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The baffle shape effects on natural 
convection flow and entropy 
generation in a nanofluid‑filled 
permeable container 
with a magnetic field
Aissa Abderrahmane 1*, Obai Younis 2, Abed Mourad 1, Houssem Laidoudi 3, 
Mowffaq Oreijah 4, Kamel Guedri 4 & Sayed M. Tag 5

Enhancing heat transfer rates within enclosures is a topic of considerable interest since it has several 
technical applications. Most heat transfer research projects focus on increasing the heat transfer rates 
of thermal systems since this will raise the systems’ total efficiency. The geometry of the enclosure 
might have a substantial impact on heat transfer rates. This research studies quantitatively the 
natural convection of a nanofluid in a complicated form geometry with many baffle configurations. 
The system’s governing equations were addressed by the Galerkin Finite Element Method (GFEM). The 
main consideration was given to the effects of the following factors: The Darcy number (Da), which 
ranges from  10–2 to  10–5; the Hartmann number (Ha), which ranges from 0 to 100; the volumetric 
fraction (ϕ), which ranges from 0 to 0.08, and the Rayleigh number (Ra)  (102 to  106). The results 
suggested that raising Ra increases heat transfer discharge, whereas raising Ha and Da decreases it. In 
terms of heat transmission, case 1 (the case with a wavenumber of 1 and the zigzag pointing outward) 
is determined to be the optimum cavity structure, as it obtained the highest mean Nusselt  (Nuavg) 
number when compared to other cases. At the highest studied Ra number, growing (ϕ) from 0 to 0.8 
improved Nuavg by 25%, while growing Da from  10–2 to  10–5 and Ha from 0 to 100 declined Nuavg by 57% 
and 48%, respectively. The reason for the improvement in the values of the (Nu) is due to the speed of 
fluid movement within the compartment. Also, the shape of fins plays a major role in strengthening 
and weakening thermal activity.

Understanding the mechanism of transmitting heat through different materials is essential to approve the perfor-
mance of various engineering applications, especially mechanical, including energy storage units, solar systems, 
thermal management systems, and fuel cells. In the last two decades, it was suggested that the use of nanofluids 
(dissolved nanoparticles in a base fluid) and additional approaches could improve the heat transfer rate. Multiple 
research studies have shed light on the impact of many factors and techniques on the natural convection and 
heat transfer rate of nanoliquids in a variety of  enclosures1–4. Buoyancy-driven flow is one of the key mechanisms 
in several thermal systems and devices. A variety of factors can influence it. Thus, to ameliorate the thermal 
processes of such devices, different strategies are of great necessity to be investigated, namely, the application of 
magnetic fields. In this respect, numerous investigations were reported in the literature to identify this  subject5–8. 
Cao et al.9 examined the natural convection of nanoliquid within a square heat exchanger chamber supplied 
with two cylinders that functioned as heaters and coolers on both sides in the application of magnetic intensity. 
The obtained results declared that the Rayleigh number (Ra) number, magnetic intensity, and inclination angle 
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have an effect on the nanoparticles’ movement. Roy et al.10 performed a test on the natural heat convection of a 
hybrid nanoliquid enclosed in a bottom wall heated cage in addition to a subjected magnetic field. The findings 
demonstrated that the motion pattern was significantly altered when the magnetic field parameters were varied. 
Tayebi et al.11 undertook a numerical investigation of the  Al2O3-H2O nanoliquid, which was surrounded by two 
circular cylinders, entropy generation, and thermal activity. The experiment was carried out with the application 
of magnetic intensity. This analysis revealed that factors such as Ra, fins’ size, and Ha number have consider-
able effects on the thermal transfer within the annulus. Kargarsharifabad et al.12 explored the intervention of 
a magnetic field on the natural convection of nanoliquid (Cu-water) in a cubic chamber. This study’s findings 
highlighted that adding nanoparticles of Cu to water ameliorates the ability to transfer heat when there isn’t 
a magnetic field. However, Geridonmez et al.13 numerically assessed nanofluid flow and thermal process in a 
chamber with cross-fractional magnetic fields and a partial heater being applied. Their outcomes demonstrated 
that heat transmission was boosted with the Rabeing boosted, the length of the partial heater, and the conden-
sation of nanoparticles, whereas it was reduced when the force of Lorentz was increased. Molana et al.14 tested 
the properties of a steady inclined magnetic field on the thermal pattern of nanoliquid  (Fe3O4/water) in a new 
shape of the porous cavity. Their findings suggested that the Hartmann number (Ha) augmentation limited heat 
transfer. Abdulkadhim et al.15 explored the heat transmission of Cu-H2Onanoliquid placed in a wavy-walled 
container equipped with a circular hot cylinder. Researchers have found that rising the Ha does not affect the 
Nusselt number (Nu); however, it drastically reduced Nu at a relatively high Ra because of the restricted convec-
tion. A numerical investigation was done by Dogonshi et al.16 on magnetic nanofluid natural convection inside 
a permeable enclosure cooled from the outside and heated from the inside, with two additional walls being 
sequestered. According to the findings, the intensity of the convection might be affected by the Darcy number 
(Da) number, Ra number, Ha number, and inclination angle of magnetic intensity. Izadi et al.17 explored the 
influence of a diagonal magnetic field on the natural convection of a hybrid nanoliquid in a permeablechamber. 
Their outcomes showed that heat transmission was affected by the magnetic intensity in a non-monotonic man-
ner. Sivaraj et al.18 digitally assessed the performance of a magnetic intensity on the convective flow of a ferrofluid 
in a chamber containing a vertical heated sheet. Outcomes showed that the rate of entropy generation witnessed 
a rise when an isothermal lamina was replaced by a non-uniformly warmed one, while it was reduced when an 
ideal inclined Lorentz force was set.

