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The phylogeography of Middle 
Eastern tree frogs in Israel
Gal Mesika Surizon 1, Eli Geffen 2, Uri Roll 3, Sarig Gafny 1,5 & R. G. Bina Perl 2,4,5*

Western Palearctic treefrogs of the genus Hyla provide an example of a morphologically and 
ecologically cryptic group. Up to three distinct Hyla species have been proposed as resident in Israel 
and this number has consistently been subject to taxonomical debates. Here, we analyzed 16S rRNA 
and COI gene fragments of 658 individuals sampled at 47 pools in nine regions across Israel and the 
West Bank in order to resolve the taxonomic status of Hyla frogs. We generated both Bayesian and 
Maximum Likelihood phylogenies, and constructed time-calibrated trees to provide an evolutionary 
and historical context of sequence variations. We further applied SAMOVA as well as Monmonier’s 
maximum-difference algorithm to study the genetic structure among populations and to identify 
potential zones acting as barriers to gene flow across locations. Our results revealed two distinct 
haplogroups for each gene fragment, with 95% CI divergence times dated from 8.9–17.1 Mya (16S) 
and 7.1–23.6 Mya (COI), respectively. SAMOVA and barrier analyses partitioned the populations into 
three groups. Our results highlight that, while there are probably only two Hyla species in Israel, 
one population of one of the species might qualify as a separate evolutionarily significant unit. Our 
findings elucidate the taxonomic status of Hyla frogs in Israel and provide the basis for determining 
appropriate management and conservation priorities.

Assessing and inventorying biodiversity is a prerequisite for establishing appropriate management and conser-
vation policies. Only after the taxonomic status of populations has been clarified and reliable information on 
distribution ranges is available, can the acquired knowledge be used to efficiently plan and apply conservation 
actions. However, there may not be clear morphological differences between otherwise genetically distinct spe-
cies. Consequently, taxonomy in regard to cryptic species complexes often remains a source of confusion and 
controversy until it can be resolved on the basis of molecular data. Cryptic species are found in all classes of 
 vertebrates1–5, and are especially common in amphibians, which, unlike many other vertebrates, have a relatively 
conservative body plan and thus a small number of external characters conducive to species  identification6.

Despite there being only a very few amphibian species resident in Israel, there is still no consensus among 
zoologists regarding the exact number of species inhabiting this small country, or their geographical distribution. 
Until recently, seven amphibian species were considered  monotypic7, i.e. they belong to only distantly related 
genera. One of these species is the Middle East tree frog (Hyla savignyi Audouin, 1827). In 2007, Grach et al.8 
described a new endemic tree frog species (H. heinzsteinitzi Grach, Plessed & Werner, 2007) from Jerusalem 
and the adjacent Judean Hills on the basis of morphological and bioacoustics data. However, as their work was 
not corroborated by molecular analyses, their results were largely criticized. Stöck et al.9, who investigated two 
mitochondrial DNA fragments (cytochrome oxidase subunit I gene and cytochrome b) of a single sample from 
the type locality in Jerusalem and compared the provided morphological and acoustic data of H. heinzsteinitzi 
with those of other Hyla species, suggested that the localized population of H. heinzsteinitzi might be the result 
of a human introduction of another species [H. japonica (Günther, 1859)] into Israel. However, their conclusion 
was based solely on the sequences of a single individual found in GenBank, which was again heavily criticized by 
 Werner10. In their study, which sought to resolve the phylogeny of circum-Mediterranean tree frogs, Stöck et al.9 
nonetheless also revealed that the then single nominal and widespread species H. savignyi (distribution range: 
Cyprus, Egypt, Georgia, Iran, Iraq, Israel, Jordan, Lebanon, Syria, and Turkey) in fact comprises two evolution-
arily distinct lineages that deserve the status of separate  species9. This finding was supported by another study 
that finally divided the nominal species into a northern clade, for which the name H. savignyi was kept; and a 
southern clade, now known as H. felixarabica Gvoždík, Kotlík & Moravec,  201011. This latter study included 15 
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samples from Israel and suggested that both species are present in the country. This finding, however, was not 
accepted by Degani et al.12, who did not differentiate between H. savignyi and H. felixarabica in their study, in 
which they investigated the variation in Hyla populations in northern Israel. In two studies from 2019 and 2020, 
Dufresnes et al.13,14 confirmed the hypothesis of Gvoždík et al.11. However, Dufresnes et al.’s studies were largely 
based on the same samples as those of Gvoždík et al., adding 12 more individuals from two additional pools in 
Israel. Therefore, the exact distribution of each of these two species in Israel, as well as the taxonomic validity of 
H. heinzsteinitzi have remained unclear.

