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A study on rapid simulation of mine 
roadway fires for emergency 
decision‑making
Yangqin Chen 1,2, Jian Liu 1,2*, Qichao Zhou 3, Li Liu 1,2 & Dong Wang 4

In traditional mine fire simulation, the FDS simulation software has been verified by large‑scale and 
full‑size fire experiments. The resulting calculations closely align with real‑world scenarios, making 
it a valuable tool for simulating mine fires. However, when a fire occurs in a mine, utilizing FDS 
software to predict the fire situation in the mine entails a sequence of steps, including modeling, 
environmental parameter setting, arithmetic, and data processing, which takes time in terms of days, 
thus making it difficult to meet the demand for emergency decision‑making timelines. To address 
the need for rapid predictions of mine tunnel fire development, a method for swiftly estimating 
environmental parameters and the concentration of causative factors at various times and locations 
post‑fire has been devised. FDS software was employed to simulate numerous roadway fires under 
diverse conditions. Parameters such as fire source intensity, roadway cross‑sectional area, roadway 
wind speed, roadway inclination angle, time, and others were utilized as the input layer for a neural 
network. In contrast, wind flow temperature, carbon monicide (CO) concentration, fire wind pressure, 
visibility, and others were designated as the output layer for training the neural network model. This 
approach established a fire prediction model to resolve issues related to time‑consuming numerical 
simulations and the inability to provide a rapid response to disaster emergencies. The trained neural 
network model can instantaneously predict the environmental parameters and concentrations of 
the causative factors at different times and locations. The model exhibits an average relative error 
of 12.12% in temperature prediction, a mean absolute error of 0.87 m for visibility, a mean absolute 
error of 3.49 ppm for CO concentration, and a mean absolute error of 16.78 Pa for fire wind pressure. 
Additionally, the mean relative error in density is 2.9%. These predictions serve as crucial references 
for mine fire emergency decision‑making.

When a mine fire occurs, it poses a significant threat to underground workers, equipment, localized production 
systems, and even the whole mine production system. This threat arises from the unique operating conditions 
within mines, such as restricted spaces in mines and the combustion by-products. Therefore, the rapid and accu-
rate prediction of environmental parameters and factors causing disasters at various mine locations during a fire 
is of great significance to the safety of mine production. Previous researchers have conducted extensive research 
on roadway fires using various approaches, including theoretical  analysis1–11, numerical  simulation12–19, and 
experimental studies on roadway  fires20–24. With the rapid advances in computational capabilities, computational 
fluid dynamics (CFD) has emerged as a significant method for simulating real fires. Various commercial software 
tools, such as fluent, and FDS, have been developed for this purpose. FDS primarily simulates the flow movement 
in fires, using numerical methods to solve the Navier–Stokes (N–S) equations governing buoyancy-driven flows 
at low Mach numbers. These simulations have been validated through large-scale, full-size fire experiments, 
yielding results that closely align with real-world scenarios. In previous studies, W. Budryk proposed a prelimi-
nary theory regarding local fire wind pressure and the concept of smoke excess. He theoretically analyzed the 
phenomena related to wind flow reversal, smoke flow reversal, and retreat in mine  fires2. Thermo-gravimetric 
analysis of tape specimens and combustion tests in model and full-scale roadways at the Kyushu Coal and Mine 
Technology Research Centre in Japan revealed a qualitative relationship between the combustion characteristics 
of tape in a shaft and its thermogravimetric  characteristics3. Wang Shingshen et al. summarized the tendency of 
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spontaneous coal combustion and analyzed the ignition properties and characteristics of several common solid 
combustible materials in underground settings during fire incidents, He also investigated conditions leading to 
smoke flow rollback in level-channel fires, derived a conditional formula for its occurrence, and introduced two 
meaningful dimensionless  criteria4. Oka et al. investigated the smoke transport behavior in roadway fires using a 
horizontal roadway experimental model and derived a formula to calculate the critical wind  speed5. Wang Dem-
ing et al. discovered the obstacle effect of burning flames on wind flow in roadways and its impact on throttling, 
On the basis of this, he proposed the concept of fire zone resistance, which encompasses resistance generated 
by thermal expansion of smoke flow and local resistance caused by wind flow obstruction by flame in the fire 
 zone7. Alongside Zhou Fubao et al., we obtained the fitting equations for dimensionless counterflow length, 
considering the heat release rate of the fire source and roadway wind speed through  experiments8. Subsequent 
research employed and reproduced the smoke flow rolling back phenomenon of the roadway fires through CFD 
technology to reproduce smoke flow rollback phenomena in roadway fires and predict rollback distances under 
varying conditions of heat release rate and ventilation  speed14. By simulating fire situations in roadways with 
different inclinations and varying ventilation wind speeds, Jian Liu determined the laws governing smoke flow 
countercurrent length under the influence of wind speed and roadway  inclination16. Zhu Hongqing et al. inves-
tigated backflow length and critical velocity of smoke in main roadways when a branching roadway fire occurred 
in different fire locations. It was concluded that the branch roadway fires have lower backflow length and critical 
velocities compared with single-hole roadway fires. The above scholars have extensively researched and sum-
marized the combustion characteristics of ignition sources in mine fires and their effects on mine  ventilation24.

