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Longitudinal changes in resting 
state fMRI brain self‑similarity 
of asymptomatic high school 
American football athletes
Bradley Fitzgerald 1,11*, Sumra Bari 1,2,3,11, Nicole Vike 2,3,4, Taylor A. Lee 5, Roy J. Lycke 5,6, 
Joshua D. Auger 5, Larry J. Leverenz 7, Eric Nauman 3,4,5,8, Joaquín Goñi 8,9,10,12 & 
Thomas M. Talavage 1,3,8,12

American football has become the focus of numerous studies highlighting a growing concern that 
cumulative exposure to repetitive, sports-related head acceleration events (HAEs) may have negative 
consequences for brain health, even in the absence of a diagnosed concussion. In this longitudinal 
study, brain functional connectivity was analyzed in a cohort of high school American football athletes 
over a single play season and compared against participants in non-collision high school sports. 
Football athletes underwent four resting-state functional magnetic resonance imaging sessions: once 
before (pre-season), twice during (in-season), and once 34–80 days after the contact activities play 
season ended (post-season). For each imaging session, functional connectomes (FCs) were computed 
for each athlete and compared across sessions using a metric reflecting the (self) similarity between 
two FCs. HAEs were monitored during all practices and games throughout the season using head-
mounted sensors. Relative to the pre-season scan session, football athletes exhibited decreased FC 
self-similarity at the later in-season session, with apparent recovery of self-similarity by the time of 
the post-season session. In addition, both within and post-season self-similarity was correlated with 
cumulative exposure to head acceleration events. These results suggest that repetitive exposure to 
HAEs produces alterations in functional brain connectivity and highlight the necessity of collision-free 
recovery periods for football athletes.

Recently, American football has become the focus of numerous studies1–7 elucidating potential health risks 
associated with exposure to repetitive head acceleration events (HAEs). Exposure to HAEs that do not result in 
a clinical concussion diagnosis have been demonstrated to cause various neurological alterations in athletes1,8–13. 
Given high school football players typically experience over 500 HAEs per season, with some athletes sustaining 
over 200014–17, it is critical that the relationship between HAEs and brain physiology is well-understood. Such 
understanding is especially important to promote the health of youth athletes, as younger players have both an 
increased risk of experiencing traumatic brain injury and an increased risk of developing long-term negative 
cumulative consequences following HAE exposure18–21.

Brain physiology in collision sports athletes has widely been studied using a variety of magnetic resonance 
imaging (MRI) modalities7,10,17,22. For instance, structural MRI methods (e.g., T1 imaging) have demonstrated 
alterations in brain tissue volumes in youth collision athletes8. Diffusion-weighted imaging techniques have 
shown that repetitive exposure to HAEs can result in changes in white matter tracts3,15,23,24. Magnetic resonance 
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spectroscopy techniques have found a link between altered neurometabolic concentrations and exposure to 
HAEs13,25,26. MRI-derived measures of cerebrovascular reactivity changes have also been shown to be associated 
with cumulative HAEs in athletes6,12.

Of particular relevance for the current study are functional MRI (fMRI) techniques, which have demonstrated 
potential in quantifying physiological brain alterations due to HAEs17,27. fMRI records voxel-wise blood-oxy-
gen-level-dependent (BOLD) time series, from which low-frequency signal oscillations are analyzed to assess 
functional connectivity between brain regions28. Previous studies have demonstrated a link between functional 
connectivity changes and sports-related concussions29,30. Further, repetitive sports-related exposure to HAEs 
has been shown to be associated with brain alterations in both task-based functional activity17,22,31 and in rest-
ing state functional connectivity1,11,32–34. Analysis of brain functional connectivity has led to the development of 
functional connectomes (FCs), which are square, symmetric matrices of pairwise correlations between average 
BOLD signals derived from brain regions of interest35. Previously, it has been shown that individual FCs are 
identifiable from within a cohort of participants, as repeated FC acquisitions tend to be more highly correlated 
with oneself than with others36–38. Given that healthy individuals tend to exhibit similar FC patterns across mul-
tiple imaging sessions, we aimed in the current study to quantify intra- (self-) and inter-individual similarity 
of repeated FC acquisitions in order to analyze the degree of functional brain changes occurring within young 
athletes exposed to HAEs. Our hypothesis was that collision-sport athletes who are exposed to HAEs would 
exhibit more pronounced longitudinal changes in self-similarity of FCs than would control athletes who do not 
participate in collision-based activities.

Even amidst growing effort to understand brain physiology in relation to sports-related HAEs, the current 
literature is still lacking in prospective studies with collection of data at multiple time points. A more robust 
understanding of the influence of collision sports participation on brain health requires analysis of athletes at 
multiple time points before, during, and after the play season. Further, study of asymptomatic athletes presents 
the unique challenge of defining which biometrics represent a harmful alteration to the athletes’ brain physiology; 
to date, such biometrics have not been clearly defined. In response to these gaps, the current effort prospectively 
monitored a cohort of high school American football athletes to assess longitudinal changes in functional con-
nectivity throughout the competition season.

In this study, athletes underwent four resting state fMRI scan sessions over the course of a play season, with 
FCs computed for each scan session. For each participant, FCs from each scan session were compared with a pre-
season (scan session before the start of the season’s contact practices) FC to evaluate the degree of self-similarity 
of the FCs throughout the play season, forming a method for identifying concerning levels of functional altera-
tions in players. This analysis was completed on a whole-brain level and for seven sub-levels corresponding 
to seven functional brain networks. In addition, the measure of FC self-similarity throughout the season was 
assessed for correlation with the number and magnitude of HAEs experienced by the athletes.

Methods
Cohort information
All study procedures were compliant with the ethical principles of the Belmont Report and the Declaration of 
Helsinki and received Institutional Review Board (Purdue University) approval prior to data collection. Recruit-
ment of athletes was conducted through a presentation of the study aims at the time of pre-participation meeting 
between players’ parents, coaching staff, and school administrators. Athletes were informed that participation 
in the study was voluntary and would not impact their academic or athletic status. For each study participant, if 
the player was under 18 years of age, then informed consent was obtained from their legal guardian, along with 
assent of the player. If the player was at least 18 years old, the player provided informed consent.