The natural convection process through porous materials has been adopted for heat transfer enhancement. 
Hence, countless papers were published on the convective motion of nanofluids within permeable  medium19–22.
Alsaberya et al.23 examined the thermal activity of an alumina-water nanoliquid soaked into a non-Darcy perme-
able medium, with nanoparticles being slithered in the base fluid. It was noticed that the nanoparticle concentra-
tion in the base water has a high degree of homogeneity. In addition, the Nu number increased as the Da number 
rose. Esfe et al.24 focused his research on 3D numerical simulations of nanofluid (CuO/water) heat transfer flow 
in a cubical chamber with firmly fixed porous fins attached to it. Results revealed that nanoparticle percentage 
affected the convective flow as well as the Nu number. Moreover, flow promptness dropped when porous fins 
were present. Kadhim et al.25 carried out an examination of free convection in a wavy wall container with a 
permeable material immersed in a hybrid nanofluid. Results revealed that the hybrid nanofluid was affected by 
the inclination angle. Furthermore, introducing nanoparticles boosted the convective flow between the walls. 
Cho et al.26 researched the thermal pattern of a nanofluid inside a permeable chamber with a semi-heated verti-
cal side and wavy top and bottom walls. The obtained outcomes indicated that high rates of Da and Ra affected 
the convective flow indirectly. Mehryan et al.27 researched the heat transmission of nanofluids (Ag-MgO-water) 
inside a permeable room using the Local thermal non-equilibrium model. Their findings showed that the scat-
tered hybrid nanoparticles’ concentration of (Ag-MgO-water) reduced the natural convection. Khaled Al-Farhany 
et al.28 started research to dig into the heat transmission of a ferrofluid within a slanted heated porous container 
with two fins connected to the heated wall while the horizontal wall was sequestered. The end of the numerical 
assessment exposed that an augmentation in Ra and Da numbers and fins length led to a boost in the Nu num-
ber. Raizah et al.29 numerically scrutinized the convective nanofluid flow in a V-form chamber partially layered 
by a heterogeneous porous space. It was discovered from the results that the porous medium of the horizontal 
heterogeneous is the ideal state of porous space for a V-shaped hollow as the Nu number reached its culmination 
in it. Besides, the heat transmission is enhanced as the Ra number rises. Baghsaz et al.30 conducted a study on 
the convective flow of nanoliquid  (Al2O3/water) in a porous space under the effect of nanoparticle deposition. 
The outcomes of this study showed that low porosities and long cavity lengths led to an extended sedimentation 
time. Furthermore, an augmentation in Ra and Da values resulted in a heat transmission boost. Izadi et al.31 
launched an investigation on the free convection between two horizontal cylinders using the heat transport of 
water-diamond, water–silicon dioxide nanofluids, and water-copper within a porous space. It was noticed that 
water-diamond marked the greatest increase in heat transfer, while the water–silicon dioxide marked the total 
contrast. Abdulkadhim et al.32 simulated the thermal pattern of Ag nanofluid in a cold wavy container with two 
sides. The right one contained an Ag nanofluid, while the left one had an appeased porous space with the same 
nanofluid. According to the findings, the interior cylinder and the thickness of the porous layer influenced heat 
transmission.