When an actual fire occurs in a mine, the traditional numerical simulation method for predicting the fire’s 
evolution within the mine involves modeling, environmental parameter setting, arithmetic, and data process-
ing. The entire process takes over 24 h, making it impractical to address emergencies and ensure timely disaster 
response and evacuation. Consequently, traditional numerical modeling methods are ill-suited to meet the 
urgent requirements of such situations.

In recent years, as computer processing speed and storage capacity have advanced, neural networks with 
multiple hidden layers have demonstrated their capability to develop swift prediction models for roadway fire 
scenarios. Initially, neural networks were prone to overfitting and slow parameter training, particularly when 
handling substantial volumes of data. However, with the advancement of computer processing speed and stor-
age capacity, Professor Hinton introduced two important points: firstly, Neural networks with multiple hidden 
layers can effectively capture inherent data features, that can portray the intrinsic attributes of the data, which 
is helpful for aiding tasks like data visualization and classification; and secondly, the difficulty in training deep 
neural networks can be overcome with the help of an unsupervised "layer-by-layer initialisation" strategy. At 
the same time, a two-stage strategy based on "layer-by-layer pre-training" and "fine-tuning" is proposed to solve 
the problem of network parameter training in deep learning. Improved  AI25–28 is capable of fast prediction 
after training. Liu Jian et al. applied neural networks to mine  research29 to establish a machine learning model 
for swiftly predicting the propagation of gas explosion causative factors and achieved better prediction results. 
Other  researchers30–33 have also achieved better results by integrating neural networks into various aspects of 
mining research.

This paper aims to improve mine disaster emergency response decision-making by integrating FDS simulation 
and BP neural network modeling. We first conducted FDS simulations in a wide range of roadway fires under 
different conditions. Subsequently, a BP neural network is trained using a subset of the FDS simulation results as 
training samples, while the remaining results are compared with predicted values to verify the neural network’s 
accuracy. The trained BP neural network demonstrates the capability to predict roadway fires under varying 
conditions rapidly. This predictive capacity can be seamlessly integrated into the mine’s intelligent ventilation 
system, enabling swift emergency response decisions based on the prediction results. Such measures serve to 
safeguard the safety of people’s lives and property.

Mine fire modeling
Principles of FDS simulation
The combustion simulation software employed in this study is FDS, featuring a computational model that offers 
an approximate of the N-S equations. It excels in handling low Mach number flows. Furthermore, the N–S equa-
tions are processed using a spatial filtering method, which filters out minor pressure variations at high frequen-
cies while preserving significant alterations in physical attributes like pressure, temperature, and flow rate. FDS 
obtains its results by solving three conservation equations for mass, momentum, and energy, in addition to the 
component equations. The four equations are as follows:

Mass conservation equation:

Momentum conservation equation:

Energy conservation equation:
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Component equations:

where DpDt  is the rate of change of pressure over time, as expressed by the following formula:

By using the thermodynamic equation of state to supplement the set of conservation equations, the pressure 
of an ideal gas can be approximated by decomposing it into the following three components: static pressure, 
dynamic pressure, and potential pressure:

where ρ is the density of air,kg
/

m3 ; t  is time,s; v is the wind speed,m/s; p is the gas pressure,Pa; g is gravi-
tational acceleration,9.81m

/

s2 ; for f  source items arising from heat and pollution sources, N/m3; τ is stress 
tensor,N ; h is enthalpy,J

/

kg ; k is the thermal conductivity,w
/

(m · K) ; T is temperature, K; Dl is the diffusion 
coefficient,m2

/

s ; Yl is the mass fraction of the first component; m′′′
l  is the rate of production of the first mass in a 

single volume, kg/m3; R is the gas molar constant,J
/

mol · k ; Ml is the molar mass of the lth component,kg
/

mol.

Geometric modeling
We created a rectangular roadway model with a length of 2000 m, a width of 5 m, and a height of 4.5 m. The 
ignition source is positioned at 800 m from the entrance of the roadway. The roadway wall temperature is set at 
30 °C, and the relative humidity is 40 percent. The walls are constructed from concrete with a modeled wall thick-
ness of 0.5 m. Concrete has a thermal conductivity of 1.8w/(m*K) and a specific heat capacity of 1.04 kJ/(kg*K). 
The roadway entrances are set up as supply surfaces to provide uniform airflow with adjustable temperature and 
velocity. The exit of the roadway is designated as an open surface with free outflow and dynamic pressure of 0 Pa. 
The ignition process starts after a 10-s pre-ventilation period, and the total simulation duration is 650 s. The fire 
is simulated at the exit of the roadway. Length of each simulation is 36 h.

Fire source setting
The n-heptane combustion reaction was used as a replacement for the diesel combustion reaction (The combus-
tion reaction mechanism of n-heptane is relatively mature and its 16-alkane number is similar to that of diesel), 
and the combustion model utilized is as follows:

where Q is heat release rate, φ is a combustion efficiency factor reflecting the degree of incomplete combustion 
in a fire, dimensionless;m is the rate of combustion of the mass of the combustible,kg

/

(m2 · s) ; H is the calorific 
value of the combustible material,kJ

/

kg.
Assume the combustion efficiency factor φ as 1. The t2 model was chosen for the combustion model of the 

fire source, and the variation of the heat release rate is shown in Fig. 1.

(4)
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Figure 1.  Fire source heat release modeling diagram.
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Mesh size selection
The FDS Guidebook uses D∗/ δ(D∗ is the fire feature diameter and δ is the grid size) to assess the reasonableness 
of the grid size.D∗ is defined as:

where Q is the rate of heat release from the ignition source in the unit of KW; cp is the specific heat of air at con-
stant pressure,kJ

/(

kg · K
)

 ; T is the initial ambient temperature, K.
As per the manual, the reliability of the simulation results is considered high when the value of D∗/ δ is 

between 4 and 16, and the mesh size is within the range of 0.0625 D∗ to 0.25 D∗ . The heat release rate of the fire 
source for this simulation ranges from 14.45 to 28.90, and the characteristic diameter of the fire source ranges 
from 2.96 m to 3.9 m. Consequently, to maintain the reliability of the simulation, the grid size should be set 
between 0.185 m and 0.975 m.

In this simulation, the grid size was initially set to 0.5 m, and local encryption was carried out within 100 m 
before and after the fire source thus the encrypted grid size was 0.25 m. This resulted in a total of total 306,000 
grids. To ensure that the chosen grid size is suitable, simulations were conducted using different grid sizes for 
the same environmental roadway. Grid sizes of 0.5 m and 0.25 m were selected for comparative verification. 
Temperature data from measurement points located 200 m below the fire source and at a height of 2.25 m were 
used for this comparison, as shown in Fig. 2. The results show that the selected grid size generally meets the 
accuracy requirements of the simulation and is indeed feasible.

Experimental design of lane fire simulation
The experiment numbers, along with the corresponding environmental parameters for the lanes, are shown in 
Table 1.