72 male athletes participated in this study. Football Athletes (FBA): 58 of these athletes were active partici-
pants in American football at the high school varsity or junior varsity level. Of the FBA cohort, 16 participants 
were excluded from analysis after imaging data quality checks (described in subsequent sections). Non-Collision 
Athletes (NCA): The remaining 14 athletes were active participants in typically collision-free sports at the high 
school varsity or junior varsity level and were imaged as controls. Demographics information (including age, 
race, and NCA sports participation) of all participants included in analysis is displayed in Table 1. No significant 
difference existed in the ages of the FBA and NCA groups (Wilcoxon rank sum test, p = 0.17). Demographic 
measures were not used in any analyses and are provided only for informational purposes.

Imaging timeline
FBA underwent four imaging sessions spread over the course of a football competition season (Fig. 1). The first 
imaging session (Pre) was conducted prior to the start of the season’s “contact” practices, though following the 
point at which athletes had started regular physical fitness conditioning. The second session (In1) was conducted 
within the first half of the competition season, after the start of contact activities. The third session (In2) was 
conducted during the second half of the competition season (5–9 weeks after In1). The fourth session (Post) 
was conducted 4–12 weeks after contact activities were ended. NCA underwent two imaging sessions (Test and 
Retest), 5–10 weeks apart, during the active practice and/or competition season for their respective sports.

MRI data collection
All MRI data were collected using a General Electric 3 T Signa HDx (Waukesha, WI) scanner with a 16-channel 
brain array (Nova Medical; Wilmington, MA), located at the Purdue University MRI Facility (West Lafayette, 
IN). For each imaging session, a T1-weighted structural brain image (fast spoiled gradient-recalled echo; TR/
TE = 5.7/1.976 ms; flip angle = 73°; 1 mm isotropic) and resting state fMRI (rs-fMRI) data (gradient-echo echo-
planar; scan length 9 min 48 s; 294 volumes acquired; TR/TE = 2000/26 ms; flip angle = 35; FOV = 20 cm; 64 × 64 
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acquisition) were collected. Foam padding was used to restrain head motion during scanning. Participants were 
asked to remain awake and keep their eyes open during fMRI acquisitions.

HAE monitoring
During contact activities, football athletes wore a head-mounted xPatch sensor (X2 Biosystems, Inc, Seattle, 
WA) which recorded peak linear acceleration (PLA) of HAEs. Head-mounted sensors offer greater accuracy 
than helmet-mounted sensors and fewer safety risks than mouth guard-based sensors10. Use of the xPatch sensor 
was motivated by a previous study which found that the xPatch produced the lowest PLA measurement error 
levels when compared with several other commercially available sensor packages39. Sensors were positioned, 
using an adhesive patch, on the skin over the right mastoid process, immediately behind the pinna (as depicted 
in previous work40). Only acceleration events with PLA exceeding 20 g were considered for this study40–42. No 
HAE monitoring was conducted on NCA, as no events exceeding 20 g were anticipated for this population.

Data preprocessing
Data preprocessing and analysis were implemented using in-house MATLAB (https://​mathw​orks.​com/) code. 
All T1 structural images and rs-fMRI data were preprocessed using AFNI43 and FSL44,45 in accordance with steps 
described by Bari et al.37. First, T1 structural images underwent denoising and bias-correction (FSL fsl_anat) 
using denoising filters46–48. Denoised structural images then underwent intensity normalization (AFNI 3dUnifize) 
and were segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) tissue regions 
(FSL fast).

Table 1.   Demographics of participants included in analysis (i.e., with full set of valid imaging data).

FBA (n = 42) NCA (n = 14)

Age (years)
Mean ± StDev
Median

16.7 ± 1.0
17

16.2 ± 1.1
16.5

[Min, Max] [15, 18] [14, 18]

Racial/Ethnic Categories

White 24 13

Black or African American 7 0

Hispanic or Latino 5 0

Asian 2 1

More than one 3 0

Other (unspecified) 1 0

NCA Sport (some participated in multiple sports)

Basketball – 1

Cross Country – 5

Track and Field – 8

Swimming – 4

Golf – 1

Figure 1.   Imaging timeline for football athletes (FBA) and non-collision sports athletes (NCA). FBA 
underwent four imaging sessions (Pre, In1, In2, and Post) over the course of a single football play season. The 
Pre session occurred after the start of physical conditioning training but before the start of contact activities. The 
In1 and In2 scan sessions occurred during the period of contact activities, and the Post scan session occurred 
after contact activities had ceased. Since NCA were not expected to experience sports-related head acceleration 
events (HAEs), NCA were imaged twice (Test, Retest) during the competition season for their respective sports.

https://mathworks.com/
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Preprocessing of rs-fMRI data was conducted in the native individual space. To mitigate spin history effects, 
the first four acquired fMRI volumes were removed. The remaining BOLD timeseries then underwent outlier 
detection (AFNI 3dToutcount), where volumes were censored if more than 10% of the voxels in the volume were 
identified as outliers (a total of 294 volumes were originally acquired). The timeseries then underwent despik-
ing (AFNI 3dDespike), slice timing correction (AFNI 3dTshift), and volume registration (AFNI 3dvolreg) to the 
volume with fewest outlier voxels. The resulting timeseries was then aligned with the T1 structural image (AFNI 
align_epi_anat.py). Voxel-wise spatial smoothing, with a 4 mm full-width-at-half-maximum isotropic Gauss-
ian kernel, was separately applied within the GM, WM, and CSF masks (AFNI 3dBlurinMask). For each voxel, 
the voxel timeseries was divided by the mean of the voxel timeseries, multiplied by 100, and a maximum cutoff 
value of 200 applied. In addition to outlier volume censorship, volumes were also censored if the Euclidean norm 
of motion derivatives (computed during volume registration) exceeded 0.449. For any censored volume, both 
that volume, the preceding volume, and the following volume were removed. If any fMRI time series had over 
one-third of volumes censored, the associated individual was removed from the study. Sixteen FBA had at least 
one scan session fMRI dataset fail these quality checks and were thus removed, leaving 42 football participants 
included in this study.

fMRI timeseries were detrended (AFNI 3dDeconvolve) using the following regressors: (1) very low frequency 
fluctuations, computed using a 0.002–0.01 Hz bandpass filter (AFNI 1dBport); (2) 12 motion parameters (com-
puted during motion correction) including three linear translation parameters, three rotation parameters, and 
the first derivatives of each50,51; and (3) voxel-wise average WM time series computed within a 40-mm local 
neighborhood (AFNI 3dTproject)52.