Here, we sought to resolve the taxonomic status of frogs belonging to the genus Hyla in Israel. Based on an 
extensive sampling of freshwater habitats throughout the country, we attempted to elucidate the geographic 
distribution for each of the known species, and to investigate the presence of potential additional species or of 
significant evolutionary units in this region. We also provide information on the divergence between the different 
species and identify barriers to mitochondrial gene flow.

Results
In this study, we analyzed 16S rRNA and COI gene fragments of 658 Hyla individuals sampled at 47 rain pools 
in nine regions across Israel and the West Bank (hereafter combined as ‘Israel’; Fig. 1a). Our genetic diversity 
analyses revealed 109 polymorphic sites resulting in 71 haplotypes for 16S; and 102 polymorphic sites resulting in 
48 haplotypes for COI. The overall haplotype diversity was relatively high for both gene fragments, being slightly 
higher for COI (16S: Hd = 0.815 ± 0.013, π = 0.021; COI: Hd = 0.828 ± 0.012, π = 0.044). The high diversity was also 
reflected in our median-joining haplotype networks, which revealed two main distinct haplogroups (A and B) 
for each gene fragment that were separated from one another by at least 63 (16S) and 64 (COI) mutational steps, 
respectively (Fig. 2). For both gene fragments, Haplogroup A was smaller (16S: 18 haplotypes; COI: 9 haplotypes) 
and was only found in individuals from three out of the nine regions (Golan, northern Arava, and Upper Galilee). 
In this haplogroup, individuals from one location (northern Arava) not only stood out in possessing a unique 
haplotype for each gene fragment, but also in the overall low number of haplotypes (16S: 2 haplotypes; COI: 1 
haplotype; Fig. 2). By contrast, Haplogroup B was larger (16S: 53 haplotypes; COI: 39 haplotypes) and far more 
diverse. For each gene fragment, three haplotypes were shared by numerous individuals from several regions 
(16S: H6 = 252 individuals from 8 regions, H32 = 87 individuals from 8 regions, H34 = 38 individuals from 5 
regions; COI: H1 = 241 individuals from 8 regions, H5 = 58 individuals from 4 regions, H11 = 94 individuals from 
7 regions; Fig. 2). However, there were also several haplotypes for each gene fragment that were represented by 
only one or two of the examined individuals (Fig. 2).

Our time-tree analyses based on the obtained haplotypes for each gene fragment yielded very similar topolo-
gies as recovered from the Bayesian and ML analyses, which revealed two clades (A and B) that probably diverged 
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Figure 1.  (a) Map showing the locations of the 47 sampled sites across Israel. Number of individuals of Hyla 
savignyi (green circles) and H. felixarabica (pink circles) sampled at each locality based on mtDNA 16S (b) and 
COI (c). Circle sizes represent sample sizes.
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between the early Pliocene and late Miocene. Overall, the calculated times of divergence were similar for both 
gene fragments. For the 16S rRNA gene fragment, the time of divergence between the two clades was dated to 
12.1 Mya (95% CI: 8.9 and 17.1 Mya; Fig. 3a), while for the COI gene fragment the divergence was dated to 13.1 
Mya (95% CI: 7.1 and 23.6 Mya; Fig. 3b).