Raw data acquisition and processing
The monitoring points are strategically placed to capture various parameters at different times and locations in 
the roadway, and the data is presented in tabular form. These monitoring points include temperature, visibility, 
CO concentration, density, and other variables, all positioned at the center of the roadway height of 2.25 m. 
The arrangement of monitoring points is (1) every 20 m from the entrance of the airflow into the roadway, (2) 
every 10 m before and after 100 m of the fire source, and (3) every 2 m before and after 10 m of the fire source. 
The monitoring points record data at one-second intervals. The layout of these monitoring points is visually 
depicted in Fig. 3 for reference.

Temperature, visibility, CO concentration, density, and other data were recorded from the designated moni-
toring points. Given the substantial volume of data, the training data for the neural network was down sampled 
at 30-s intervals. Additionally, the fire wind pressure was calculated using the Eq. (10), which is widely used in 
many applications:

(9)D∗ =
(

Q

ρcpT
√
g

)
2
5

(10)hf = gZ(ρ0 − ρs)

Figure 2.  Simulation results for different mesh sizes.
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Table 1.  Parameter for each experiment.

Number Fire intensity (L/s) Roadway section area  (m2)
Roadway inlet air velocity 
(m/s) Roadway inclination (°)

Ventilation temperature 
(°C) Atmospheric pressure (Pa)

1 0.5 22.5 2.18 0 20 101,325

2 0.75 22.5 2.18 0 20 101,325

3 1 22.5 2.18 0 20 101,325

4 0.75 18 2.18 0 20 101,325

5 0.75 22.5 3.09 0 20 101,325

6 0.75 22.5 6.75 0 20 101,325

7 0.75 22.5 2.18 2 20 101,325

8 0.75 22.5 2.18 6 20 101,325

9 0.75 22.5 2.18 10 20 101,325

10 0.75 22.5 2.18 14 20 101,325

11 0.75 22.5 2.18 − 2 20 101,325

12 0.75 22.5 2.18 − 6 20 101,325

13 0.75 22.5 2.18 − 10 20 101,325

14 0.75 22.5 2.18 − 14 20 101,325

15 0.75 22.5 2.18 0 2 101,325

16 0.75 22.5 2.18 0 10 101,325

17 0.75 22.5 2.18 0 20 115,000

18 0.75 22.5 2.18 0 20 80,000

19 0 22.5 2.18 0 20 101,325

20 0.6 22.5 2.18 0 20 101,325

21 0.7 22.5 2.18 0 20 101,325

22 0.8 22.5 2.18 0 20 101,325

23 0.75 22.5 9 0 20 101,325

24 0.75 22.5 10 0 20 101,325

25 0.75 22.5 2.18 1 20 101,325

26 0.75 22.5 2.18 3 20 101,325

27 0.75 22.5 2.18 5 20 101,325

28 0.75 22.5 2.18 7 20 101,325

29 0.75 22.5 2.18 11 20 101,325

30 0.75 22.5 2.18 12 20 101,325

31 0.75 22.5 2.18 13 20 101,325

32 0.75 22.5 2.18 16 20 101,325

33 0.75 22.5 2.18 18 20 101,325

34 0.75 22.5 2.18 20 20 101,325

35 0.75 22.5 2.18 − 7 20 101,325

36 0.75 22.5 2.18 − 8 20 101,325

37 0.75 22.5 2.18 − 9 20 101,325

38 0.75 22.5 2.18 − 11 20 101,325

39 0.75 22.5 2.18 − 12 20 101,325

40 1 18 3 5 20 101,325

41 0.5 22.5 12 5 20 101,325

42 0.75 22.5 10 8 20 101,325

43 0.5 22.5 4 3 20 101,325

44 1 22.5 6 − 6 20 101,325

Figure 3.  Schematic diagram of roadway monitoring arrangement points.
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where hf  is the alley fire wind pressure, Pa; Z is the height difference between the entrance and exit ends of the 
roadway, m; ρ0 and ρs are the global densities of airflow in front of the roadway before and after the fire, respec-
tively,kg

/

m3.