GM voxels were parcellated into 278 regions of interest (ROIs) based on the GM atlas from Shen et al.53. 
Application of this parcellation to individual participants was completed by registration of the atlas to each 
participant’s T1 structural image using non-linear registration (AFNI auto_warp.py and 3dAlineate). fMRI data 
from some participants did not cover the full cerebellum region, so the (30) ROIs corresponding to the cerebel-
lum were removed, leaving 248 GM ROIs. Symmetric 248 × 248 functional connectivity matrices were computed 
for each scan session, where the entry at location (i, j) is computed as the Pearson’s linear correlation coefficient 
(MATLAB corr) between averaged fMRI time series of ROIs i and j. We refer to these matrices as functional 
connectomes (FCs).

Data analysis
Whole‑brain FBA self‑similarity distributions
FC similarity between two scan sessions was evaluated using the metric self-similarity (Iself)36,37. Since a FC is 
a square and symmetric matrix, Iself between two scan sessions of an individual was computed as the Pearson’s 
correlation coefficient between the two vectorized upper triangular portions of the FC matrices. Iself reflects the 
similarity between two scan sessions of an individual. For FBA, Iself was computed comparing the following scan 
session pairs: Pre-In1, Pre-In2, Pre-Post (see Fig. 1 for session details).

Analyses were conducted to evaluate the normality of FBA Iself distributions and determine the proper sta-
tistical tests for further analyses. The distributions of Iself measurements for each FBA scan pairing (Pre-In1, 
Pre-In2, Pre-Post) were tested for normality using the Shapiro–Wilks normality test. Normality was visually 
inspected using Q-Q plots for each distribution (Fig. 2). The three FBA Iself distributions were also tested for 
equal variance using a Bartlett test. Only the Pre-In2 Iself distribution did not pass the normality test and the 

Figure 2.   (Top) Iself and Iothers histograms presented as a function of population and session comparison. 
(Bottom) Quantile–quantile (Q-Q) plots for assessing normality of the above distributions. Football athletes’ 
Pre-In2 Iself measures were found to reject the null hypothesis of a normal distribution. Iself measures for all other 
computed session comparisons, including non-collision athletes (NCA: Test–Retest) and football athletes (FBA: 
Pre-In1, Pre-Post), were found to be normal. Additionally, the NCA Iothers distribution was deemed normal.
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Bartlett test returned the conclusion that the three Iself distributions did not have equal variance, leading us to 
use non-parametric statistical tests in the remaining analyses directly using FBA Iself values. These three FBA 
Iself distributions were pairwise-tested for differences in medians using Wilcoxon signed rank tests (MATLAB 
signrank) with the Benjamini–Hochberg false discovery rate (FDR) correction procedure54 applied for multiple 
(n = 3, as three pairings of Iself distributions were assessed) comparisons (i.e., pFDR < 0.05 indicates significance). 
We note that within this paper, all subsequent uses of the term FDR correction refer to this Benjamini–Hochberg 
FDR correction procedure (implemented using MATLAB fdr_bh55).

NCA Iself and Iothers distributions
For control NCA, Iself was only computed comparing the two sessions Test and Retest. Such Iself for NCA reflects 
changes in the FC of athletes that are not due to sports-related exposure to HAEs. The three FBA Iself distribu-
tions (Pre-In1, Pre-In2, and Pre-Post) were each tested for significant difference against the NCA Test–Retest Iself 
distribution using the Wilcoxon rank sum test (MATLAB ranksum) with FDR correction for multiple (n = 3) 
comparisons.

In addition, it is of interest to understand the “floor” level of Iself that should be anticipated in the absence of 
HAE exposure. This is particularly important when exploring whether the Iself measure changes in a meaningful 
manner as a consequence of HAE exposure. To this end, we aimed to quantify the level at which Iself measure-
ments may be deemed sufficiently low that the participant may be considered to be as distant from themselves 
(as assessed at baseline) as if they were an altogether separate individual. Similar to Iself measurements, analo-
gous correlation comparisons can be made on full connectivity profiles between different subjects. The set of 
pairwise comparisons across Test–Retest FCs from different subjects form what we denominate here as the Iothers 
distribution (note that the mean of such a distribution has been defined simply as Iothers in an earlier study36). 
Here, we computed the Iothers distribution as the set of pairwise FC (Pearson’s) correlation coefficients between 
all individuals in the NCA population to serve as a baseline distribution for expected FC similarity across indi-
viduals. Note that for a given pairing (i.e., Subject i and Subject j) of NCA participants (n = 14), there are two 
Iothers values, first comparing Subject i’s Test with Subject j’s Retest and second comparing Subject i’s Retest with 
Subject j’s Test. All such pairwise correlation coefficients were computed resulting in a distribution for Iothers 
comprising 182 measurements.

The NCA Test–Retest Iself and Iothers distributions were both tested for normality using the Shapiro–Wilks 
normality test and were assessed using Q–Q plots (Fig. 2). Neither distribution resulted in rejection of the null 
hypothesis, so the distributions were both deemed normal. 95% confidence intervals were computed for the NCA 
Test–Retest Iself and Iothers distributions as follows: for a given distribution, the estimated mean ( µ ) and standard 
deviation ( σ ) of the distribution were computed, and the 95% interval defined as [ µ± 1.96σ ]. For each set (Pre-
In1, Pre-In2, and Pre-Post) of FBA Iself values, the total number of individual Iself values which fell (1) within the 
NCA Test–Retest Iself confidence interval and (2) below the upper limit of the NCA Iothers confidence intervals was 
computed. A one-sided binomial test was used to test whether a significantly greater proportion of FBA athletes 
had Iself lower than the upper limit of the NCA Test–Retest Iothers 95% confidence interval as compared with NCA 
Iself. This test was conducted for the FBA Pre-In1, Pre-In2, and Pre-Post Iself distributions.

Iself analysis within resting state networks
Iself is a similarity score on FCs obtained from the same individual at different times. Furthermore, Iself can be 
computed not only on whole-brain FC profiles, but also focused on specific functional networks (e.g., as proposed 
by Yeo et al.56) by considering only ROIs corresponding to a specific network when computing Iself. For each of 
the seven functional networks proposed by Yeo et al.56, network-specific Iself values were computed for each par-
ticipant. Specifically, network-specific Iself values were computed for FBA Pre-In1, Pre-In2, and Pre-Post session 
pairings and for the NCA Test–Retest pairing. Network-specific, pairwise comparisons were conducted between 
the three FBA Iself distributions (Pre-In1, Pre-In2, and Pre-Post) for each of the seven functional networks using 
the Wilcoxon signed rank test (MATLAB signrank) with FDR correction for multiple comparisons (n = 3, as three 
pairings of Iself distributions were assessed). In addition, each of the FBA Iself distributions were tested against the 
NCA Test–Retest Iself distribution for each network using the Wilcoxon rank sum test (MATLAB ranksum) with 
FDR correction for multiple comparisons (n = 3).

