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Advanced chemometric methods 
for simultaneous quantitation 
of caffeine, codeine, paracetamol, 
and p‑aminophenol in their 
quaternary mixture
Khadiga M. Kelani 1, Reham A. Fekry 2, Yasmin M. Fayez 1 & Said A. Hassan 1*

Two different multivariate techniques have been applied for the quantitative analysis of caffeine, 
codeine, paracetamol and p-aminophenol (PAP) in quaternary mixture, namely, Partial Least 
Squares (PLS-1) and Artificial Neural Networks (ANN). For suitable analysis, a calibration set of 25 
mixtures with various ratios of the drugs and PAP impurity were established using a 4-factor 5-level 
experimental design. The most meaningful wavelengths for the chemometric models were chosen 
using Genetic Algorithm (GA) as a variable selection technique. By using an independent validation 
set, the validity of the proposed methods was evaluated. A comparative study was established 
between the three multivariate models (PLS-1, GA–PLS and GA–ANN). The comparison between the 
various models revealed that the GA–ANN model was superior at resolving the highly overlapped 
spectra of this quaternary combination. The drugs were successfully quantified in their pharmaceutical 
dosage form utilizing the GA–ANN models.

Caffeine (CAF) is 1,3,7-Trimethyl-3,7-dihydro-1H-purine-2,6-dione (Fig. 1a)1. It is a natural chemical with stim-
ulant effects working by energising the heart, muscles and central nervous system as well as raising blood pres-
sure. It can be found in approximately 60 different products, including coffee, tea, cola, cocoa, guarana and yerba 
mate2. Codeine phosphate hemihydrate (COD) is 4,5α-Epoxy-3-methoxy-17-methyl-7,8-didehydromorphinan-
6α-ol phosphate hemihydrate (Fig. 1b)3. It is an opiate drug and considered as a prodrug of morphine used to 
treat pain, cough, and diarrhoea4. It is typically used to treat mild to moderate degrees of pain5. Paracetamol 
(PAR) is N-(4-hydroxyphenyl)acetamide (Fig. 1c)1, also known as acetaminophen. It is a medication that is used 
to alleviate pain and fever and commonly found in many cold medication6. It is present in many pharmaceutical 
dosage forms in mixtures with CAF, COD and other drugs. p-Aminophenol (PAP) (Fig. 1d) could be present 
in pharmaceutical dosage forms of PAR as degradation product or as a synthetic intermediate7, it is the official 
impurity K of PAR as stated by BP1. To ensure PAR safety, since PAP is reported to have severe teratogenic and 
nephrotoxicity effects8, a very low amount of PAP is allowed.

Several methods have been reported for analysis of CAF, COD, PAR and PAP in their different binary9–12 
and ternary13,14 combinations or in their mixtures with other drugs15–18. In our previous work the quaternary 
mixture of CAF, COD, PAR and PAP was quantified simultaneously via validated HPLC and TLC methods19. 
There are no reported spectrophotometric or chemometric methods for determination of CAF, COD, PAR and 
PAP, simultaneously.

Currently, a key method for analysis of drug compounds is impurity testing. When submitting applications 
for new drug substances and new drug products, FDA recommends for adhering to the ICH guideline Q3A20. 
The Q3A guideline was updated and the most recent revision, Q3A(R2), added impurities in new compounds 
including inorganic and organic impurities as well as residual solvents21. Several analytical techniques have been 
widely used for pharmaceutical analysis and impurity testing such as chromatographic, spectrofluorimetric, and 
electrochemical methods22–26. Spectrophotometric techniques can be used as an alternative to chromatographic 
methods due to the prevalence of spectrophotometers, their ease of use and their lower cost. The main challenge 
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is the spectral overlap between drugs and impurities, due to their structural similarity. Mathematical manipula-
tions, derivative spectrophotometry and signal processing techniques offer the possibility of resolving the spectral 
overlap caused by this resemblance27–31.