Demonstration of the simulation results of alleyway fires
In the event of a fire within a roadway, the release of high-temperature smoke and toxic gases leads to their dis-
persion to the downwind side of the fire source, carried by the wind flow. This phenomenon significantly reduces 
visibility on the downwind side of the fire source and presents a significant obstacle to the safe evacuation of 
personnel. Moreover, with the continuous generation of smoke, it starts to flow backward, spreading to the upper 
section of the roadway on the upwind side of the fire source. This dynamic is depicted in Fig. 4.

Neural network model and parameter settings
The parameters, including fire intensity, inlet wind speed (Inlet wind speed when the roadway is not on fire), 
roadway inclination angle (with positive values indicating upward ventilation and negative values indicating 
downward ventilation), time, etc. are used as the input layer of the neural network. The required parameters 
such as air temperature, CO concentration, and fire wind pressure in the roadway are output, as shown in Fig. 5.

Positive transfer of network input information (input layer to output layer)
Raw data normalization:

The output of the ith node of the input layer is:

The output of the jth node of the implicit layer 1 is:

The output of the kth node of the implicit layer 2 is:

(11)x =
x − xmin

xmax − xmin

(12)xi , (i = 1, 2, ..., 8)

(13)yj = f1

(

∑

8
i=1wij · xi + bj

)

,
(

j = 1, 2, ...22
)

Figure 4.  Graph of simulation results of alleyway fires.

Figure 5.  Neural network training model diagram.
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The output of the mth node of the output layer is:

where wij is the connection weight between the ith node of the input layer and the jth node of the implicit layer 
1; bj is the threshold on the jth node of implicit layer 1; f1 is the excitation function for implicit layer 1; yj is the 
output of the jth node of implicit layer 1; wjk is the connection weight between the jth node of implicit layer 1 and 
the kth node of implicit layer 2; bk is the threshold on the kth node of implicit layer 2; f2 is the excitation function 
for implicit layer 2; yk is the output of the kth node of implicit layer 2; wkm is the connection weight between the 
kth node of the implicit layer 2 and the mth node of the output layer; bm is the threshold on the mth node of the 
output layer; f3 is the excitation function of the output layer; ym is the output of the mth node of the output layer.

Backpropagation of network computational error (output layer to input layer)
Its mathematical expression is:

where om is the expected results of the mth node of the output layer, and N is the number of samples.
The computational errors of the network are initially transmitted from the output layer to hidden layer 2, 

where the weights and thresholds between the output layer and the hidden layer 2 are adjusted. The correction 
is carried out in the direction of the negative (inverse) gradient between variables E and w . The expression for 
the correction quantity �wkm(n) is:

where η is the learning efficiency of the network, and n is the number of iterations.
The adjusted weights wkm(n+ 1) can be expressed as follows:

Similarly, the correction bm(n+ 1) for threshold bm(n) can be expressed as:

The computational error is propagated from the output layer through hidden layer 2 and is subsequently 
passed to the input layer through hidden layer 1. Weights and thresholds are adjusted accordingly during the 
process. Once the specified number of iterations has been completed, the computation is terminated, and the 
final correction weights and thresholds are saved with the model for subsequent recall during testing.

Training and result analysis of neural network models
Neural network model training
The results of the FDS simulation were transformed into the format required by the neural network. Out of the 
available data, 36 sets were randomly chosen for training, while 8 sets were reserved for testing. Through iterative 
testing and adjustment, the ReLU (rectified linear unit) function was ultimately selected as the activation func-
tion for the implicit layers, and the liner function was chosen as the activation function of the output layer. The 
relative error in predicting temperatures for models with different numbers of neural progenitors in the hidden 
layers is shown in Fig. 6. For minimum errors, the number of neural progenitors per layer in the hidden layers 
is set to 22. The convergence of the model is achieved after 100 iterations, The length of each training session is 
20 min. as shown in Fig. 7.

Training results and analysis
The mathematical error analysis of the predicted results with the simulated results is shown in Table 2.

The prediction results of a randomly selected set of training data at different moments on the downwind side 
of the fire source at 200 m (1000 m from the entrance of the wind flow) and at different distances at 450 s are 
shown in Figs. 8, 9, 10, 11, 12, 13.