Assessing the effect of accumulated HAEs on Iself
To investigate association between functional connectivity changes and the HAEs experienced by FBA, several 
correlation analyses were conducted. Three HAE metrics were calculated for each scan session (In1, In2, and 
Post): total number of HAEs, cumulative PLA12, and average PLA. The total number of HAEs (nHAEsTh,i,j) 
experienced by the i-th athlete prior to the j-th scan session was computed by counting each of the Ni,j HAEs 
exceeding a chosen threshold (Th):

where

nHAEsTh,i,j =

Ni,j
∑

k=1

u(PLAk,i − Th)

u(x) =

{

1 if x > 0

0 if x ≤ 0
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The cumulative PLA (cPLATh,i,j) of HAEs experienced prior to session j was computed by summing the PLA 
of each of the Ni,j HAEs which exceeded a chosen threshold25:

Finally, the average PLA (aPLATh,i,j) of HAEs exceeding threshold Th and experienced prior to session j was 
computed as:

These three metrics were computed for the thresholds Th ∈ {20g , 30g , . . . , 70g}.
The relationship between FBA Pre-In1 Iself, Pre-In2 Iself, and HAE metrics was assessed using Spearman’s cor-

relation coefficient for each threshold value. Since the FBA Pre-In2 Iself distribution did not pass the normality 
test (as described previously), a non-parametric method was chosen for analysis with HAE metrics. Analysis 
of the comparison between Pre-In1 Iself values and nHAEIn1 at the PLA thresholds revealed several datapoints 
that were outliers based on Cook’s distance (an outlier is defined as a datapoint with a Cook’s distance greater 
than three times the average Cook’s distance over all datapoints). Spearman’s correlation coefficient ρ was com-
puted (MATLAB corr with Spearman option applied) assessing FBA Pre-In1 Iself with nHAEsIn1, cPLAIn1, and 
aPLAIn1. We determined a prior hypothesis that higher HAE metrics would correspond with lower Iself values, 
so the significance of these correlations were assessed using a left-tailed test (i.e., with null hypothesis ρ ≥ 0 
and alternative hypothesis ρ < 0 ). Given (1) that the primary goal of this analysis was to determine which PLA 
threshold maximized the correlation of HAE metrics with Iself and (2) the direct interdependence (and thus high 
correlation) between HAE metrics across consecutive PLA thresholds, no multiple comparisons correction was 
applied for this analysis.

To ensure that this correlation assessment was robust, for any pairing which produced significant correlation, 
10,000 iterations of bootstrapped random sampling (with replacement) were conducted. With each iteration, 
Spearman’s ρ was computed, yielding 10,000 estimates of the coefficient. For a given correlation assessment at 
each PLA threshold, the HAE metric (nHAEs, cPLA, or aPLA) was considered to have a significant effect on 
Pre-In1 Iself if at least 95% of bootstrapped iterations produced ρ less than 0. Similarly, this correlation assessment 
was conducted assessing Pre-In2 Iself with In2 HAE metrics and comparing Pre-Post Iself with Post HAE metrics.

Results
In summary, four sets of analyses were conducted: (1) FBA Iself distributions (Pre-In1, Pre-In2, and Pre-Post) 
underwent pairwise comparisons to evaluate FC changes over the course of the play season; (2) FBA Iself dis-
tributions were compared against control NCA Iself and Iothers distributions to assess the severity of FBA FC 
alterations; (3) pairwise comparisons of FBA Iself measures were conducted on network-specific Iself distributions 
based on seven resting-state functional networks; (4) FBA Iself was assessed for correlation with recorded HAE 
measurements.

Pairwise comparisons of whole‑brain FBA Iself distributions
Iself distribution comparisons were conducted to test whether functional connectivity changed significantly in 
FBA over the course of the season. Statistically significant differences (Wilcoxon signed rank test, pFDR < 0.05) in 
Iself were found between Pre-In1 and Pre-In2 (pFDR = 0.005), and also between Pre-In2 and Pre-Post (pFDR = 0.015) 
(Fig. 3). In particular, FC similarity with Pre was significantly lower at In2 relative to In1 and Post. This is rein-
forced by examination of the greater spread of Iself measures at this time point. (We note that for Pre-In2 two 
football athletes, who did not have unusually high HAE accumulation relative to other football athletes, exhibited 
low Iself, but exclusion of these participants did not affect the finding of statistical significance in the difference 
in Iself distributions.)

Comparing FBA Iself against NCA Iself and Iothers
Each of the FBA Iself distributions (Pre-In1, Pre-In2, and Pre-Post) were found to have no statistically significant 
differences in median when compared with NCA Iself (Wilcoxon rank sum test, pFDR > 0.05 for all three tests). The 
number of FBA athletes for whom Iself fell within the 95% confidence interval, [0.37, 0.73], of the NCA Test–Retest 
Iself for each interval pairing was (Pre-In1) 42, (Pre-In2) 37, and (Pre-Post) 42 out of 42 (Fig. 4). The total number 
of FBA athletes for whom Iself fell below the upper limit (0.53) of the 95% confidence interval of NCA Iothers for 
each interval pairing was (Pre-In1) 11, (Pre-In2) 25, and (Pre-Post) 16 out of 42. The Binomial test revealed that 
for Pre-In2, a significantly higher proportion (p = 0.022) of athletes had Iself falling within this Iothers range, while 
no significance was found for Pre-In1 and Pre-Post.

Iself analysis within resting state networks
Network-specific Iself distributions were computed to determine the functional brain networks in which FBA 
functional connectivity changes were most prevalent. The trend observed in the whole-brain FC Iself comparisons, 
in which FC similarity with the Pre scan session was significantly different (Wilcoxon signed rank test, pFDR < 0.05) 
at In2 compared with In1 and Post, was most profoundly seen in the somatomotor and ventral attention networks. 
Some single pairs of Iself distributions demonstrated significant differences in the remaining networks (Fig. 5), 
with the exception of the limbic and default mode networks. Of the pairwise tests between NCA Iself and FBA Iself 

cPLATh,i,j =

Ni,j
∑

k=1

PLAk,i · u(PLAk,i − Th)

aPLATh,i,j =
cPLATh,i,j

nHAETh,i,j
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distributions for each network, only the comparison of NCA Test–Retest Iself and FBA Pre-In2 Iself for the ventral 
attention network exhibited a statistically significant difference (Wilcoxon rank sum test, pFDR < 0.05).