Population structure and demographic analyses
For each gene fragment, we discovered significant global genetic differentiation using the genetic distance GST 
(16S: 0.323, P < 0.0001; COI: 0.323, P < 0.0001), NST (16S: 0.910, P < 0.0001; COI: 0.874, P < 0.0001) and PhiST 
(16S: 0.897, P < 0.0001; COI: 0.859, P < 0.0001). We found significantly larger NST than GST values (16S: 0.587, 
P < 0.0001; COI: 0.551, P < 0.0001), which suggests a strong phylogeographic structuring. For the 16S fragment, 
the SAMOVA analysis partitioned the 47 sampled populations into three groups (K = 3) while revealing almost 
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Figure 2.  Median-joining haplotype networks of 16S and COI haplotypes of Hyla individuals collected from 
nine regions across Israel. Circle sizes represent haplotype frequencies, cross bars between haplotypes denote 
one mutation each, and colors correspond to the different regions. Branches are not to scale.
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lower ranges for each node are represented as red bars. Timescale in million years. Note that for 16S the H. 
savignyi sequences obtained from GenBank are of different origins. While one sequence was obtained from an 
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study, classifying individuals from southern Syria as H. felixarabica10.
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identical PhiCT values for K = 2 and K = 3 for the COI fragment (Table 1, Fig. 4a). We found the population of 
the northern Arava (Neot Hakikar) to be the cause of this ambiguous result, as this population formed a clearly 
separate ‘group’ for 16S, but not for COI. We therefore adopted the three-group solution (for a list of populations 
in these groups see Table S1). Post-hoc AMOVA statistics on K = 3 as partitioned by SAMOVA were all found 
to be significant (P < 0.0001) for each locus. Values were high for both PhiCT values (genetic variance among 
groups: 16S = 0.92; COI = 0.90) and PhiST values (genetic variance within populations: 16S = 0.96; COI = 0.95), 
with the latter indicating a high number of private haplotypes, as corroborated by the haplotype network (Fig. 2). 
By contrast, the PhiSC values (genetic variance among populations within groups) were comparatively low 
(16S: PhiSC = 0.52; COI: PhiSC = 0.46). Pairwise AMOVA PhiST confirmed a clear differentiation among the 
three groups. All pairwise PhiST values were significant (P < 0.0001), ranging from 0.586 to 0.925, suggesting 
no or extremely limited mitochondrial gene flow between the different population clusters. Interestingly, the 
population of the northern Arava (Group 1) showed more similarity to that of the Golan region (Group 2) than 
to the geographically closer populations of Group 3 (AMOVA PhiST values for the 16S and the COI fragment: 
Group 1 – Group 2 = 0.586 and 0.598, respectively; Group 1 – Group 3 = 0.923 and 0.898, respectively; Group 
2 – Group 3 = 0.925 and 0.906, respectively; all values were significant P < 0.0001). Negative values of neutrality 
tests (Tajima’s D and Fu’s FS) performed on each of the groups indicated either selection removing variation or 
a recent population expansion for at least two of the groups (Table 2).

A Monmonier algorithm identified three potential barriers (Ba, Bb, and Bc) between four different population 
clusters, suggesting limited mtDNA gene flow or even genetic isolation between them (Fig. 4b,c). The locations of 
the computed barriers were identical between the two gene fragments, but their robustness was only congruent 
for two out of the three barriers. Barrier Ba, which separates the single population of the northern Arava (Neot 
Hakikar) from the closest bordering population in the Coastal Plain (Kedma), received 100% bootstrap support 
for both gene fragments. Barrier Bb, separating the nine populations of the Golan region (Bajuriyeh, Ein Zivan 
NT, Elrom, Farej East, Hushniya, Juchader, Razania, Tel Bezek, Zuriman South) as well as a single population of 
the Lower Galilee (Ein Yeella) from the bordering populations, likewise received 100% bootstrap support for both 
gene fragments. Barrier Bc, running between the populations of Samaria (Barkan and Imam Ali) and separating 
the populations of the Judean foothills (Bareket and Canada Park) as well as the southern populations of the 
Coastal Plain (Ashkelon, Elad, Hodaya, Kedma, Migdal Zedek and Nitzanim) from the other populations of the 
Coastal Plain, was weaker and only received a bootstrap support of 54–98% (16S) and 68–97% (COI) (Fig. 4c).

