
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2437  | https://doi.org/10.1038/s41598-024-52848-0

www.nature.com/scientificreports

Analytical investigation of Carreau 
fluid flow through a non‑circular 
conduit with wavy wall
Muhammad Hasnain Shahzad 1, Aziz Ullah Awan 1*, Ali Akgül 2,3,4, Sohail Nadeem 5,6, 
Kamel Guedri 7, Murad Khan Hassani 8* & Basim M. Makhdoum 7

Peristaltic flow through an elliptic channel has vital significance in different scientific and engineering 
applications. The peristaltic flow of Carreau fluid through a duct with an elliptical cross-section is 
investigated in this work . The proposed problem is defined mathematically in Cartesian coordinates 
by incorporating no-slip boundary conditions. The mathematical equations are solved in their 
dimensionless form under the approximation of long wavelength. The solution of the momentum 
equation is obtained by applying perturbation technique ( W2

e
 as perturbation parameter) along with a 

polynomial solution. We introduce a new polynomial of twenty degrees to solve the energy equation. 
The solutions of mathematical equations are investigated deeply through graphical analysis. It is 
noted that non-Newtonian effects are dominant along the minor axis. It is found that flow velocity is 
higher in the channels having a high elliptical cross-section. It is observed from the streamlines that 
the flow is smooth in the mid-region, but they transform into contours towards the peristaltic moving 
wall of the elliptic duct.

List of symbols
Dh	� Hydraulic diameter
µ	� Dynamic viscosity
a0, b0	� Semi-axes of non-deformed ellipse
Ŵ	� Time constant
�	� Wavelength
We	� Weissenberg number
Tw	� Wall temperature
m	� Flow behaviour index
ρ	� Density
Br	� Brinkman number
�	� Extra Stress tensor
Tb	� Bulk temperature
c	� Propagation velocity
d	� Wave amplitude
e	� Eccentricity
U, V, W	� Components of velocity
X, Y, Z	� Cartesian coordinates
δ	� Aspect ratio
φ	� Occlusion

The sinusoidal progression of the conduit walls causes peristaltic motion. Peristaltic transport is caused by a 
progressive sinusoidal wave that moves with the channel’s boundary. The movement of food through the large 
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intestine is an example of peristalsis. The area of its applications is vast and broad. It has applications in the 
industrial, physiological, and engineering fields1. The industrial processes in which the peristaltic mechanism 
is utilized involve several biomedical devices, such as dialysis machines, blood-pumping machines, heart-lung 
machines, ortho pumps, and corrosive and sanitary liquid flows. The heart-lung machine specifically enables the 
cardiovascular bypass, in which, during surgery, the machine overcomes the functionality of the heart and lungs. 
Food movement, urine transport, the esophagus, and blood circulation in small blood vessels are all examples 
of applications in physiology.

The exciting and vital applications of the peristaltic mechanism attracted the researcher towards itself. Many 
researchers have investigated the peristaltic flow through circular ducts. Mekheimer worked on the peristaltic 
flow of fluid through a circular tube under the magnetic field effects by considering the couple stresses2. Nadeem 
and Akram examined the Williamson fluid’s peristaltic transport and solved the non-linear model of differential 
equations using an analytical technique. They studied the effect of various physical constraints in the model on 
the flow3. Tiripathi and Baig investigated the nanofluid flow analytically through a 2-D channel with wavy walls, 
which has applications in drug delivery to the digestive system4. Ashraf et al. studied the peristaltic cilia-produced 
movement of developing the embryo from the ampulla to the human fallopian tube via intramural. They used 
the perturbation technique to handle the Johnson-Segalman fluid model5. Tiripathi used the fractional model 
of Oldroyd-B fluid to analyze the peristaltic movement of chyme in the small intestine, and he worked on the 
homotopy analysis method to get the solution of differential equations6.