Extended methods have been studied to enhance nanofluids’ natural convection efficiency, such as incorpo-
rating baffles on the sides of  enclosures33,34. Ma et al.35 tested the influence of magnetic intensity on the thermal 
behavior of a nanoliquid in a baffled U-shaped container. The findings showed that a lower Ha number led to a 
more noticeable magnetic field effect on heat transmission. Moreover, higher aspect ratios caused a substantial 
thermal transfer enhancement due to the Ra number influence. Naseri Nia et al.36 explored the natural convec-
tion of Cu-H2Onanoliquid inside a baffled L-shaped container, comparing the results to those of the L shape 
without a baffle. The outcomes indicated that adding a baffle improved heat transfer. Keramat et al.37 conducted 
a study on the buoyancy-driven flow of alumina/water nanofluid in a baffled H-shaped container with heated top 
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and bottom walls and two less heated sidewalls. In the end, it was noticed that heat transport was enhanced due 
to the high Ra number and the temperature rise. Armaghani et al.38 numerically analyzed the thermal transfer 
of water-alumina nanoliquid within a baffled L-shaped chamber. The findings revealed two facts: (1) Raising 
the aspect ratio improves heat transfer. (2) A lengthy baffle enhances the natural convection indirectly. Nayak 
et al.39 tested the effect of Double-diffusive natural convection on the thermal patterns of a hybrid nanoliquid in 
a C-shaped chamber with two wavy baffles. It was noted that a rise in Rayleigh and Lewis numbers, as well as the 
wavy baffle’s capacity, affected streamline density. Another result showed that the heat transport rate increased at 
any wavy baffles capacity. Al-Farhany et al.40 researched the impact of a slanted magnetic field on a nanoliquid-
satiated porous medium in a baffled U-shaped container. The findings revealed that natural convection boosted 
with the Ra number, Da number, and nanoparticles rate boost, whereas the Ha number had the opposite impact.

According to the literature study, only a few researchers have used a baffle in nanofluid flow and looked 
into its consequences. Particularly, there is no indication that a zigzag baffle with multiple shapes was ever 
implemented. This study’s main objective is to determine if adding a narrow baffle to divide fluid flow into parts 
may improve natural convection. The baffle significantly impacts the heat exchangers’ flow pattern and thermal 
transfer characteristics. As a result, this article examined the impacts of baffle form on the flow structure and 
temperature generation in a chamber of a baffled U-shaped fully loaded with nanofluid (graphene/water) and 
a porous space under the effects of the following elements: a magnetic field, the Ra number, solid volume per-
centage (ϕ), Ha number, and various baffle cases are the primary variables due to their effects on heat transport. 
The outcomes are examined in terms of streamlines, entropy distribution, Bejan number (Be), average Nusselt 
number (Nuavg), and isotherms. The findings of this research can be applied in the thermal design of magnetic 
intensity elements and cooling systems for electronic equipment. We chose this type of shape because it is found 
in many engineering applications.