Discussion
Our collective results based on DNA sequence data corroborate previous reports on two different cryptic Hyla 
species in  Israel9,11,13. Our generated trees display a clear division into two main clades (A and B), which strictly 
conform to haplogroups A and B in the haplotype network (Fig. 2). We identified the two clades as corresponding 
to the species H. felixarabica (clade A) and H. savignyi (clade B), thus ruling out their identification as a single 
species, as suggested by Degani et al.12. However, it should be noted that while Degani et al. used the two species’ 
names interchangeably, their study was restricted to the Upper Galilee, and thus the individuals they investigated 
must have exclusively belonged to H. savignyi.

We found the Hyla savignyi sequences obtained from GenBank clustering within both clades for the 16S rRNA 
gene fragment, and within clade A for the COI gene fragment. While these results initially seemed contradictory, 
one 16S sequence was in fact obtained from an individual that had been captured in Syria prior to the study by 
Gvoždík et al.11, in which individuals from southern Syria were classified as belonging to H. felixarabica. Even 
though we do not know where in Syria this individual was sampled, our combined data suggest that the 16S 
sequence does indeed correspond to H. felixarabica. We did not find any genetic support for the existence of H. 
heinzsteinitzi previously described by Grach et al.8, although it should be noted that the original location of the 
putative species has been functionally destroyed. For roughly the past decade, this water body has not carried 
enough water to support amphibian breeding and has also been heavily sprayed with pesticides (S.G., pers. obs.). 

Table 1.  Results of the SAMOVA analyses. The highest PhiCT value (in bold) indicates the optimal cluster 
solution (optimal number of K).

No. of K

PhiCT value

16S COI

1 0.8969 0.8594

2 0.9540 0.9349

3 0.9546 0.9348

4 0.9544 0.9345

5 0.9517 0.9330

6 0.9515 0.9308

7 0.9509 0.9260

8 0.9496 0.9265

9 0.9460 0.9227

10 0.9428 0.9214
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Despite multiple visits during our study period, the site was mostly completely dry and we were unable to detect 
adults or tadpoles of any frog species at this location or in its vicinity.

In accordance with previous studies, we found the Hyla felixarabica clade to be distributed east and south of 
the Dead Sea Rift (Golan and northern Arava), while the H. savignyi clade is only distributed west of the Dead 
Sea Rift (all other regions)11,13,14. Consistent with the calculations by Gvoždík et al.11 as well as Li et al.15, who 
presented a phylogeny including almost all described Hyla species, our time-tree results estimate the division 
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between H. felixarabica and H. savignyi to have occurred between the Early Pliocene and Late Miocene, when 
the local plate kinematics still formed the Dead Sea  Rift16,17. Only at one location from the Golan region (Raza-
nia), did we identify one individual as belonging to H. savignyi. The other 19 individuals captured at this pool 
clustered as H. felixarabica. According to Dufresnes et al.13, H. felixarabica and H. savignyi are parapatric along 
their contact zone of hundreds of kilometers. While we acknowledge that we only sampled a maximum of 20 
individuals per site, our observations revealed an almost exclusively allopatric distribution of these two species. 
Even though we captured a single H. savignyi individual at the Razania pool, we cannot rule out the possibility 
that this individual had been accidentally translocated to Razania from a location west of the Dead Sea Rift (e.g. 
via a delivery of plants, fruits, or vegetables; Fig. 1). It is not unlikely that H. felixarabica and H. savignyi have 
evolved different habitat requirements over the past million years, which could explain why these two species 
are not commonly found at the same locality. Hosseinian-Yousefkhani et al.18 modeled the potential distribu-
tion areas based on capture data and bioclimatic variables for three hylid species occurring in the Middle East 
and revealed that H. felixarabica is restricted to only a few arid regions along the eastern side of the Rift Valley, 
while H. savignyi is widely distributed in semi-arid  habitats18. By contrast, Dufresnes et al.13 conducted a similar 
analysis, limited to H. felixarabica and H. savignyi, and found no clear indications of differential adaptations 
to climatic conditions between the two species. Rather, they hypothesized that the species’ dispersal is more 
impeded by the barren landscape in this region than by the differences in climatic conditions. We would like to 
present an alternative hypothesis, which is based on the fact that the divergence time between H. felixarabica and 
H. savignyi is very long (5.2 mya 14, 12.5 mya this study). The dispersal of populations north of the Dead Sea on 
both side of the Rift Valley is not restricted, because individuals can move freely through the major tributaries 
of the Jordan River, which are wet year round. By contrast, populations of H. felixarabica south of the Dead Sea 
and along the western coast of South Arabia, including Yemen, are isolated to oases or wadis with permanent 
water flow. These populations are indeed isolated by barren and extreme arid desert. However, South Arabia has 
not always been an arid desert. This region is influenced by the Saharan hydroclimate, which is characterized 
by an alternation of prolonged dry and wet periods at intervals of ~ 10,000 years. These African humid periods 
(AHPs) extended back to at least 10 million years BP, and were identified to occur ~ 230 times in the past 8 mil-
lion  years19. During peaks of AHPs, climatic conditions and vegetation patterns were probably more favorable 
for the dispersal of amphibians in South Arabia, and the native H. felixarabica could have migrated from Yemen 
northwards to Jordan and Syria. Such a scenario could explain the deep divergence time between H. felixarabica 
and H. savignyi. We suggest that a genetic study on a more extensive sampling of H. felixarabica from South 
Arabia is required for testing the above hypothesis.