Ellahi et al. discussed the bioheat and mass transfer in peristaltic flow through a rectangular duct of a non-
uniform cross-section. They briefly analyzed the physical parameter’s impact on the flow and studied the trapping 
phenomenon7. Zeeshan et al. examined the dusty fluid flow with Casson fluid (biorheological fluid) as the base 
fluid under the magnetic impact. They discussed the effects of parameters, especially the quantity of nanoparticles 
and the magnetic parameter on the flow8. Nadeem et al. used the eigenfunctions to solve the mathematical model 
representing the water-based nanofluid flow through a rectangular channel and analyzed the flow properties like 
fluid’s velocity and its thermal conductivity9. More literature on the peristaltic flow is provided in10–12. Recently, 
some researchers have gained more interest in the fluid flow via ducts of elliptical cross-sections. Saleem et al. 
studied the peristaltic transport of Casson fluid in an elliptical duct. They examined the impact of critical physi-
cal parameters on the nature of velocity, temperature, and pressure-rise profiles13. Rachid et al. investigated the 
mechanical efficiency and entropy production of peristaltic transport of Casson fluid via the elliptic duct14.

As mentioned earlier, the literature shows that the peristaltic flow of Carreau fluid in an elliptic duct has yet 
to be investigated. Therefore, in the current work, we considered the flow of Carreau fluid through a duct of 
the elliptical cross-section with a sinusoidally moving wall. The partial differential equations representing the 
problem are solved by using the perturbation technique. We also utilized the polynomials of degrees four and 
twenty to get the solution to mathematical equations. Then these solutions are examined graphically in detail 
for various physical constraints of the study.

Mathematical formulation
Consider the flow of incompressible non-Newtonian fluid through the duct of an elliptic cross-section having a 
sinusoidally moving boundary wall. The Carreau fluid model is accounted for the non-Newtonian characteristics 
of the fluid. Further, the fluid is considered to have no slip at the peristaltically moving wall of the elliptic conduit. 
The proposed problem is studied in Cartesian coordinates, and its geometrical representation is given in Fig. 1.

Figure 1.   Geometry of the problem.
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The sinusoidally fluctuating boundary wall of elliptic conduit with a as the semi-major axis and b as the semi-
minor axis can be represented mathematically as

where b0 is the semi-minor axis of a non-deformed elliptic channel.
The mathematical equations that govern the non-Newtonian incompressible fluid are15

The corresponding boundary conditions over the elliptic cross-section are

The following expression gives the stress-strain relationship of the Carreau fluid model16,17:

where m represents the flow behaviour index, Ŵ is time constant, and

On assuming Ŵγ̇ << 1 , we can have

In the laboratory frame, the fluid flow is unsteady, but it is considered a steady flow in the wave frame (moving 
frame). The following transformations relate the laboratory and wave frames:

To transform the equations into non-dimensional form, the adequate dimensionless variables are considered 
as follows:

where Dh = b0π
E(e) is hydraulic diameter of ellipse; E(e) =

∫

π
2

0

√

1− e2 sin (α) dα and e =
√
1− δ2 represents 

the eccentricity of ellipse such that 0 < e < 1.
By employing dimensionless variables provided in (12) together with the long wavelength approximation on 

Eqs. (1)–(8) and neglecting the dash notation, we obtain

(1)b(Z, t) = b0 + d sin

(

2π

�
(Z − ct)

)

,

(2)a(Z, t) = 3 b(Z, t),

(3)∂XU + ∂YV + ∂ZW = 0,

(4)ρ(∂tU + U ∂XU + V ∂YU +W ∂ZU) = −∂XP + ∂X�XX + ∂Y�XY + ∂Z�XZ ,

(5)ρ(∂tV + U ∂XV + V ∂YV +W ∂ZV) = −∂YP + ∂X�YX + ∂Y�YY + ∂Z�YZ ,

(6)ρ(∂tW + U ∂XW + V ∂YW +W ∂ZW) = −∂ZP + ∂X�ZX + ∂Y�ZY + ∂Z�ZZ ,

(7)

ρcp(∂tT + U ∂XT + V ∂YT +W ∂ZT) = k(∂XXT + ∂YYT + ∂ZZT)

+ (�XX∂XU +�XY∂YU +�XZ∂ZU)

+ (�YX∂XV +�YY∂YV +�YZ∂ZV)

+ (�ZX∂XW +�ZY∂YW +�ZZ∂ZW).