Multivariate regression and design of experiment techniques have several applications in analytical 
chemistry32–37. Chemometrics are potent tools for processing spectral data and are anticipated to provide faster 
and more reliable results for resolving extremely overlapped spectra38,39. The determination of pharmaceuticals 
in the presence of their degradation products or impurities has been effectively accomplished using chemometric 
techniques40–43. Chemometric methods use diverse algorithms from multivariate regression such as Multivariate 
Curve Resolution- Alternating Least Squares (MCR-ALS) and Partial Least Squares (PLS) to machine learning 
techniques, e.g. artificial neural networks (ANN) and support vector machines (SVM). Details of how these 
algorithms work are out of the scope of this manuscript, however, they can be found in literature44–47. Variable 
selection is a common preprocessing technique used to improve the quality of data to enhance the prediction 
power of the chemometric algorithms48. Genetic algorithms (GA) apply survival of the fittest strategy among 
wavelengths to select the most significant ones for constructing the chemometric models49. It proved success in 
improving prediction power and reducing dimensionality of the data50.

The aim of work for this manuscript was the determination of CAF, COD, PAR and PAP simultaneously, in 
laboratory prepared mixtures and pharmaceutical dosage form using different chemometric methods. PLS and 
ANN were applied for analysis of the quaternary mixture to present a comparison between multivariate regres-
sions and artificial intelligence algorithms, respectively. GA was applied before both PLS and ANN to present 
the effect of variable selection on chemometric models’ prediction.

Material and methods
Instrument and software
Double beam UV–vis spectrophotometer (Shimadzu, Kyoto, Japan) was used with UV 160 PC model and bundle 
software. Processing of absorption and derivative spectra was done using version 3.7 of the UV PC personal 
spectroscopy program (Shimadzu, Kyoto, Japan). Scans have been performed at intervals between 200.0 to 
400.0 nm at 0.2 nm interval with 1.00 cm quartz cells.

The multivariate techniques were performed using MATLAB® 9.2.0.538062 (R2017a). PLS was performed 
using PLS toolbox 2.1 (Eigenvector Research Inc., Manson, USA), while GA and ANN were performed using 
MATLAB toolboxes.

Chemicals and solvents
CAF, COD and PAR were obtained from RAMEDA co, Egypt, and their purities were measured and found to be 
100.04%, 100.02% and 99.58%, respectively, according to BP and EP1,3. PAP was supplied from Adwic, Egypt. Its 
purity was examined and found to be 99.45% according to reported method51. Solpadeine® tablets were purchased 
from local market and labelled to contain 500, 30 and 8 mg of PAR, CAF and COD, respectively.

Stock solutions
Standard solutions with concentration of 200 µg mL−1 of the cited compounds were prepared separately using 
distilled water.

Figure 1.   Structural formulae for (a) Caffeine (b) Codeine (c) Paracetamol and (d) p-aminophenol.
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Procedures
Spectral characteristics of CAF, COD, PAR and PAP
The absorption spectra of 5 µg.mL−1 CAF, COD, PAR and PAP in water were recorded over the range of 
200–400 nm, and water was utilised as a blank.

Construction of calibration and validation sets for the multivariate methods
The calibration set was constructed using five-level four-factor design52, where 25 mixtures containing various 
amounts of the cited medicines and PAP were included in the design. The design’s five levels were coded from 
−2 to 2 with centre levels of 3.6, 8, 12 and 4.5 µg.mL−1 for CAF, COD, PAR and PAP, respectively (Table 1). The 
designated quaternary mixtures were prepared by adding various aliquots of the previously prepared standard 
solutions to 10-mL flasks and completing the remaining volume with distilled water. Spectral data were col-
lected in the range of 200–400 nm. 210–300 nm was the data range selected for CAF, COD and PAR, whereas 
210–340 nm was selected for PAP, both with 1.0 nm intervals. The selected data was then sent to MATLAB for 
processing. Then, models for PLS-1, GA–PLS and GA–ANN were constructed. GA was used as a tool for variable 
selection to examine its impact on the models’ optimization. The prediction ability of the proposed models was 
tested and compared using an independent validation set of six mixtures that covered concentrations within 
the calibration ranges (Table 1).