The new idea in this research is to clarify the performance of the shape of the zigzagged fins and their vertical 
position inside the chamber. Indeed, this effect is manifested in the quality of the thermal activity of the fluid as 
well as the behavior of the fluid. In addition to this, the results and analyses of this work can be exploited in devel-
oping thermal insulation systems, and they can also be used in compiling academic works related to heat transfer.

The physical model
The physical framework of the current study is depicted in Fig. 1. A Newtonian graphene nanofluid is loaded 
inside the permeable cavity with two internal corrugated hot baffles. The Forchhei-mer-Brinkman extended 
Darcy model is used to describe the permeable media around the cavity. The top cavity walls are adiabatic, 
side and bottom walls are preserved at a low temperature (Tc), while the corrugated baffles are heated (Th). To 

Figure 1.  The physical domain.
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investigate the graphene nanoliquid and entropy in a U-shaped room by arranging two wavy baffles. The influ-
ence of Ra,ϕ, Ha, wave number on streamlines, isotherms, entropy distribution, mean Bejan number (Be), and 
Nusselt numbers (Nu) are well discussed. The generation of entropy as one of the vitally important elements 
is taken into account. Two baffles of symmetrical zigzag numbers are emplaced in the U-shaped chamber; the 
different scenarios are represented in Table 1. These hot zigzag baffles may have variable wave number (b), but 
their length (a) is assumed to be constant. These assumptions include 2D, incompressible, steady-state, and 
laminar motion, among others.

In this investigation, graphene and water were used as nanoparticles and base fluid, respectively; their respec-
tive thermophysical characteristics are reported in Table 2.

Table 1.  The different investigated scenarios of hot zigzag baffles.

Case 1 Case 1.2

Case 2 Case 2.2

Case 3 Case 3.2

Table 2.  Thermophysical characteristics of nanofluid(graphene/ water)41.

Properties ρ(kg/m3) Cp (J/kg K) K (W/m K) σ (S/m) β  (K−1)

Graphene 2250 2100 2500 107

Water 997.1 4179 0.613 5.5 ×  10−6 21 ×  10−5
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Mathematical formulations and boundary conditions
Partial equations
The governing equations for mass, momentum, and energy of the situation under investigation may be defined 
using the following dimensional form based on the presumptions indicated above:

Continuity:

Momentum along x-direction:

Momentum along y-direction:

Energy:

where αm = km
(ρcp)nf

 is the thermal diffusiveness of the nanoliquid, km =
(

1− εp
)

ks + εpknf    is the thermal 
conductivity of the mixture effective parameter, and Fc = 1.75

√

150ε3p
  denotes the Forchheimer coefficient, εp is the 

porosity of the medium and dm is spherical-shaped particles.

The dimensionless form of the basic equations was deduced by the following:

Dimensionless numbers

The following parameters characterize the graphene/water  nanoliquid41:

Finally, the partial equations  become8:
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Non‑dimensional entropy generation
The size of the local entropy output is obtained by combining the merging flow and forces advanced. Non-
dimensional local entropy output is set as follows in the process of heat convection when a magnetic field is 
present (Woods [49]).

Boundary conditions
The streamlines equation reads:

In this research, the boundary conditions are as follows:
Along the cold surfaces:

Along the hot surfaces:

For the adiabatic surfaces:

Nu loc and Nu avg of the heated surfaces are respectively expressed as:

Finally, GFEM was invented to solve the abovementioned fundamental Eqs. (15), (16), (17) and suitable 
boundary conditions (21), (22), (23). The Galerkin weighted residual approach was utilized to transform these 
fundamental equations into integral equations. The use of nanofluids improves the thermal characteristics of the 
normal fluid, and therefore, the secondary equations reflect this improvement. Mathematically, these equations 
do not cause a computational disturbance.
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Method validation and mesh independence
It is worth noting that this work was done through numerical simulations based mainly on solving differential 
equations. The methodology used is based on converting the differential equations modeled for fluid movement 
Eqs. (1), (2), (3) and heat transfer Eq. (4) into a matrix system. After this, the GFEM method intervenes to reach 
the solution by taking the initial boundary conditions (Eqs. (19), (20), (21), (22)) as a basis for the process. The 
solution process takes place in successive iterations, and the calculation stops when the solving error becomes 
less than  10–8. On the other hand, Eqs. (6), (7), (8), (9), (10), (11), (12), (13), (14) took into account the change 
in thermal properties of the fluid and the geometric medium studied.