Figure 3.   Box-and-whisker plots for each session-wise comparison, derived from 14 non-collision sports 
athletes (NCA, left) and 42 football athletes (FBA, right), demonstrate that self-similarity (Iself) distributions 
for FBA computed at Pre-In2 were significantly different from those observed for Pre-In1 and Pre-Post, but not 
from the NCA Iself distribution. The Iself values for each scan session pair (as indicated for each column) was 
computed as the Pearson’s correlation between an individual’s functional connectomes for the given sessions, 
with each individual’s Iself plotted as a gray circle. For FBA, colored lines connect datapoints representing the 
same participant in different session comparisons; solid red lines indicate decreasing Iself, and dashed blue lines 
indicate increasing Iself. Asterisks indicate a statistical significance at the pFDR < 0.05 level (Wilcoxon signed rank 
test).

Figure 4.   Values of Iself computed for football athletes (FBA) for Pre-In1, Pre-In2, and Pre-Post comparisons 
indicate that the FBA functional connectomes (FCs) were distributed in a manner more consistent with 
inter-individual comparisons at Pre-In2, as determined from examination of 95% confidence intervals (CIs) 
of non-collision athletes (NCA) Iself (vertically striped region, bounded by solid lines) and Iothers (horizontally 
striped region, bounded by dashed lines). Datapoints plotted here represent the same points plotted in the right 
side of Fig. 3, now with the NCA Iself and Iothers CIs superimposed. Gray lines connect datapoints from the same 
participant in the three different Iself distributions. The number of athletes falling within the 95% confidence 
interval of NCA Iself for Pre-In1, Pre-In2, and Pre-Post was 42, 37, and 42 out of 42 total FBA, respectively. The 
number of athletes falling below the upper limit the 95% confidence interval of NCA Iothers for Pre-In1, Pre-In2, 
and Pre-Post was 11, 25, and 16 out of 42 total FBA, respectively.
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Figure 5.   Network-specific analysis of Iself measures by population and session pairing indicate that football 
athletes (FBA) exhibit several statistically significant alterations across assessment sessions. (Left) Boxplots of 
Iself distributions for football athletes (FBA; Pre-In1, Pre-In2, and Pre-Post) and non-collision sports athletes 
(NCA; Test–Retest) within each of the seven Yeo functional networks56. Asterisks indicate statistical significance 
at the pFDR < 0.05 level (Wilcoxon signed rank test for comparisons within FBA; Wilcoxon rank sum test for 
comparisons between NCA and FBA). (Right) Three-plane depiction of the primary gray matter extent of each 
of the Yeo networks. Green crosshairs indicate the location of brain slices shown for each network. Imaging 
directions are labeled on the first network (P = posterior, A = anterior, S = superior, I = inferior, R = right, L = left).
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Assessing the effect of accumulated HAEs on Iself
It is hypothesized that accumulation of HAEs leads to changes in functional brain connectivity, predicting a 
negative correlation between Iself and the number of HAEs experienced by a player. No significant correlations 
were found between Pre-In2 Iself and HAEs occurring before the In2 scan session for any of the three HAE met-
rics tested at any PLA threshold (thus these data are not displayed). Spearman’s correlation coefficient ρ and the 
associated p-values for comparisons of Pre-In1 Iself and Pre-Post Iself against the corresponding nHAEs and cPLA 
metrics are shown in Table 2. Significant negative correlations (p < 0.05; left-tailed Spearman’s) were observed 
when comparing Pre-In1 Iself with nHAEsIn1, Pre-In1 Iself with cPLAIn1, Pre-Post Iself with nHAEsPost, and Pre-Post Iself 
with cPLAPost for varying PLA thresholds (see Table 2 and Fig. 6). Significance of negative correlations evaluated 
via bootstrapped analysis of the Spearman’s correlation (i.e., > 95% of bootstrap resampling iterations producing 
ρ < 0 ), as documented in Fig. 6, further supported the observed correlations. Pre-In1 Iself and Pre-Post Iself were 
also tested for correlation with aPLA (average PLA of HAEs), but no significant correlation was found at any 
PLA threshold (these data are not displayed).

Discussion
Variations in self-similarity (Iself) of longitudinal resting-state fMRI functional connectivity in high school Ameri-
can football athletes exposed to head acceleration events (HAEs) were observed and found to correlate with 
HAE exposure over the course of a competitive season. Critical among these variations was (1) a decrease in 
within-individual Iself measures between baseline assessments and those obtained late in the competitive season, 
and (2) these within-individual Iself measures exhibited significantly increased overlap with inter-individual 
similarity measures obtained between non-identical individuals who had not been exposed to repetitive HAEs. 
This may be interpreted to suggest that continued exposure to repetitive HAEs could result in an individual’s FC 
no longer acting as a meaningful fingerprint that reflects the typical degree of Iself

38, with concomitant implica-
tions for their (near-term) neurological health and development. Short-term Iself was most strongly (negatively) 
correlated with essentially all events achieving a mild (roughly 20–30 g) or greater acceleration, while long-term 
Iself was most strongly (negatively) correlated with accumulation of events that exceeded a more severe (greater 
than 40–50 g) acceleration.

FBA functional self‑similarity declines late in play season
Relative to the pre-season scan session (Pre), deviation of whole-brain functional connectivity measures in FBA 
was strongest late in the competition season. Pre-In2 whole-brain Iself was significantly lower than Pre-In1 and 
Pre-Post for FBA, indicating that players’ own FC similarity (relative to the Pre-season scan session) decreased 
between the In1 and In2 scan sessions. This FC similarity was higher at the Post scan session as compared to 
In2, suggesting recovery of Pre-season functional connectivity patterns after the end of the play season. Many 
other studies support the notion of functional connectivity alterations occurring in collision sports athletes after 
collision activity seasons1,11,32–34.