Application of the proposed GA–ANN method for the simultaneous determination of CAF, COD and PAR in Sol-
padeine® tablets
Ten tablets of Solpadeine® were weighed and finely powdered. An accurately weighed portion of the powder 
equivalent to 500, 30 and 8 mg of PAR, CAF and COD, respectively, were put into a 100-mL beaker, sonicated 
in 30 mL distilled water for 10 min and filtered into a 100-mL volumetric flask. The residues were washed three 

Table 1.   The concentration of COD, CAF, PAR and PAP in different mixtures used in the training and 
validation sets. *Mixtures of validation set.

Mixture no
CAF
(µg.mL−1)

COD
(µg.mL−1)

PAR
(µg.mL−1)

PAP
(µg.mL−1)

1 3.6 8 12 4.5

2 3.6 2 4 7.5

3 1.2 2 20 3

4 1.2 14 8 7.5

5 6 5 20 4.5

6 2.4 14 12 3

7 6 8 8 3

8 3.6 5 8 6

9 2.4 5 16 7.5

10 2.4 11 20 6

11 4.8 14 16 4.5

12 6 11 12 7.5

13 4.8 8 20 7.5

14 3.6 14 20 1.5

15 6 14 4 6

16 6 2 16 1.5

17 1.2 11 4 4.5

18 4.8 2 12 6

19 1.2 8 16 6

20 3.6 11 16 3

21 4.8 11 8 1.5

22 4.8 5 4 3

23 2.4 2 8 4.5

24 1.2 5 12 1.5

25 2.4 8 4 1.5

26* 1.2 2 20 2

27* 3.6 8 12 4.5

28* 4 4 4 4

29* 6 2 16 1.5

30* 1.2 14 4 7.5

31* 6 14 4 1.5
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times each using 10 mL of distilled water, and the solution was completed to the mark with the same solvent 
(Solution A). An aliquot of 0.4 mL was accurately transferred into a 100-mL volumetric flask, and the volume was 
completed with water (Solution B) to achieve final concentrations of 1.2, 0.32 and 20 µg.mL−1 for CAF, COD and 
PAR, respectively. COD in this solution was spiked to reach the linearity range of the methods. Aliquot equivalent 
to 200 µg COD was accurately transferred from its stock solution (200 µg mL−1) into a 100-mL volumetric flask 
to which 0.4 mL aliquot from Solution A was transferred to reach concentration of COD equals to 2.32 µg mL−1.

Results and discussion
In previous work, the quaternary mixture of CAF, COD, PAR and PAP was quantified using chromatographic 
methods19. According to literature, there are no reported spectrophotometric or chemometric methods for the 
simultaneous determination of this mixture. The spectra of CAF, COD and PAR along with PAP impurity show 
severe overlap as shown in Fig. 2. Spectral analysis becomes more challenging and the ability of traditional 
models to handle spectrophotometric data is lowered when the number of components in a mixture increases. 
That prevented traditional spectrophotometric methods from quantitation of this mixture, therefore the use of 
chemometrics to solve such spectral overlap was necessary.

Calibration and validation sets
A calibration set was created using a five-level four-factor design with an independent validation set. The five con-
centration levels for each compound were chosen according to their spectral signals at the chosen wavelengths, 
so the absorbance of the mixtures of calibration, validation, and dosage form did not exceed the linearity of the 
spectrophotometer. Also, the ratio of the drugs in the dosage form was considered during the selection process. 
Therefore, the five levels were chosen in the concentration ranges of 1.2–6, 2–14, 4–20, and 1.5–7.5 μg mL−1 for 
CAF, COD, PAR, and PAP, respectively. The mixtures were measured, and their spectra were recorded between 
200 and 400 nm. The designated data ranges are essential to reproduce accurate and precise models. Data points 
were chosen in the range of 210–300 nm for CAF, COD and PAR, while for PAP, the region selected was from 
210–340 nm. The wavelengths below 210 nm were discarded due to high absorbance values that exceeded 
linearity and will represent noise to the models. The wavelengths longer than 300 and 340 nm were discarded 
as the corresponding drug’s spectrum shows no absorbance beyond these wavelengths (Fig. 2). The data was 
decomposed using principal component analysis (PCA) with the scores and loading plots are shown in Supp. 
Mat. (Fig. S1 and S2).