As shown in Fig. 8, the temperature rises sharply at a distance of 20 m (equivalent to 780 m from the roadway 
entrance) on the upwind side of the fire source. It reaches its peak at 8 m (approximately 808 m from the entrance) 
on the downwind side of the fire source, and begins to decline, stabilizing at around 30 °C. The prediction accu-
racy is notably higher within the 0–780 m interval, with an average error of approximately 3%. However, in the 
780–1500 m interval, the prediction error increases to 19.8%. This variation can be attributed to the significant 
alterations in ambient temperature caused by the intense heat radiation from the fire source and the presence of 
high-temperature smoke, making predictions more challenging in this region. Figure 9 demonstrated that the 
prediction error is more pronounced during the period when the fire source is evolving from its early stages to full 
development. However, as the fire reaches its fully developed stage, the predictions become increasingly accurate.

As illustrated in Fig. 10, the average absolute error in the prediction of CO concentration with respect to 
distance is 1 ppm for the intervals of 0–780 m and 1300–2000 m, and 6.58 ppm for the interval of 780–1300 m. 

(14)yk = f2

(

∑

22
j=1wjk · yj + bk

)

, (k = 1, 2, ...22)

(15)ym = f3

(

∑

22
k=1wjm · yk + bm

)

, (m = 1, 2, ...7)

(16)E(w, b) = 1
/

N ·
∑

(

om − ym
)2

(17)�wkm(n) = −η
∂E(n)

∂wkm(n)

(18)wkm(n+ 1) = wkm(n)+�wkm(n)

(19)bm(n+ 1) = bm(n)+�bm(n)
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When it comes to predicting CO concentration over time, the predicted value fluctuates. Nevertheless, the overall 
prediction results are relatively accurate.

As depicted in Fig. 11, the prediction accuracy in the early growth stage of the fire source is relatively low, 
primarily due to the fire source being in a dynamic expansion stage. During this phase, the air within the roadway 
undergoes rapid heating, causing it to expand. Consequently, the gas density in the roadway decreases rapidly, 
resulting in a rapid increase in fire wind pressure. The magnitude of these changes in this interval is substantial, 
making it challenging to predict accurately.

Figure 6.  Error plots of models with different numbers of hidden layers.

Figure 7.  Convergence plot of the model training process.

Table 2.  Error table for prediction results.

Average relative error /% Average absolute error

Temperature 12.12 4.91 °C

Concentration of CO – 3.49 ppm

Air density 2.9 0.0 3kg/m3

Visibility 10.44 0.87 m

Fire and wind pressure 10.39 16.78 Pa
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Observing Fig. 12, changes in visibility are primarily influenced by the behavior of smoke flow. The retrogres-
sion of smoke flow to 780 m leads to a significant reduction in visibility, while at 1760 m, the smoke is diluted, 
resulting in an increase in visibility.

The prediction results of visibility change with distance (Fig. 12), closely align with the fitting results. However, 
the average relative error remains at 10.44%. This discrepancy can be attributed to the fact that in areas where 
the smoke has spread, the visibility is only about 3 m. In such low-visibility conditions, even a minor difference 
between the predicted and simulated values can lead to an amplified relative error, thus increasing the overall 
average relative error.

Figure 13 illustrates that as the air heats up, it causes the gas to expand, leading to a decrease in density. The 
reduction in density is more pronounced in the area directly above the fire source due to the direct heating of 
the air by the fire, resulting in rapid expansion. As one moves further away from the fire source, the density 
increases gradually. However, it’s important to note that the density is lower on the downwind side of the fire 
source compared to the upwind side, primarily due to the heating effect of the high-temperature smoke plume. 
In terms of predictions with respect to distance, they generally align well with the fitted data. However, time-
dependent predictions tend to be less accurate during the early growth phase of the fire source. This is because 
the fire source takes longer to fully develop during this phase, and the lower density at this stage has a more 
significant impact on the model training, resulting in overall lower predictive accuracy.

