences, although higher sequencing depths yield 
more robust outcomes. Despite lower depths resulting in findings of less significance and confidence, the overall 
trends and correlations with CBC data remain consistent. The BCR/TCR analyses further corroborate these find-
ings, as even at reduced sequencing depths, SARS-CoV-2-specific sequences were still identifiable. These results 
affirm the feasibility of using lower sequencing depths for meaningful analyses in the study of immune responses 
and pathogen-specific immunity, making it more feasible in a clinical setting due to lower costs.

Since 2001, genome sequencing costs have significantly decreased from $100 million to the $1000 genome 
milestone, reflecting similar cost reductions in RNA  sequencing63. With the impending expiration of Illumina’s 
key patents, the RNA sequencing market could see heightened competition and further price reductions, a 
recent article in Science just speculated about the costs being reduced to $10064. This shift might be key to 
embedding sequencing more deeply into routine clinical practice, making it a more accessible tool for patient 
care and research.

As RNA-sequencing technologies advance and become cheaper, they hold promise for future clinical util-
ity by providing a more detailed view of global gene expression profiles. For example, quantitative polymerase 
chain reaction (qPCR) has already been adopted in clinical settings for its high sensitivity and specificity in 
detecting and quantifying microbial  pathogens65 or SARS-CoV-266,67. To our knowledge, RNA-seq combined 
with immune deconvolution is not directly used in a routine clinical  setting59; however, it has been employed in 
research settings analyzing whole blood sequencing  datasets14. Notably, techniques other than RNA-seq, such 
as DNA methylation microarrays, could be used for immune deconvolution. However, in our opinion, RNA-
seq data offers the greatest variety of readouts across gene expression, alternative splicing, and immune status.

Previous work has also identified specific immune cell subsets, including neutrophils, to be associated with 
more severe SARS-CoV2  infection68. In the future, immune deconvolution and BCR/TCR could potentially guide 
the decision-making of a physician, e.g., the immediate allocation of a newly admitted patient with potentially 
severe disease progression to the intensive care unit, recognizing that such a tool would require ongoing updates 
to maintain its utility for predictive  modeling69,70. With more blood samplings after admission, we can also see 
if the disease course will change, and the medical doctor could, based on this analysis and other factors, advise 
the patient to be submitted to the intensive care  unit71. From the experimental side, RNA-seq offers a compre-
hensive view of gene expression, including genes related to BCRs and TCRs. Still, it’s not specifically focused on 
analyzing the diversity or clonality of these  receptors72. In contrast, TCR-seq, designed to target T-cell receptors 
(and BCR-seq for B-cell  receptors73), thoroughly examines the diversity and specificities within the receptor 
 repertoires74. While RNA-seq is valuable for a broad understanding of the immune response, TCR-seq deliv-
ers more focused insights into the T-cell repertoire, crucial for studies of immune dynamics and  specificities72. 
The choice between these techniques hinges on whether the research aims for an overall immune profile or a 
detailed analysis of receptor diversity and  clonality72. However, since TCR-seq or BCR-seq is rare and offers a 
limited readout, we consider RNA-seq data more informative. From the clinical side, we have to consider that 
our study relies on data either primarily collected from hospitalized elderly patients (i.e., Alpha, Alpha + EK, 
and Gamma) or mild disease progression (i.e., Omikron BA.1 and Omikron BA.2) potentially introducing a 
selection bias. Moreover, differences in local healthcare systems, as well as individual patient factors (e.g., age 
and preconditions), could influence recovery timelines and should be factored into any broader applications of 
these findings. Additionally, the predictive methods used for immune cell fraction estimations, while robust and 
consistent over multiple sequencing depths, are not without their limitations and potential discrepancies. The 
stable performance in terms of correlation with CBCs across sequencing depths is likely because relative gene 
expression differences in signature genes are still present even at very low sequencing depths.

In addition to immune cell composition, analyzing immune cell receptors of B and T cells by employing 
tools such as  MiXCR38 and  TRUST439 in combination with BCR/TCR databases can provide a rapid determi-
nation of the type of a previously discovered virus or infection. However, with our proposed method, we find 
potential clonotypes but are not able to confirm if they come from a new virus variant. In addition, we noticed 
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large decreases in sensitivity when shallower sequenced samples are available. Genomic data analysis from cell 
preparation, library generation, sequencing, and quality control is, with the current technology, not feasible in 
a matter of hours, as is the case for CBCs. Recent advances to introduce RNA-seq into clinical settings describe 
a complete workflow to finish in about 1  week75. One technology that is able to improve the precision of BCR/
TCR detection is Oxford Nanopore sequencing. While not currently implemented in many studies of the tran-
scriptome due to sequencing error limitations and PCR-induced  distortions76, it promises to increase clonotype 
detection and  tracking77.

In summary, we employed computational immune deconvolution tools at distinct SARS-CoV-2 data sets, 
illustrating that they can be used to supplement immune cell abundance estimates for bulk RNA-seq data that 
is not accompanied by CBC information. Additionally, these tools can be used for discerning trends in immune 
cell fractions during disease recovery and for comparing differences in immune cell fractions between more and 
less severe SARS-CoV-2 variants. Using the proposed workflow to utilize BCR/TCR methods combined with 
alignments and BLASTp could help to pinpoint the type of viral infection. Our presented bioinformatic strategies 
combined with expert medical judgment, new technologies, and automatizations could promise a path toward 
precision medicine, where treatment plans are personalized and optimized for each individual in the future 
based on individualized genetic analyses.

Data availability
Computational scripts can be found at: https:// github. com/ biome dbigd ata/ SARS- CoV-2_ immun edeco nv_ bcrtcr. 
Analysis results can be downloaded as an RData object in Supplemental Materials and on figshare: https:// doi. 
org/ 10. 6084/ m9. figsh are. 24221 167. Data can be publicly found at: GSE190680 (variants: Alpha, Alpha + EK, 
Gamma), GSE162562 (Seronegatives), GSE201530 (variant: Omikron BA.1), GSE205244 (variants: Omikron 
BA.1 and Omikron BA.2). List of marker genes per method can be found here: https:// doi. org/ 10. 6084/ m9. figsh 
are. 24442 423. v1.
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