Partial least squares‑1
PLS-1 is a method for factor analysis. Being related to a single vector of dependent variables is its main difference 
from PLS-2. This improves the ability of prediction of complicated systems. An ideal number of latent variables 
(LV) for each single component is provided throughout the model development. This is preferable than using 
a single optimal number for all components together, which may be unreliable. The ideal number of LV must 
be taken into consideration to prevent the problem of overfitting53. The number of LV was chosen via leave one 
out cross validation method, and the best LVs were those of the least root mean square error of cross-validation 
(RMSECV). In this manuscript, 5, 4, 3 and 6 LVs were optimum for CAF, COD, PAR and PAP, respectively, as 

Figure 2.   Zero order absorption spectra of 5 µg/mL CAF (─), COD (. . . .), PAR (-—-) and PAP (- . .—. . -) 
using methanol as blank.
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shown in Fig. 3. Before building the models, the data was either used as raw data or preprocessed using autoscal-
ing or mean centering. Mean centering was the optimum preprocessing method, presenting better recoveries, 
RMSEP and RSD than other methods. The PLS-1 models could not expect the concentration of the four com-
pounds in all validation set mixtures as shown in Table 2. This can be attributed to the severe overlap between 
the compounds, in addition to the contrast in their concentrations which are ranging from 1.2 to 20 μg mL−1. 
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Figure 3.   The optimum number of LVs of (a) CAF, (b) COD, (c) PAR and (d) PAP for PLS-1 models.

Table 2.   Determination of COD, CAF, PAR and PAP in the validation set by the proposed models. Significant 
values are in bold. a Average of three determinations. b Results were excluded according to rejection rule55. 
c Root Mean Square Error of Prediction.

Mix. No

Concentration (µg.mL−1)

Recovery %a,b

PLS-1 GA–PLS GA–ANN

CAF COD PAR PAP CAF COD PAR PAP CAF COD PAR PAP CAF COD PAR PAP

26 1.2 2 20 2 99.62 98.8 97.74 107.4b 101.96 97.86 97.66 105.07b 102.03 98.14 98.64 102.25

27 3.6 8 12 4.5 98.59 101.07 98.5 102.73 97.56 99.65 97.66 100.91 97.67 97.96 98.83 102.02

28 4 4 4 4 108.19b 105.83b 105.08b 102.57 105.93b 104.72b 105.38b 100.67 102.15 101.77 102.56 101.8

29 6 2 16 1.5 100.99 108.85b 102.15 95.19b 101.78 105.85b 99.5 95.81b 102.44 102.05 99.82 98.07

30 1.2 14 4 7.5 96.59b 102.78 104.66b 102.81 96.09b 101.83 102.12 100.83 101.38 100.9 102.55 101.08

31 6 14 4 1.5 96.71b 99.83 102.53 94.03b 101.45 101.79 100.18 96.06b 101.58 101.45 102.57 98.53

Mean 99.73 100.62 100.23 102.7 100.69 100.28 99.42 100.8 101.21 100.38 100.83 100.63

SD 1.20 1.71 2.46 0.12 2.10 1.91 1.88 0.12 1.78 1.84 1.94 1.85

RMSEPc 0.045 0.200 0.344 0.153 0.105 0.181 0.292 0.046 0.087 0.125 0.283 0.062
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This is confirmed by the bad calibration data of the lines drawn between actual and predicted concentrations of 
validation set as shown in Table 3.