Even though our combined results suggest that there are only two Hyla species in Israel, limits to gene flow 
were also detected between populations of each species, as reflected in the high number of unique haplotypes 
distributed across the different regions. This was also supported by the identified barrier running across the 
center of Israel and separating the northern from the southern H. savignyi populations (Bc). In addition, our 
analyses partitioned the 47 populations into three groups, with the single population in the northern Arava (Neot 
Hakikar), which phylogenetically belongs to H. felixarabica, forming its own group. The sampled individuals 
of this population were captured in wetlands bordering parts of the southern remnant of the Dead Sea (salt 
evaporation ponds) in the surroundings of Neot Hakikar, an agricultural community on its southern tip. This 
community is located at the border with Jordan within the outskirts of the nearest Jordanian village, Fifa, only a 

Table 2.  Summary statistics and results of the neutrality tests (Tajima’s D and Fu’s FS tests) for the three 
groups identified by SAMOVA. Significant values are in bold. Nh: total number of haplotypes; Xh: ratio 
between the number of haplotypes in the defined group of populations and the total number of haplotypes; Pi: 
nucleotide diversity; Pir: ratio between the nucleotide diversity within the defined group of populations and 
the nucleotide diversity of all other populations; Ar: allelic richness. For details on groups see Table S1.

Group 1 Group 2 Group 3

16S

Nh: 2 17 57

Xh: 0.028 0.239 0.803

Pi: 0.000 0.002 0.005

Pir: 0.021 0.356 1.882

Ar: 2 3.747 4.490

Tajima’s D 0.334 − 2.672 − 1.590

(P-value) (> 0.10) (< 0.01) (0.10)

Fu’s FS 0.536 − 6.009 − 32.259

COI

Nh: 1 9 41

Xh: 0.021 0.188 0.854

Pi: 0 0.003 0.013

Pir: 0 0.196 3.689

Ar: 1 2.541 4.778

Tajima’s D n.a − 2.792 − 0.548

(P-value) n.a (< 0.001) (> 0.10)

Fu’s FS n.a − 0.507 − 6.772
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few hundred meters away. Even though there appear to be no current admixture events between the population 
at Neot Hakikar and any other Hyla population in Israel, it is very likely that this population extends further 
into the wetlands around Fifa, from where it probably originates. Unfortunately, formerly extensive wetlands in 
both Israel and  Jordan20 have been largely reduced due to agricultural and industrial  developments21–24. Follow-
ing the construction and growth of settlements such as Neot Hakikar, water has become more extensively used 
for industry and  agriculture25–27. Over the past decade, the Tamar Regional Council (the official municipality 
of this region on the Israeli side) has been converting several locations into unprotected eco-parks simulating 
the former moist habitat in the area. On the Jordanian side, efforts to protect the former wetlands have proven 
more fruitful. In 2011, the Fifa Nature Reserve was established by the Jordanian Royal Society for Conservation 
of Nature (RSCN)28. This reserve was designated the world’s lowest elevation Ramsar Site in 2017 (426 m below 
sea level)29. However, both the regional parks around Tamar, as well as the Fifa Reserve, are very small areas 
compared to the original wetlands.