Different grids were examined to arrive at a grid-independent conclusion, as demonstrated in Table 3. Since 
the disparities in Nu and |ψ |max produced by Grid No. 4 and Grid No. 3 are less than 0.01%; Mesh No. 3 is appro-
priate and eligible to generate grid-independent results and relatively lower computational time. Therefore, a 
grid size of 40,060 was used in this study.

The verification of the present code is performed by comparing numerically  Khanfer42 and experimentally 
Krane and  Jesee43. They investigated air flow in a cavity. The dimensionless temperature profile is plotted in 
Fig. 2, showing a very good agreement with a maximum deviation not exceeding 2%. Another comparison is 
performed for different Hartmann numbers, different volume percentages, and Ra =  105. According to Table 4, 
the difference between the present work and that reported by Ghasemi et al.44 is acceptable.

Results and discussion
The outcomes of this research aim to provide a comprehensive understanding of the movement of a nanofluid 
within a tightly closed space. The nanofluid inside the domain moves due to the thermal buoyancy force. That 
is, the liquid layers near the cold walls condense to become heavy, and this is what causes them to collapse to the 

Table 3.  Nuavg and |ψ |max for various grid elements.

Grid number 1 2 3 4 5

Grid resolutions 4226 6538 16,422 40,060 47,880

Nua vg 2.4844 2.5929 2.8120 2.9443 2.9446

|ψ |max 9.7529 9.7648 9.7772 9.7846 9.7857
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Figure 2.  Validation of the present model against the results of Khanafer et al.42 and the experimental data of 
Krane and  Jesse43.

Table 4.  Validation of the present code for the MHD flow in a  cavity44.

Ha = 0 Ha = 30 Ha = 60

Ghasemi et al.44 Present work Ghasemi et al.44 Present work Ghasemi et al.44 Present work

Φ = 0 4.738 4.718 3.150 3.138 1.851 1.837

Φ = 0.02 4.820 4.803 3.138 3.117 1.831 1.814

Φ = 0.04 4.896 4.876 3.124 3.111 1.815 1.796

Φ = 0.06 4.968 4.939 3.108 3.189 1.806 1.791
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bottom. On the other hand, nanofluid layers close to hot walls behave in the opposite direction, moving toward 
the top. Finally, we find the development of a circular flow within the studied space.

It is worth noting that the thermal patterns here are of the type of so-called buoyancy-driven flow. Therefore, 
the movement of nanofluid particles due to the thermal factor is controlled by the Rayleigh number. In this 
work, Ra ranges between  103 to  106. The Da number was chosen in the following range  (10−5 to  10−2) to study the 
medium’s permeability. Ha number was also considered in the range of 0 to 100 to know the influence of magnetic 
intensity on thermal transfer. These ranges were chosen since the simulations remain steady and laminar. In 
addition, some hot plankton of different shapes were installed on the heated part of the space to know their effect 
on the movement of the motion. The goal of including the influence of the magnetic force in our work is to find 
out if it is possible to control thermal activity through the intervention of this external force. The external force 
of the magnetic field is applied along the Y-axis. The solution of Maxwell’s equation is obtained. The solution 
values are added to kinematic equations to reach the exact simulation.

Figure 3 is inserted to clarify the impacts of Ra on the flow movement (streamlines), thermal pattern (dimen-
sionless temperature), and the total entropy generation for Da =  10–2, ϕ = 0.04, and Ha = 0. As was discussed 
earlier, since the lateral walls are cold, the fluid layers close to them are heavier, and this causes them to move 
downwards. Whereas the hot fluid layers located near the hotlines become less dense and thus move upward. 
Therefore, through the streamlines, we notice the formation of two vortices within the space, the first on the 
right and moving in a clockwise direction, while the other on the left and moving counterclockwise. It is also 
noted that two small vortices are formed between the two lines. It is also illustrated that the velocity of the sus-
pension movement grows with the increase in the value of Ra. Therefore, it is noted from the isotherms that the 
temperature gradient next to the heated surfaces augments with the increase in the number of Ra.