Genetic algorithm optimization
GA is an algorithm aroused by evolution and natural selection theory. The information is encoded using struc-
tures based on data that resemble chromosome. It aims to identify a starting population of solutions and then 
relies on survival of the fittest to allow the evolution of superior solutions49. It is mainly considered to be a func-
tion optimization technique. It enhances data selection to choose the most significant data points for getting the 
optimal outcome of the existing results. The GA’s set parameters are crucial for developing an effective selection 
model; therefore, several trials were conducted to optimize GA parameters. Different population sizes were tried 
(20, 50, 100, 150, and 200), and the best size regarding R% and RMSEP of the validation set was 100 for CAF and 
PAR, 200 for COD, and 20 for PAP. The number of variables per window varied from 2 to 20, and the optimum 
number of variables was 2 for all analytes. The number of LVs used in GA model construction was the optimum 
number obtained from PLS-1 models. In all fittings, the mutation rate was set to 0.005 using single breeding 
cross over and random cross-validation. Table 4 summarizes the optimized GA parameters. The data points 
number was dropped from 90 to 28, 30 and 34 for CAF, COD and PAR, respectively. Whereas the number was 
reduced from 130 to 44 for PAP. This means that, using GA, the data could be reduced to about 31–37% of the 
original data. These data points were used as inputs in PLS-1 and ANN because they are considered the most 
significant ones according to GA. The optimum number of LV for GA–PLS models are shown in Fig. 4. When 
GA was applied to PLS-1, the number of LVs didn’t differ for CAF and COD, but it was reduced for PAR and 
PAP, meaning GA improved the prediction power of these two models.

The GA–PLS models could not also expect the concentration of the four compounds in all validation set mix-
tures as shown in Table 2. Yet, it can be seen from the values of R%, SD, RMSEP and higher number of successful 
predictions in Table 2, that GA either enhanced predictive capabilities of PLS-1 models or provided equivalent 

Table 3.   Statistical parameter values for simultaneous determination of COD, CAF, PAR and PAP using 
the optimized chemometric methods. a Root Mean Square Error of Calibration. b Root Mean Square Error of 
Prediction. c Root Mean Squares Error of Cross-Validation. d Data of the straight line plotted between predicted 
concentrations of each component versus actual concentrations of validation set.

Parameter of interest

PLS-1 GA–PLS GA–ANN

CAF COD PAR PAP CAF COD PAR PAP CAF COD PAR PAP

Concentration range (µg.mL−1) 1.2–6 2–14 4–20 1.5–7.5 1.2–6 2–14 4–20 1.5–7.5 1.2–6 2–14 4–20 1.5–7.5

No. of LV/hidden neurons 5 4 3 6 5 4 2 5 10 8 3 30

RMSECa 0.068 0.125 0.219 0.129 0.044 0.091 0.238 0.109 0.045 0.091 0.186 0.084

RMSEPb 0.045 0.200 0.344 0.153 0.105 0.181 0.292 0.046 0.087 0.125 0.283 0.062

RMSECVc 0.081 0.134 0.269 0.159 0.058 0.095 0.270 0.173 – – – –

Interceptd 0.0310 0.0977 0.2660 −0.0720 −0.0409 0.0149 0.2179 −0.0320 −0.0310 −0.0453 0.1798 −0.0222

Sloped 0.9958 1.0057 0.9768 1.0407 1.0257 1.0148 0.9695 1.0143 1.0214 1.0116 0.9798 1.0177

Correlation coefficient (r)d 0.9967 0.9996 0.9987 0.9995 0.9989 0.9998 0.9998 0.9997 0.9995 0.9998 0.9999 0.9999

Table 4.   Parameters of the genetic algorithms.

Parameter Value

Population size
CAF, PAR (100)
COD (200)
PAP (20)

Maximum generations 50

Mutation rate 0.005

The number of variables in a window (window width) 2

Percent of population the same at Convergence CAF, PAR, PAP (100)
COD (50)

% wavelengths used at initiation 50

Crossover type Single

Maximum number of latent variables
CAF (5)
COD (4)
PAR (3)
PAP (6)

Cross validation Random

Number of subsets to divide data into for cross validation 4

Number of iterations for cross validation at each generation 2
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predictive power. This suggests a better selectivity was attained by the GA models for these compounds and the 
calibration data in Table 3 confirmed this fact.