Against the backdrop of global climate change and concomitantly changing weather regimes, the limited 
gene flow between the different Hyla populations of the same species in Israel is disquieting. We strongly recom-
mend maintaining and improving the connectivity between these different localities where possible in order to 
maintain healthy and adaptable species. We further urge Israeli decision-makers, particularly in the northern 
Arava region, to improve and advance protection of the wetland habitat around Neot Hakikar, and to extend it as 
far as possible to the border with Jordan. We found that the Hyla population in this area formed its own unique 
cluster and, even though we only managed to capture eight Hyla individuals at this pool, our results suggest 
that this population may qualify as a separate evolutionarily significant unit. Finally, we also encourage Jordan 
to further extend their wetland habitat to the border with Israel and conduct further population genetic studies 
on Hyla on the Jordanian side in order to confirm this population’s unique status and promote its protection.

Methods
Sample collection and processing
We obtained DNA from (a) tissue samples of ethanol-preserved specimens previously collected by Yishai Weis-
man between March and June 2012; and (b) toe clips or buccal swabs taken from adults, and tail clips taken from 
tadpoles collected in the field during multiple sampling trips conducted between March 2019 and June 2020 
and stored in ethanol until further processing. Live individuals were immediately released to the wild after tis-
sue sampling. Altogether, we extracted the total genomic DNA of 658 individuals from 47 locations within nine 
geographic regions of Israel and the West Bank (Fig. 1a, Table S2) using the AccuPrep Genomic DNA Extraction 
Kit (BioNeer, Korea) for tissue samples and the DNeasy Blood & Tissue Kit (Qiagen, Germany) for swab samples, 
in accordance with the manufacturers’ instructions.

We PCR amplified a 1,003 base pairs (bp) fragment of the 16S rRNA gene (16S) using the primer pair 16SIs-
chF1 and 16SIschR1 (designed by M. Gehara), and a 577 bp fragment of the cytochrome oxidase subunit I gene 
(COI) using the primer pair COIVertF1 and  COIVertR130. The thermocycling profile for 16S comprised an initial 
denaturation step at 94 °C for 90 s, followed by 35 cycles of denaturation (94 °C for 45 s), annealing (55 °C for 
45 s) and elongation (72 °C for 90 s), and a final elongation step at 72 °C for 10 min. For COI, the thermocy-
cling profile comprised an initial denaturation step at 94 °C for 2:20 min, followed by 35 cycles of denaturation 
(94 °C for 30 s), annealing (48 °C for 45 s) and elongation (72 °C for 90 s), and a final elongation step at 72 °C 
for 10 min. We visualized the PCR products on 2% agarose gels and determined the DNA concentration using 
a NanoDrop One C spectrophotometer (Thermo Fisher Scientific, USA). Subsequently, the products were sent 
to a commercial laboratory (MCLAB, San Francisco, USA; https:// www. mclab. com) for purification and Sanger 
sequencing on ABI 3730XL sequencers (Applied Biosystems, USA).

Sequence alignment and basic statistical analyses
We checked and trimmed the sequences using CodonCode Aligner version 9.0.2 (CodonCode Corporation, 
Dedham, MA, USA) and verified sequence identity using the BLAST tool of NCBI (https:// blast. ncbi. nlm. nih. 
gov/ Blast. cgi). We then constructed a map for each gene fragment displaying the number of individuals per 
species for each site (Fig. 1b,c) using ArcGIS version 10 (ESRI Inc.). Next, we aligned the sequences in MEGA 
X 10.2.631 using the implemented ClustalW algorithm.