This indicates that the thermal transfer is strengthened in terms of the Ra number. The representative con-
tours of entropy generation show that raising the value Ra increases its value. In addition, the maximum entropy 
generation is near the lateral walls because the flow velocity is considered in these zones. In general, raising the 
value of Ra strengthens the fluid movement, which results in stronger thermal activity.

Figure 4 shows the influence of the value of Da number on the movement of the nanofluid (pathlines), and 
heat dissipation (isotherms), as well as the entropy generation for Ra =  106 and Ha = 0. The gradual increase in the 
value of the Da number means an augmentation in the medium’s permeability, which makes the displacement 
of the suspension easier. Accordingly, we note that the velocity of the flow augments in terms of the Da number, 
i.e., the development of the vortices within the space also increases in terms of this number. In addition, we 
note that the temperature gradient next to the hot surfaces also grows in terms of the number Da, emphasizing 
the growth in heat transfer in terms of the growth in the value of the number Da. The same thing is observed 
regarding entropy generation, and whenever the medium allows the transfer of the nanofluid particles, this leads 
to an increase in entropy generation. Furthermore, the greatest value for entropy generation is always next to 
cold walls. In the end, it can be concluded that the greater the medium permeability, the easier and stronger the 
movement of the fluid.

Figure 5 presents the impact of the values of the number Ha on the thermal performance of the medium. 
Therefore, Fig. 5 shows isotherms, streamlines, and contours of entropy production for Da =  10–2, ϕ = 0.04, and 
Ra =  105. We know that the presence of a magnetic intensity around moving ions creates a Lorentz force. In the 
current article, the impact of this force is opposite to the direction of the flow transmission, so the streamlines 
reveal a reduction in the value of flow speed in terms of the Ha number, which reflects its negative impact on the 
thermal distribution, i.e., the temperature gradient along the hot surfaces decreases in terms of the Ha number. 
Because the speed of the motion is decreasing in terms of the Ha number, the entropy generation contours are 
also declining.

Figure 6 illustrates the performance of the shape of the hotlines for Ha = 0, Ra =  105andDa = 0.01. It is observed 
that the shape of the lines affects the movement of the nanofluid and thus impacts the thermal activity of the 
entropy generation. In general, it is noted that the narrower the gap spacing between the two lines, the more 
this leads to a loss of ground in the velocity of the flow and, thus, a decrease in gradient temperature around the 
hot surfaces. Furthermore, the presence of hanging lines creates two small counter-rotating zones in the gap 
between the two lines. It is noticed that whenever the width of the gap decreases, this leads to the transfer of the 
two small vortices to the bottom.

Figure 7 summarizes the variations of the  Nuavg number with Ra for all cases and the whole range of Da, Ha, 
and ϕ. We recall that the Nu number means the ratio of the thermal transfer of the convective type of the fluid 
to the convective type of the fluid. Therefore, we can conclude that the higher value of Nu means that convective 
heat transfer increases. Figure 7a represents the impact of Ha and Ra numbers on Nu for case 1, Da =  10–2 and 
ϕ = 0.04. Contrary to the impact of Ra values, roughly seen that for all values of Ra, increasing the number of Ha 
negatively affected Nu. This decrease can be explained by the decline in the motion velocity due to the Lorentz 
force’s resistance to the nanofluid’s motion. Figure 7b is presented to help in understanding the impact of the 
nanoparticles concentration on Nu for case 1, Ha = 0 and Da =  10–2. The most important thing to notice here is 
that the higher the concentration of the nanoparticles, the higher the value of Nu. In this case, the reason for 
this augmentation is due to the enhancement in the thermal proprieties of the nanofluid. Figure 7c represents 
the results of the number Nu in terms of Da and Ra numbers for case 1, Ha = 0 and ϕ = 0.04. It is noticed that 
there is a clear impact of Da on Nu.