Artificial neural networks
ANN works through a network of neuron-based structure, which consist of three layers: input, hidden and out-
put. Here, feed-forward networks were used, and their learning process was accomplished by back propagation46. 
In order to avoid overfitting, it was discovered that one hidden layer was sufficient when building the neurons.

Through trial-and-error approach, several parameters were adjusted for the networks to get the highest 
possible prediction performance. These parameters include the number of neurons in the hidden layer, transfer 
function pairs and training functions.

The choice of the transfer function relies on the type of the analyzed data. In our work, different function pairs 
were examined purelin-purelin, tansig-purelin and logsig-purelin. By utilizing purelin-purelin function for all 
the analytes, the best results were obtained. This can be explained by the linear correlation between absorbance 
and concentration in the examined mixture. The networks were trained using a variety of training functions 
and with no variations in RMSEP between them, the Levenberg–Marquardt (TRAINLM) training function was 
selected to save time.

To prevent overfitting, the validation set was incorporated into the training process and the training was 
stopped when root mean square error (RMSE) of the calibration set decreased and that of validation set increased. 
Table 5 summarizes the optimal networks architectures.

The neurons number in hidden layer was examined by training the networks and evaluating the resulting 
RMSEP. The neurons number for PAR in the hidden layer was only 3, while for PAP was 30 (Fig. 5). This can be 
attributed to the higher concentration of PAR in the mixtures in contrast to the low content of PAP impurity, 
which facilitated the prediction of PAR concentrations with a smaller number of neurons. Also, the fact that PAP 
model included higher number of variables (44) compared to the variables of PAR (34), which usually need more 
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Figure 4.   The optimum number of LVs of (a) CAF, (b) COD, (c) PAR and (d) PAP for GA–PLS models.
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neurons for processing. This can be compared to previous results regarding the effect of number of variables on 
the number of hidden neurons in ANN models54.

Apparently, GA–ANN could expect the concentration of the four compounds successfully in all validation 
mixtures (Table 2). This can be attributed to the artificial intelligence nature of these models.

Application of the proposed GA–ANN models on dosage form and statistical comparison
Showing the best prediction power among the three methods (Table 2), the proposed GA–ANN models were used 
to determine CAF, COD and PAR in Solpadeine® tablets and results are shown in Table 6. Statistics were used to 
compare the results obtained from application of the models on analysis of the compounds in pure powder with 
those produced by using the pharmacopeial methods1,3 for the analysis of COD, CAF and PAR and the reported 
method51 for the analysis of PAP in pure powder. As shown in Table 7, no significant difference was found, which 
confirm the predictive ability of GA–ANN models.

Conclusion
The complex mixture of COD, CAF, PAR and PAP was resolved by applying advanced chemometrics. GA has 
improved the prediction power of PLS-1 for the existing dataset, and when combined with ANN better results 
were obtained. The outcomes in this study support the use of the suggested method (GA–ANN) in the quality 
control analysis of COD, CAF and PAR combinations without the interference of PAP impurity. This raise hopes 

Table 5.   Optimized parameters of ANNs.

Method GA–ANN

Drug CAF COD PAR PAP

Hidden neurons number 10 8 3 30

Transfer functions Purelin–Purelin

Learning coefficient 0.001

Learning coefficient decrease 0.001

Learning coefficient increase 100

Figure 5.   Different layers of the networks used for (a) CAF, (b) COD, (c) PAR and (d) PAP prediction using 
GA–ANN.

Table 6.   Determination of CAF, COD and PAR in solpadeine® tablets by the proposed chemometric models. 
a Average of three determination.

Product Drug

GA–ANN Method

Recovery% ± SDa

Solpadeine® tablets

CAF 99.45 ± 1.19

COD 99.19 ± 1.96

PAR 99.89 ± 0.99
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for applying chemometrics to analyse pure powder drugs and dosage forms whose spectra are highly overlapping, 
utilizing low-cost and simple equipment like spectrophotometers.

Data availability
The data analysed during the current study are available from the corresponding author on reasonable request.

Received: 19 July 2023; Accepted: 18 January 2024
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