We collapsed identical haplotypes for each mitochondrial fragment, and calculated haplotype (Hd) and 
nucleotide (π) diversity as well as the number of polymorphic sites for both markers using DnaSP 6.1232. To 
visualize the evolutionary relationships between populations, we constructed an unrooted median-joining hap-
lotype  network33 for each gene fragment in PopART 1.734.

Phylogenetic analyses and estimates of divergence time
For the phylogenetic analyses, we added published sequences of H. savignyi and H. felixarabica as well as addi-
tional outgroup species (H. arborea; H. meridionalis; H. japonica and H. chinensis) to the alignments to reduce 
uncertainty on node ages (Table S3). Based on the obtained haplotype sequences, we generated separate phylo-
genetic trees for each gene fragment under both a Bayesian framework in MrBayes 3.2.735,36, and a Maximum 
Likelihood (ML) framework in MEGA  X37. The ‘best model test’, as implemented in MEGA X, identified the 
Tamura Nei (1993; TN + G) gamma and the Hasegawa-Kishino-Yano (1985; HKY +) invariant sites models of 
nucleotide  substitution38,39 as the best fit for the 16S and COI data sets, respectively. For the Bayesian analyses, 
we ran two independent Markov chain Monte Carlo (MCMC) runs starting from random trees with three hot 
chains and one cold chain each. Trees were sampled every 1,000 generations for a total of 10,000,000 generations, 
and 25% of generations were discarded as burn-in. Subsequently, we used Tracer v. 1.7.240 to check the chains for 
convergence. For the ML analyses, we used a BioNJ starting tree with a Nearest-Neighbor-Interchange (NNI) tree 

https://www.mclab.com
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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topology  search41. Robustness of ML tree topologies were tested by bootstrap  analyses42 with 1,000 replicates each. 
Lastly, to provide an historical context of sequence variation, we constructed time-calibrated trees (time-trees) 
based on the ML phylogenetic tree output using the robust RelTime-ML  method43, which computes estimates 
based on branch lengths optimized by ML, and divergence time calibration as implemented in MEGA  X44. We 
used the divergence time confidence intervals between H. meridionalis and H. japonica (22.07–31.17 Mya; Time-
tree database incorporated in MEGA X [add constraints/uniform distribution]) to calibrate divergence time of 
all nodes on both gene trees.

Population structure and demographic analyses
For each gene fragment, we investigated the global genetic differentiation by determining NST, GST

45,46 and 
PhiST47 values based on 10,000 random permutations using SPADS 1.048. We further calculated the difference 
between NST and GST values to test the strength of the phylogeographic signal. In SPADS, we also applied two 
clustering algorithms to study the genetic structure among populations: (i) a spatial analysis of molecular vari-
ance (SAMOVA) aimed at identifying geographically homogeneous and maximally differentiated population 
 groups49; and (ii) Monmonier’s maximum-difference algorithm that identifies zones of distinct genetic bounda-
ries (genetic barriers) between sampled  locations49,50. SAMOVA analyses were performed with putative numbers 
of populations (K) ranging from 2 to 10 with 10,000 iterations applied in 10 replicate runs, and we chose the 
optimum value for K based on the highest PhiCT value. We then ran analyses of molecular variance (AMOVAs) 
on the groups (K) as delineated by SAMOVA, and determined AMOVA PhiST values based on 10,000 random 
permutations. Subsequently, we used DnaSP to investigate past changes of effective population size between the 
groups as identified by SAMOVA by calculating neutrality statistics with Tajima’s D51 and Fu’s FS

52. We further 
performed the Monmonier algorithm with 100 bootstrapped matrices to assess robustness and putative num-
bers of barriers (B) ranging from 1 to 10. Lastly, we visualized the polygonal neighborhood for each population 
(Voronoï tessellation) and computed barriers among populations using BARRIER 2.253.

Data availability
The datasets generated and analyzed in this study are available in the GenBank repository with accession numbers 
OR016783–OR017108, OR017110–OR017418, OR017420–OR017231, OR017233–OR017443 [16S]; OR017449–
OR017523, OR017525–OR017530, OR017532–OR017562, OR017564–OR018109 [COI].
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