(8)W = 0, T = Tw at
X2

a2
+

y2

b2
= 1.

(9)�ij = µ
(

1+ (Ŵγ̇ )2
)

m−1
2 γ̇ij ,

γ̇ =

√

√

√

√

1

2

∑

i

∑

j

γ̇ijγ̇ij .

(10)�ij = µ

[

1+
(

m− 1

2

)

(Ŵγ̇ )2
]

γ̇ij .

(11)X = x, Y = y, Z = z + ct, U = u, V = v, W = w + c.

(12)

x̄ =
x

Dh
, ȳ =

y

Dh
, z̄ =

z

�
, ū =

�u

cDh
, v̄ =

�v

cDh
, δ =

b0

a0
, We =

Ŵu0

Dh
,

w̄ =
w

c
, p̄ =

D2
hp

µ�c
, ā = ā(z) =

a

Dh
, b̄ = b̄(z) =

b

Dh
, φ =

d

b0
,

t̄ =
ct

�
, �̄ij =

Dh

µc
�ij , ¯̇γ =

Dh γ̇

u0
, θ =

T − Tw

Tb − Tw
, Br =

µu20
k(Tb − Tw)

,

(13)∂xp = 0, (p is independent of x)

(14)∂yp = 0, (p is independent of y)
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The dimensionless form of boundary conditions becomes

The non-dimensional mathematical representation of a sinusoidally deformed wall becomes

We acquire the stress components �xz and �yz from Eq. (10) as

where

By substituting Eqs. (21) and (22) in Eqs. (15) and (16), we acquire

Solution method
This section consists of the solutions of axial velocity w(x, y) and temperature θ(x, y).

Axial velocity
We solve Eq. (23) and (17) by applying perturbation technique via polynomial and considering W2

e  as perturba-
tion parameter. Consider

By using Eqs. (25)-(27) into Eqs. (17) and (23), then equating the coefficients of 
(

W2
e

)0 , 
(

W2
e

)1 , we get the fol-
lowing system:

(15)p′(z) = ∂x�xz + ∂y�yz ,

(16)
(

∂xx + ∂yy
)

θ = −Br
(

�xz∂x +�yz∂y
)

w.

(17)w = −1 at
x2

a2
+

y2

b2
= 1,

(18)θ = 0 at
x2

a2
+

y2

b2
= 1.

(19)b =
E(e)

π
(1+ φ sin (2πz)),

(20)a = 3 b.

(21)�xz = C(∂xw),

(22)�yz = C
(

∂yw
)

,

C =
[

1+W2
e

(

m− 1

2

)

(

(∂xw)
2 +

(

∂yw
)2
)

]

.

(23)
p′(z) = ∂xxw + ∂yyw +W2

e

(

m− 1

2

)

[

∂x(∂xw)
3 + ∂y

(

∂yw
)3

+∂x

(

∂xw
(

∂yw
)2
)

+ ∂y
(

∂yw(∂xw)
2
)

]

,

(24)∂xx θ + ∂yy θ = −Br

(

C(∂xw)
2 + C

(

∂yw
)2
)

.

(25)w = w0 +W2
e w1 + · · ·,

(26)p = p0 +W2
e p1 + · · ·,

(27)Q = Q0 +W2
e Q1 + · · ·.

(28)
�

W2
e

�0 :











p
′
0 = ∂xxw0 + ∂yyw0,

w0 = −1 at x2

a2
+ y2
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= 1,
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and neglecting the higher powers of W2
e .

Let the following fourth-degree polynomial be the solution of (28)

Then, by using Eq. (30) in Eq. (28) and equating the coefficients of like powers, we have

By solving Eqs. (31)–(36) simultaneously, we obtain the values of constants involved in Eq. (30) given in “Appen-
dix”. Therefore, Eq. (30), becomes

which is solution of (28). By integrating Eq. (37) over the elliptical cross-section, we get the expression for 
volumetric flow rate

The mathematical expression for the pressure gradient p′0(z) is obtained as

where L =
∫ 1
0 a b dz.