A key finding of the present study is the observation of decreased within-individual similarity late in the 
competition season (at In2) as compared to pre-season, but not at the post-season scan (Post). Late-season brain 
changes in high school FBA have also been observed in previous studies using connectivity and MR spectroscopy 
in distinct cohorts. For example, Abbas et al.1 reported significant differences in the number of rs-fMRI default 
mode network connections (relative to pre-season) in FBA at in-season months 1 and 3, as well as 5 months 
post-season, but not at in-season months 2 and 4. Bari et al.25 reported significant changes in metabolite levels 

Table 2.   Spearman’s correlation coefficient ρ and associated p-values (based on left-tailed test), computed 
using HAEs above varying PLA thresholds, for comparisons of Pre-In1 and Pre-Post Iself against nHAEs and 
cPLA. No significant correlations were found for comparisons between Pre-In2 Iself and HAE metrics, so data 
for these analyses are not displayed. Asterisks (*) indicate a statistically significant Spearman’s correlation (left-
tailed p < 0.05, uncorrected).

Iself sessions PLA threshold (g)

Iself versus nHAEs Iself versus cPLA

Spearman’s ρ p-value (left-tailed) Spearman’s ρ p-value (left-tailed)

Pre-In1

20 g − 0.301 0.026* − 0.312 0.023*

30 g − 0.311 0.023* − 0.293 0.030*

40 g − 0.298 0.027* − 0.272 0.041*

50 g − 0.251 0.055 − 0.215 0.086

60 g − 0.191 0.113 − 0.156 0.161

70 g − 0.073 0.322 − 0.067 0.337

Pre-Post

20 g − 0.192 0.112 − 0.213 0.088

30 g − 0.219 0.082 − 0.266 0.044*

40 g − 0.247 0.057 − 0.286 0.033*

50 g − 0.278 0.038* − 0.286 0.033*

60 g − 0.260 0.048* − 0.264 0.045*

70 g − 0.219 0.082 − 0.234 0.068
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Figure 6.   Correlation coefficients and selected scatterplots assessing relationship between Iself and head 
acceleration event (HAE) metrics. (a) Spearman’s correlation coefficient ρ derived from comparison of Pre-In1 
Iself with metrics measured from HAEs with peak linear acceleration (PLA) exceeding varying PLA thresholds. 
Specifically, Pre-In1 Iself was compared against the total number of HAEs experienced before In1 (nHAEsIn1; circle 
markers) and against the cumulative peak linear acceleration of HAEs experienced before In1 (cPLAIn1; square 
markers). The dashed gray line indicates the threshold below which Spearman’s ρ was statistically significant 
(p < 0.05), derived from a one-tailed test assuming the null hypothesis ρ ≥ 0 and alternative hypothesis ρ < 0 . 
Markers with an added outer circle or square indicate correlations for which a significant effect was also derived 
from bootstrap analysis of Spearman’s correlation (i.e., at least 95% of bootstrap resampling iterations produced 
Spearman’s ρ < 0 ). (b) Scatterplot of Pre-In1 Iself versus nHAEsIn1 exceeding 30 g (i.e., the threshold producing 
strongest Spearman’s ρ when assessing nHAEsIn1). (c) Scatterplot of Pre-In1 Iself versus cPLAIn1 computed 
from HAEs exceeding 20 g (i.e., the threshold producing strongest Spearman’s ρ when assessing cPLAIn1). (d) 
Spearman’s correlation coefficient ρ derived from comparison of Pre-Post Iself against nHAEsPost (circle markers) 
and against cPLAPost (square markers). The gray dashed line and markers with additional outer circle or square 
indicate significance as described in (a). (e) Scatterplot of Pre-Post Iself versus nHAEsPost exceeding 50 g (i.e., the 
threshold producing strongest Spearman’s ρ when assessing nHAEsPost). (f) Scatterplot of Pre-Post Iself versus 
cPLAPost computed from HAEs exceeding 40 g (i.e., the threshold producing strongest Spearman’s ρ when 
assessing cPLAPost). Note that no regression lines are shown in (b), (c), (e), and (f) because correlation was 
evaluated using the nonparametric Spearman’s rank correlation.
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between Pre-In2 and between In2-Post, reflecting a similar trend of late-season brain changes followed by post-
season recovery.

Degree of FBA within‑individual self‑similarity increased overlap with inter‑individual 
similarity
The degree of functional connectivity changes in FBA represented at In2 is severe enough that some athletes 
had Pre-In2 Iself measures that are closer to the similarity expected to be obtained from comparison of different 
individuals (Iothers) than to typical Iself values. While previous work has demonstrated significant functional con-
nectivity changes as a result of participation in collision sports, the “severity” of such changes remains difficult to 
assess when athletes are asymptomatic. This study provides a potential means to quantify this severity through its 
comparison of participants’ FC Iself throughout the season with the degree of similarity of FCs observed between 
different individuals who were not exposed to HAEs.

Brain functional connectivity as observed through resting state fMRI has been studied as a means for identify-
ing individuals from a group36,38,57,58, suggesting that individuals can be correctly identified to a great extent via 
functional connectivity patterns which act like a fingerprint. The distribution of NCA Iothers is lower than that of 
NCA Iself (Fig. 4), as Iothers reflects the FC similarity between different individuals. At In2, a significantly higher 
proportion (compared to controls) of FBA have Iself within the range of NCA Iothers, with five athletes’ Iself so low 
that it falls outside the confidence interval of NCA Iself. This indicates that the FC change between Pre and In2 is 
substantial enough that some participants no longer exhibit their unique identifiable FC patterns. In the context 
of FC fingerprinting (i.e., identification of a subject based on their FC), this results in reduced subject identifi-
ability, which may imply that these FC changes were more prominent than the lack of symptoms would suggest.

Assessing correlation between Iself and accumulated HAEs
As per the prior hypothesis, this study suggests that accumulation of HAEs leads to, among many documentable 
alterations in brain chemistry and function, both a near and long-term decrease in self-similarity of brain func-
tional connectivity in football athletes. Given that the assessed NCA group is expected to be physically active but 
not to engage in (appreciable levels of) collision-based activity, the differences between the longitudinal behavior 
of FBA and NCA reasonably imply that HAEs are likely to be causal with regard to the changes here observed 
in Iself. This inference is made stronger by the similarity of the contrast between FBA and NCA in previous stud-
ies involving independent cohorts of subjects, in which accumulation of deviation during HAE exposure was 
accompanied by recovery from that deviation with subsequent rest.

Analysis of correlations between Iself and the number of HAEs (nHAEs) experienced by players demonstrated 
a negative correlation between nHAEsIn1 and Pre-In1 Iself as well as between nHAEsPost and Pre-Post Iself values, 
suggesting that accumulation of HAEs is associated with a reduction in players’ Pre-season FC similarity both 
within the play season and after its conclusion. We note that the significance of the p-values associated with these 
correlations would not survive multiple comparisons correction, and thus should be interpreted cautiously. Cor-
relations between functional connectivity changes and cumulative HAEs have also been demonstrated in other 
studies9,33, with these results being supportive of the finding of appreciable near-term reductions in seed-based 
connectivity by1.