Briefly, the gradual increase in the number of Da means an expansion in the permeability, i.e., a reduction in 
the medium’s resistance to the movement of nanofluid particles and, therefore, an increase in the heat transmis-
sion rate. Figure 7 (d) describes the impact of geometrical form on the values of Nu for Da = 0.01 and Ha = 0. It 
is seen that the value of Nu gradually decreases from case 1 to case 3. This decrease is mainly due to the follow-
ing: we noted previously that the transition from case 1 to case 3 results in a decrease in the space between the 
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two heated lines, and this makes the dynamic performance of the flow more difficult; accordingly, we notice a 
decrease in the heat transmission rate.

Figure 3.  Influence of Ra number on dynamic and thermal patterns for Da =  10–2, ϕ = 0.04, and Ha = 0.
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Figure 8 shows the development of the Be number with Ra for all cases and all ranges of Da, Ha, and ϕ. In the 
beginning, we mention that the number Be means the ratio of the resulting entropy generation due to thermal 
activity over the entropy generation caused by the movement of the fluid particles.

Figure 4.  Impact of Da number on dynamic and thermal patterns for Ra =  106, ϕ = 0.04, and Ha = 0.
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Figure 8a shows the evolution of the number Be in terms of Ra and Ha for case 1, Da =  10–2 and ϕ = 0.04. 
It is noted that the value of Be decreases in terms of Ra because of the movement of the flow growths with the 
thermal buoyancy factor (Ra). Conversely, the higher the number of Ha, the higher the value of Be due to the 

Figure 5.  Impact of Ha number on dynamic and thermal patterns for ϕ = 0.04 Da =  10−2 and Ra =  106.
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Figure 6.  Influence of baffles’ shape on dynamic and thermal patterns for Ra =  106, Da = 0.01, and Ha = 0.
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decline in the speed of the nanofluid particles. Figure 8b represents the distribution curves of the number Be in 
terms of ϕ and Ra for case 1, Da =  10–2 and ϕ = 0. We note that there is no effect of ϕ on Be because increasing 
nanoparticles’ concentration does not affect the speed of the flow. Figure 8c depicts the relationship between the 
number Da and Be for case 1, Ra =  106 and ϕ = 0. We notice that the higher the value of Da, the greater the value of 
Be. Furthermore, for Da =  10–5, all values of Be are limited between 1 and 0.8, indicating that the thermal source 
is predominant. Figure 8 (d) represents the impact of the geometry on the number Be for Da =  10–2, ϕ = 0, and 
ϕ = 0.04. We noticed that the impact of the geometry on Be is only for the small values of Ra.

Conclusion
This work presented results of the free convection within a closed space with vertical zigzagged fins. This space 
also contains a nanofluid and foam with limited permeability. In addition to this, there is an external magnetic 
field penetrating the room. The research was conducted for these conditions: Da  (10–2 to  10–5), Ha (0 to 100), ϕ 
(0 to 0.08), and Ra  (102 to  106).

The study enabled us to reach these conclusions:

1. Raising the values of the following numbers (Ra, Da, and ϕ) increases the heat transfer of hot surfaces and 
flow velocity.

2. At the highest studied value of Ra number, increasing ϕ from 0 to 0.8 increased Nuavg by 25%, while increas-
ing Da from  10–2 to  10–5 and Ha from 0 to 100 declined  Nuavg by 57% and 48%, respectively.

3. The magnetic field’s presence resists the flow’s movement and decreases the thermal activity rate.
4. The lengthening of the baffles impedes the movement of the fluid, which makes this method helpful in 

thermal insulation usage, and the type of geometric shape can be exploited in the technique for thermal 
insulation.

5. The smaller the space between the two lines, the lower the heat transfer of the hot surfaces.
6. The better the movement of the fluid within the space, the faster it transfers heat energy, and increasing the 

rate of added nanoparticles makes thermal activity stronger.

Figure 6.  (continued)
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Figure 7.  Nuavg for different parameters.
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