By using a similar procedure we used to solve (28), we obtained the solution of (29) as:

(29)
�

W2
e

�1 :























p
′
1 = ∂xxw1 + ∂yyw1 +

�

m−1
2

�

�

∂x(∂xw0)
3 + ∂y

�

∂yw0

�3

+∂x

�

∂xw0

�

∂yw0

�2
�

+ ∂y
�

∂yw0(∂xw0)
2
�

�

,

w1 = 0 at x2

a2
+ y2

b2
= 1,

(30)w0(x, y) = F1x
4 + F2y

4 + F3x
2 + F4y

2 + F5x
2y2 + F6.

(31)6F1 + F5 = 0,

(32)6F2 + F5 = 0,

(33)p′0(z) = 2F3 + 2F4,

(34)F1 +
b4F2

a4
−

b2F5

a2
= 0,

(35)−
2b4F2

a2
+ F3 −

b2F4

a2
+ b2F5 = 0,

(36)b4F2 + b2F4 + F6 = −1.

(37)w0(x, y) =
a2b2p

′
0(z)

2(a2 + b2)

(

x2
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+

y2
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− 1

)

− 1,

q0(z) = −
a3b3π p

′
0(z)

4(a2 + b2)
− πab.

(38)p
′
0(z) = −

4(a2 + b2)(Q0 − L+ πab)

a3b3π
,

(39)

w1(x, y) = −
a2b2
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+
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(

−4p′1(z)+ (m− 1)
(

p′0(z)
)3
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)
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(
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(
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(
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(
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)3(
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(
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(
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(
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Therefore, we finally acquire the solution of velocity as:

The following equation is used to find the mathematical result for pressure-gradient:

The mathematical expression of pressure-rise for one wavelength can be attained by

Temperature distribution
For the solution of temperature, we consider the following polynomial as the solution of Eq. (24):

By utilizing the similar process as we adopted for the solution of w0(x, y) , we evaluate the constants cl ’s where 
l = 1, 2, ..., 38 and attain the solution of temperature. The values of constants cl ’s are provided in the “Appendix”.

Special cases and validation

•	 By setting a = b , we attain the axial velocity for Carreau fluid flow through a circular cross-section duct.
•	 On substituting m = 1 or Ŵ = 0 , we get the mathematical expression for the Newtonian fluid flow through 

a duct of elliptical cross-section given by McCash et al. (with φ1 = φ2 = 0 ) in18.

The solutions of axial velocity and temperature satisfy the PDEs and the boundary conditions. The graphs of 
axial velocity and temperature also satisfy the boundary conditions. It assures and guarantees the validation of 
our results. Further, Table 1 also ensures the validation of the results presented in this work.

Results and discussion
The present work aims to analyze the peristaltic flow of Carreau fluid through a duct with an elliptic cross-section. 
The mathematical equations are solved using the perturbation technique ( W2

e  as perturbation parameter) and 
polynomial solution. This section consists of the graphical investigation of the solutions of mathematical equa-
tions obtained in the above fragment. In this section, we examined the effects of different physical parameters 

(41)p′1(z) = −
48
(

a2 + b2
)4
(Q1 − L)− πa5b5(m− 1)

(

3a4 + 2a2b2 + 3b4
)(

p′0(z)
)3

12πa3b3
(

a2 + b2
)3

.

(42)

w(x, y) = −1+
a2b2p′(z)

2(a2 + b2)

(

x2

a2
+

y2

b2
− 1

)

+
1

3a9b9
(

a2 + b2
)(

a4 + 6a2b2 + b4
)

π3

×
[

8W2
e (m− 1)(πab+ Q − L)3

(

−22a2b10x4 − 3b12x4 + 3a12
(

b4 − y4
)

+ 3a4b8
(

b4 − 8x4 − 8x2y2 + y4 + 2b2
(

x2 − y2
))

+ 2a6b6
(

8b4 − x4

− 24x2y2 − y4 + 7b2
(

x2 − y2
))

+ 2a10
(

8b6 − 11b2y4 − 3b4
(

x2 − y2
))

+ a8
(

10b8 − 14b6
(

x2 − y2
)

+ 3b4
(

x4 − 8x2y2 − 8y4
)))]

.