Interestingly, our analysis did not demonstrate a correlation between Pre-In2 Iself values and the total number 
of HAEs experienced prior to In2. It has been suggested that changes in functional connectivity may stem from 
neurological adaptions made in response to a marked increase in HAEs (such as the start of the play season)1. 
Thus, one hypothesis explaining our study’s observed associations between Iself and HAE metrics is that functional 
connectivity changes may occur primarily following the onset and initial accumulation of HAEs, after which 
functional connectivity may remain relatively consistent in this newly “adaptive” state until the athlete is given 
sufficient recovery time free of any HAEs. This would suggest that by the time point of In1, only certain athletes 
had accumulated enough HAEs to result in FC changes (hence the correlation between HAEs and Pre-In1 Iself), 
while by the time point of In2, nearly all athletes had exceeded the HAE accumulation necessary to induce FC 
changes relative to Pre (hence the overall decrease in Pre-In2 Iself yet lack of correlation with the further accumula-
tion of HAEs). Pre-Post Iself appeared to recover to early-season levels, yet now exhibited a correlation with total 
HAEs when HAEs of a mild (e.g., 20–30 g) level were omitted. This suggests that while the FC profiles of many 
athletes recovered subsequent to cessation of HAE accumulation, those who had not yet recovered were more 
likely to have sustained a greater number of severe (i.e., higher PLA) HAEs throughout the season59.

Toward a threshold for HAEs associated with physiological brain alterations
Currently, concerns regarding the precision of PLA measurements39 limit the determination of a precise PLA 
threshold of HAEs which lead to physiological brain alterations (and thus may be injurious). However, football 
accelerometer data is still especially useful for studying the relationship between cumulative HAEs with pathology 
related to neurological disorders—e.g., chronic traumatic encephalopathy60. A review of previous studies across 
multiple imaging modalities reveals patterns linking physiological brain alterations with cumulative exposure to 
both mild and severe HAEs in contact sports athletes. Specifically, cumulative exposure to more severe HAEs—
i.e., those with PLA exceeding approximately 50 g, corresponding to approximately the 80th percentile of events 
exceeding 20 g40—has been found to be correlated with increased cerebrospinal fluid volumes8, neurometabolic 
alterations25, and cerebrovascular reactivity (CVR) changes6 in cohorts similar to the current study. Further, 
the current study found greater accumulation of such severe HAEs to be correlated with lower long-term Iself. 
Cumulative exposure to comparatively mild HAEs (e.g., lower PLAs in the range 20–40 g) has been found to 
be correlated with changes in white matter (WM) fractional anisotropy (FA) measures15 and with near-term 
changes in whole brain functional connectivity in the present study. From these observations, it may be that 
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the structural damage (e.g., that reflected in WM FA measures) resulting from the high number of mild HAEs 
leads to increased reliance on collateral processing mechanisms in the brain (reflected in changes in functional 
connectivity). We note that these mild HAEs (20–40 g PLA) represent approximately 70% of all HAEs with PLA 
above 20 g that are experienced by youth football athletes40. This hypothesis would then be consistent with the 
findings of Abbas et al.1, in which the most significant alterations in connectivity were associated with periods of 
time involving increases in HAE exposure, most of which is of a lesser severity. The observation that more severe 
HAE accumulation best correlates with other physiologic changes such as neurometabolic, CVR, and brain tissue 
alterations could indicate that these changes are in systems/structures that are more robust against mechanical 
insults (i.e., more resistant to HAEs with low PLA). Alternately, it may simply be that a longer period of time with 
HAE-induced physiologic changes must pass before sustained alteration of local metabolic activity can result in 
alterations in biochemical concentrations, and before changes in local glia are induced that would lead to altered 
CVR. Under this hypothesis, the correlation of such alterations with more severe HAEs would not necessarily 
indicate that more severe HAEs are the driving force of the observed changes. Rather, a higher accumulation of 
more severe HAEs would simply be a natural consequence of a greater period of time of sustained HAE exposure.

Network‑level functional connectivity changes associated with injury
The observed network-specific functional connectivity changes may suggest that repetitive exposure to HAEs can 
cause physiological brain changes similar to those observed following concussion, even in the absence of obvi-
ous symptoms or a concussion diagnosis. Analysis of FC similarity with the Pre-season scan session throughout 
the play season revealed that the somatomotor and ventral attention networks most profoundly demonstrated 
a decrease in FC similarity at In2 followed by trends suggesting a recovery of Pre-season FC similarity at Post. 
Previous work has demonstrated a link between somatomotor functional changes and sports-related concussion. 
For instance, increases in relative homogeneity of functional connectivity in the sensorimotor cortex29 as well as 
reduction of functional connectivity in the somatomotor network61 have been shown to follow concussion. In 
addition, neurometabolic changes have been demonstrated within the motor cortex post-injury in concussed 
football athletes62 and due to HAEs13,25,26. Thus, the somatomotor network connectivity changes observed in our 
study may suggest that exposure to HAEs can cause physiological brain changes similar to those observed follow-
ing concussion, despite not manifesting diagnosable symptoms. In addition, functional connectivity patterns have 
been shown to be altered in athletes sustaining anterior cruciate ligament (ACL) injuries63,64, demonstrating that 
neuroplastic changes can result even from injuries which are not directly applied to the central nervous system. 
Such observations of functional connectivity alterations in instances of clear injury raise concern for the health 
of athletes experiencing similar alterations in the absence of obvious symptoms. Given that repetitive concussion 
and HAE exposure may lead to long-term health risks65, these findings—consistent with the discussion above 
related to an injurious threshold—suggest that allowing recovery time between periods of HAE exposure may 
be necessary to prevent the accumulative effects of HAEs and promote the long-term health of football athletes.

Despite the current study’s lack of significant longitudinal Iself differences in the default mode network (DMN), 
it is of interest to note that the DMN has previously been shown to undergo changes in both asymptomatic 
football athletes exposed to HAEs32,66 and concussed athletes30. In the present study, comparisons of Pre-In1 
against Pre-In2 Iself and Pre-In2 against Pre-Post Iself produced uncorrected p-values of 0.046 and 0.034, respec-
tively, indicating the possibility of changes occurring within the DMN despite these values not surviving the 
FDR multiple comparisons correction.