Considering that the environmental conditions in the vicinity of the fire source attachment hold limited 
research significance for emergency escape, the simulation results are utilized as the horizontal coordinate, 
while the prediction results are used as the vertical coordinate. This approach is employed to generate Figs. 14 
and 15, encompassing all the data except for the region extending from 10 m upwind of the fire source to 100 m 
downwind of the fire source.

Figure 8.  Temperature profile with distance in mine fire roadway.

Figure 9.  Comparison of temperature variation with time.
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Figure 14A reveals that most of the roadway temperatures are below 50 °C, and the corresponding predicted 
values are all also below 50 °C. While the predicted temperatures tend to be higher than the simulated values, 
they remain within the contour boundaries. This discrepancy arises from the exceptionally high temperature at 
the fire source attachment, which leads the neural network model to assign a larger weight to this data to fit it 
better, thus influencing the overall squared absolute error.

In Fig. 14B, it is apparent that the CO concentration exhibits a larger prediction error in the region with 
higher simulated values (downwind side of the fire source). Nevertheless, the predictions remain generally within 
the contour boundaries. Since CO concentration on the upwind side of the roadway is essentially zero, a large 
number of data points converge around the origin attachment.

Figure 14C shows that in areas where the smoke flow spreads, visibility is reduced to approximately 4 m. The 
predicted results closely match this value, except for a slight deviation when the visibility is 30 m in the area 
where the smoke flow is not spreading. Overall, the predicted results align well with the contour boundaries, 
indicating greater accuracy.

Figure 14D shows a matrix-like simulation in the region of simulated values ranging from 1.0 to 1.3 kg/m3, 
indicating a certain degree of overfitting. However, the predictions still fall within the contour annexes and are 
considered usable.

Figure 10.  CO concentration comparison plot.

Figure 11.  Fire and Wind Pressure Comparison.
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In general, the prediction results closely match the simulation values, particularly when the fire wind pres-
sure is low (< 600 Pa). However, when the wind pressure falls within the range of 600 to 1000 Pa, the prediction 
results tend to be lower than the simulated values. This deviation can be attributed to the data source, which is 
derived from the simulation results of a roadway with a 20° inclination angle—an extreme case. Consequently, 
the neural network assigns lower weights to this data, resulting in less accurate prediction results. Nevertheless, 
it’s worth noting that the majority of the prediction results align closely with the isobar, indicating the overall 
quality of the predictions.

This paper focuses solely on the fire in a single roadway, and only the midpoint data of the roadway section 
height is selected to align with emergency relief needs. Subsequent research could explore other heights for the 
study of smoke flow reversal and roadway wind flow reversal. The key achievement of this study is the ability to 
instantaneously predict the environmental conditions of the roadway at any given time and location when a fire 
occurs under different conditions. This breakthrough holds significant importance for both mine fire research 
and emergency relief efforts.

Figure 12.  Visibility comparison map.

Figure 13.  Density comparison chart.
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Conclusion
In this study, a wide range of roadway fire combustion scenarios were simulated using FDS simulation software, 
covering a comprehensive set of environmental scenarios of mine roadways. The neural network model was 
trained on this data, leading to the following outcomes:

(1) The trained neural network model can quickly predict environmental parameters at any time and location 
within the roadway.

Figure 14.  Chart of predicted results.

Figure 15.  Fire wind pressure prediction results.
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(2) The average relative error in the prediction results was 12.12% for temperature, with an average absolute 
error of 0.87 m for visibility, 3.49 ppm for CO concentration, 16.78 Pa for fire wind pressure, and 2.9% for 
density.

(3) Predictions are less accurate in the vicinity of the fire source due to the higher temperatures and increased 
turbulence in the air flow, resulting in significant parameter variations. Therefore, predictions are more 
reliable farther away from the fire source than in the fire annex.

Data availability
The datasets generated and analysedduring the current study are not publicly available due Information involving 
trade secrets, personal privacy, and other disclosure that may harm the legitimate rights and interests of third 
parties shall not be disclosed. The original data belongs to trade secrets and therefore should not be disclosed. 
But are available from the corresponding author on reasonable request.
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