(43)

p′(z) =
4

3a7b7π3

[

−12πa3b3(m− 1)
(

b4π2 + 2(L− Q)2
)

W2
e + 4a2b2(−1+m)

×
(

9b4π2 + 2(L− Q)2
)

(L− Q)W2
e − 36ab5(−1+m)π(L− Q)2W2

e

+ 12b4(m− 1)(L− Q)3W2
e − 3a7b3π3

(

b2 + 4(−1+m)W2
e

)

− a5bπ
(

3b6π2

+ 4(m− 1)
(

2b4π2 + 9(L− Q)2
)

W2
e

)

+ 3a6b2π2
(
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e
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(
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e

))
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(
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(

2b4π2 + (L− Q)2
)

(L− Q)W2
e

+ b6π2
(

L− Q + LW2
e

))]

.

(44)�p =
∫ 1

0
p′(z)dz.

(45)

θ(x, y) = x2c1 + x4c2 + x6c3 + y2c4 + y4c5 + y6c6 + c7 +
(

x2y2
)

c8 + x4y4c9

+
(

x4y2 − x2y4
)

c10 + c11
(

x4y2 + x2y4
)
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(

x6y4 − x4y6
)

+ c14x
8

+ c15y
8 + c16x
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8y8 +

(

x6y2 − x2y6
)

c18 + c19
(
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)

+
(

x8y2 − x2y8
)
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(
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)

+
(
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(

x8y4

+ x4y8
)

+ c24
(
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)

+ c25x
10 + c26y
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10y10
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(
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)

+ c32
(
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)

+ c33
(
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)

+ c34
(

x10y6 − x6y10
)

+ c35
(

x10y6 + x6y10
)

+ c36
(
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)

+ c37
(
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)

+ c38
(

x8y6 + x6y8
)

.
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on flow characteristics such as flow velocity, pressure gradient, pressure- rise, and temperature distribution. The 
graphs are plotted by writing the computer programs on Mathematica 13.2.

Figures 2a,b give the influence of flow rate on the velocity of flow along the minor and major axes, respec-
tively. The axial velocity w(x, y) gets bigger values for rising flow rate Q along both axes. Figures 2c,d indicate 
the behavior of the Weisenberg number on the flow velocity. It is observed that flow velocity decreases along the 
major axis with an enhancement in the Weissenberg number. Along the minor axis, it diminishes almost up to 
45% length from the center-line, but after this length, the velocity profile reverses and increases in this region. It 
emphasized that the non-Newtonian effects predominate along the minor axis. Figures 2e,f display the impact 
of the flow behavior index m on the velocity profile. The rising values of m cause the enhancement of the flow 
velocity against the major axis. The graph of flow velocity depicts the similar dual behavior along the minor 
axis as it did for We . Moreover, it is noted that the velocity profile is parabolic and axisymmetric. It attains its 
maximum value at the mid-line of the channel and diminishes towards the boundary to achieve its minimum 
value at the elliptic boundary.