Collision‑free time may allow for recovery
Given that results from this study suggest recovery of pre-season FC self-similarity between In2 and Post, high 
school FBA may be capable of recovering from within-season functional connectivity changes after a sufficient 
period of time without (or possibly with substantially reduced) collision activities has passed. Athletes sustaining 
a full concussion may require up to 3–4 weeks for proper recovery67. It has also been shown that implementing 
prolonged waiting periods before returning to play after a concussion (with a median time of return to play of 
12.2 days after injury) has resulted in decreased risk of repeat sports-related concussion68. Further, evidence has 
begun to grow supporting the idea that even athletes without diagnosed concussions require a prolonged period 
free of continued HAEs to fully recover from within-season alterations to brain physiology8,12,25.

We also wish to note that, in contrast to this study’s observation of recovered pre-season FC similarity at 
Post, some previous studies have reported functional connectivity changes between pre- and post-season scan 
sessions. One potential reason for this discrepancy is the time duration allowed after the season’s end before the 
post-season scan. Some other studies had post-season scan sessions which occurred within two weeks of the 
final game played11,34, while this study’s post-season scan was conducted 4–12 weeks after the season’s end. This 
suggests that differences from pre-season observed at post-season scans in other studies may be due to insufficient 
recovery time free of collision activities. In addition, the age of athletes studied (reported studies involve youth, 
high school, and collegiate players) may impact the degree and type of changes observed, as neural plasticity is 
age-dependent, and qualitatively different changes can occur at different ages in response to similar experiences69. 
It should also be noted that Abbas et al.1 reported significant hyperconnectivity in the default mode network in 
FBA compared with NCA, even at the pre-season time point, which suggests the hypothesis that lasting network 
changes result from years of participation in contact sports. This, along with the current study’s observation of 
negative correlation between Pre-Post Iself and full-season HAEs, would suggest that the post-season recovery 
observed in this study still may not represent full recovery of the athletes.
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Limitations
This study includes data from athletes attending three local high schools. A larger sample size covering more 
schools would include a greater diversity of athletes, better representing factors such as different socio-economic 
backgrounds, athlete health differences, and different play strategies. This larger sampling would help to general-
ize the results demonstrated here. In particular, a larger sample size of control athletes (NCA) would allow for 
stronger conclusions regarding the differences between NCA and FBA populations. For the present study, all 
available data of sufficiently high quality were incorporated.

It should also be noted that the repeatability of functional connectivity measures can be affected by multiple 
factors. Even in healthy populations not explicitly engaged in athletic programs or activities with high rates of 
repetitive HAEs, measures derived from resting state fMRI can be affected by factors such as mood70, arousal71, 
or caffeine intake72. Further, functional connectivity changes have been shown to be associated with participation 
in non-collision sports—such as distance running73 or badminton74—and more generally with participation in 
other motor-skills training programs75,76. Despite such factors, the tendency of FBA Pre-In2 Iself away from the 
NCA Iself distribution towards the NCA Iothers distribution, coupled with the apparent recovery of FBA Pre-season 
functional connectivity several weeks after the halting of collision activities, suggests that the HAEs associated 
with football participation play a role in the decreased FC similarity shown at In2.

In addition, conclusions regarding association between FC alterations and cumulative HAEs are limited by 
several factors related to HAE monitoring, of which we focus here on three. First, though certain PLA thresholds 
did result in a significant correlation between Iself measurements and cumulative HAE metrics, the statistical 
significance of these correlations did not hold if a multiple comparisons correction was applied. We argue that 
the use of a multiple comparisons correction for the six different PLA thresholds would likely be too strict, as 
the HAE metrics based on different PLA thresholds are highly correlated with one another. Further investigation 
with a greater sample size would better confirm whether these correlations are truly present.

Second, the xPatch head acceleration monitoring devices provide estimates of peak linear acceleration having 
a 30% root-mean-square error39. This error represents added noise which may reduce the precision of thresholds 
when examining the correlation between Iself and accumulated HAEs. However, it is to be noted that the xPatch 
sensor was shown to produce lower levels of PLA measurement error than other commercially available sensor 
packages39, marking this sensor as one of the best available options, particularly when correctly placed on the 
mastoid process (as depicted by Lee et al.40).

Lastly, no video verification of HAEs was available for this study, meaning that precise numbers of recorded 
HAEs should be interpreted cautiously. While some studies do suggest video verification of head impacts should 
be used alongside head acceleration monitoring to prevent false-positive recordings of acceleration events41,77,78, 
we note that practical limitations (e.g., funding, manpower, and availability of video recordings) reduce the 
feasibility of implementation of video verification in all studies. Further, video verification is also unlikely to 
produce precise classification of HAEs. Limitations in video quantity or visibility of players can result in HAEs 
that are not captured on video41, or in other instances it can be unclear whether direct or indirect head impacts/
accelerations occurred77. We argue that meaningful information can be gleaned from the HAE data used in the 
present study based on three justifications: (1) a 20 g PLA lower threshold is likely to exclude HAEs stemming 
from non-collision events such hard stops or cuts (that are not likely to be injurious)42; (2) the aggregated number 
of reported events is highly consistent across head-mounted devices39; and (3) given that the PLA error induced 
by the xPatch sensor is stochastic in nature, then analysis over an extended period of total counts of HAEs exceed-
ing the 20 g threshold should provide an accurate picture of the aggregated exposure10.

Conclusion
This study demonstrated that high school American football athletes undergo changes in brain functional con-
nectivity over the course of a play season, though none sustained a clinically diagnosed concussion. Functional 
connectome self-similarity (Iself) with individuals’ Pre-season session was shown to significantly decrease by the 
time of the second half of the play season (In2), while this self-similarity with the Pre-season FC was recovered 
by the Post scan session. The lower levels of within-individual self-similarity in the second half of the play season 
were found to be significantly overlapping with the distribution of inter-individual similarity among different 
individuals. This overlap at In2 suggested that some athletes could be identified (e.g., as in fingerprinting) as 
different individuals when compared to their Pre-season FC. At a network level, these functional connectivity 
alterations were found to occur most prominently in the somatomotor and ventral attention networks. Both early 
and post-season connectivity changes were found to be negatively associated with HAE metrics. These results 
highlight that repetitive exposure to HAEs can result in significant changes in brain functional connectivity 
without diagnosable symptoms and suggest that recovery time free from continued exposure to acceleration 
events may be beneficial for the recovery of youth athletes’ brain physiology.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request.
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