Figures 3a–c provide the effects of aspect ratio δ , occlusion φ and Weissenberg number We on the graph of dpdz 
against the axial direction (z-axis). Figure 3a illustrates that the pressure gradient increases as the aspect ratio δ 
increases. The increase in aspect ratio means that the cross-section of the channel becomes less elliptical. Since 
the decrease in the pressure gradient assists the fluid in flowing along the axial direction. Therefore, it pointed out 
that the peristaltic flow velocity of the fluid is higher in the highly elliptical channels. Figure 3b delineates that 
pressure gradient rises and reduces in the expanding and contracting regions of the peristaltic wave, respectively, 
for higher values of φ . dpdz gets larger values for growing values of Weissenberg number We as shown in Fig. 3c. 
In Figs. 3d–f, pressure-rise graphs are plotted and examined for the effects of parameters on the positive value 
region (peristaltic pumping, �p > 0 ), zero value region (free pumping, �p = 0 ) and the negative value region 
(augmented pumping, �p < 0 ). Figures 3d,f demonstrate that the pressure-rise lessens in the peristaltic pump-
ing zone. In contrast, it exhibits the opposite behavior in the augmented pumping zone for a higher aspect ratio 
and Weissenberg number. Figure 3e explains the impact of occlusion φ on the pressure-rise graph. It depicts 
that pressure-rise grows for a growing φ in the peristaltic pumping and free pumping regions, but its behavior 
reverses in the augmented pumping region.

Figures 4a–f provide the graphical temperature behavior for the flow behavior index, Weissenberg, and 
Brinkman numbers. Figures 4a,b depict the temperature profile for We . They delineate that the temperature 
graph decreases along the minor and major axes. Figures 4c,d describe that the temperature rises with the rising 
values of Br along the minor and major axes. The temperature profile enhances by incrementing the values of m 
as provided in Figs. 4e,f. It is important to note from the temperature graphs that they depict a parabolic nature 
along the major axis, but the parabolic profile is disturbed along the minor axis. It is observed that temperature 
has the same values in the region −0.2 ≤ y ≤ 0.2 and diminishes quickly in the surrounding wall of the channel 
along the minor axis, in Figs. 5a–f, streamlines are also plotted to examine the flow behavior. They explain that 
the streamlines break into contours near the peristaltic moving wall. The contours reduce in numbers for larger 
Q and diminish in both size and count for higher values of We . In contrast, the contours rise in the count for a 
higher aspect ratio value.

Concluding remarks
In this study, we analyzed the flow of Carreau fluid through a duct with an elliptical cross-section. The problem 
is formulated mathematically in Cartesian coordinates. The resulting differential equations are solved in the 
dimensionless form under the long wavelength assumption. The momentum equation is solved by employing 
the perturbation technique via a polynomial solution. The energy equation is solved using a 20th degree poly-
nomial. The solutions of mathematical equations are examined graphically. The key findings of our work are 
provided as follows:

•	 The flow velocity showed dual behavior along the minor axis of the elliptic duct. It allows us to conclude that 
non-Newtonian effects become dominant in the conduit of a narrower cross-section.

•	 The flow velocity is symmetric about the axis of the channel and parabolic in nature. Further, it gains maxi-
mum value at the midline.

•	 It is noted that fluid velocity decreases with the rise in aspect ratio. Therefore, we can conclude that flow 
velocity is higher in the channels with a high elliptical cross-section.

Table 1.   Comparison table of numerical values for velocity and temperature with fix parameters 
δ = 0.13, φ = 0.4, z = 1, Q = 0.25, Br = 0.35, We = 0, m = 1.

x y
w in present
study

θ in present
study

w in18 with
φ1 = φ2 = 0

θ in18 with
φ1 = φ2 = 0

0 0 0.90079 0.36574 0.90079 0.36574

0.2 0.05 0.83570 0.35644 0.83570 0.35644

0.4 0.1 0.640431 0.32721 0.640431 0.32721

0.6 0.15 0.31497 0.27389 0.31497 0.27389

0.7 0.2 0.01555 0.22761 0.01555 0.22761
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•	 The temperature graph along the major axis is perfectly parabolic, but the parabolic nature disturbs the minor 
axis and reduces quickly in the area surrounding the channel’s boundary. It also assures the dominance of 
non-Newtonian impact in the narrower cross-section.

•	 Towards the peristaltic moving wall, it is seen that streamlines transform into contours. It is also noted that 
the flow is smooth in the mid-region of the elliptic duct.

Figure 2.   Velocity graphs.
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Figure 3.   Graphs of pressure gradient and pressure-rise.
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Figure 4.   Temperature graphs.
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Figure 5.   Streamlines.
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Data availability
The data used to support the findings of this study is included within the article.
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