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Higher local Ebola incidence causes 
lower child vaccination rates
Upasak Das  & David Fielding *

Ebola is a highly infectious and often fatal zoonotic disease endemic to West and Central Africa. Local 
outbreaks of the disease are common, but the largest recorded Ebola epidemic originated in Guinea 
in December 2013, spreading to Liberia, and Sierra Leone in the following year and lasting until 
April 2016. The epidemic presented a serious challenge to local healthcare systems and foreign aid 
agencies: it degraded services, caused the loss of healthcare professionals, disrupted the economy, 
and reduced trust in modern healthcare. This study aims to estimate the extent to which variation in 
one long-term measure of the quality of local healthcare (the child vaccination rate) is a consequence 
of local variation in the intensity of the epidemic. Applying a “difference-in-differences” model to 
household survey data from before and after the epidemic, we show that in 2018–2019, overall rates 
of vaccination for BCG, DPT, measles, and polio are lower in Guinean and Sierra Leonean districts that 
had a relatively high incidence of Ebola; statistical analysis indicates that this is a causal effect. The 
effects of the epidemic on access to healthcare have been local effects, at least in part.

Just as the mitigation of an epidemic depends on the capacity of local healthcare systems1, so the intensity of the 
epidemic can affect capacity, either through a contraction of the local economy and the resources available for 
healthcare, or through epidemic-related fatalities among healthcare professionals. The SARS-CoV-2 pandemic, 
for example, has strained healthcare systems across the world: even in resource-rich countries, there is a concern 
that collateral damage from the pandemic will persist for decades2. In West Africa, there is some evidence on the 
collateral consequences of epidemic disease during the outbreak of Ebola over 2014–2016. In the most severely 
affected countries (Guinea, Liberia, and Sierra Leone) there was an immediate reduction in the utilization of 
a wide range of healthcare services during the epidemic3–8. Researchers have expressed concern that the epi-
demic would also lead to a deterioration in health outcomes, either from reduced economic capacity3,9,10, Ebola-
related fatalities among healthcare professionals3,11, lower trust in healthcare professionals3,12–15, or poor perinatal 
care16–18. One key element of child health is vaccination against measles and other infectious diseases, and there 
is case-study evidence that the Ebola epidemic has led to lower vaccination rates in specific locations19,20. One 
study conducted during the epidemic projected that if the observed reduction in measles vaccination rates 
observed during the epidemic persisted, then after 18 months, the consequent increase in measles incidence 
would cause an additional 2–16 K deaths21. Given recent local outbreaks of Ebola and the ongoing threat of 
future epidemics22,23, there is a risk of a vicious circle in which reduced healthcare capacity is both a cause and 
a consequence of higher disease prevalence.

A decline in vaccination rates following an epidemic could result from nationwide effects, e.g. nationwide 
reductions in healthcare capacity or trust, or from local effects, e.g. reductions in district-level healthcare capacity 
caused by a diminution of local financial resources or lower levels of trust that vary according to the extent of 
local healthcare failures. There was substantial variation in the local prevalence of Ebola in all three countries, 
partly (but not entirely) because of variation in population density24, and identifying the relative importance of 
local effects will be crucial to national efforts to mitigate any deterioration in healthcare capacity. To our knowl-
edge, just one study25 has examined local variation in detail, using the difference-in-differences method with a 
sample of Sierra Leonean children. King et al. do not find any significant association of Ebola prevalence with 
vaccination rates, but the sample used is quite small.

The objective of this study is to estimate the size of local effects, i.e. the extent of within-country variation in 
vaccination rates caused by within-country variation in the intensity of the Ebola epidemic. More specifically, 
our objective is to measure the extent to which parents in areas with a high incidence of Ebola are less likely 
to vaccinate their children (which could be either because they are less willing to do this or because poor local 
capacity has made it more difficult). The estimates are produced by applying the difference-in-differences method 
to a larger sample of Sierra Leonean children and to samples of Guinean and Liberian children. As discussed 
in the methods section which follows, we examine the association of variation in local Ebola prevalence during 

OPEN

Global Development Institute, University of Manchester, Manchester M13 9PL, UK. *email: david.fielding@
manchester.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-51633-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1382  | https://doi.org/10.1038/s41598-024-51633-3

www.nature.com/scientificreports/

the epidemic with variation in the number of fully vaccinated children and the number of vaccinations per child 
after the end of the epidemic. Our results section shows that (at least in Guinea and Sierra Leone) the local effects 
are substantial relative to the national trends. In other words, much of the effect of the epidemic on vaccination 
coverage has been through channels operating at a sub-national level. We conclude with a discussion of some 
of the implications of these results.

Methods
Data sources
This study employs data for children aged 13–35 months in the USAID Demographic Health Surveys (DHS); see 
https://​dhspr​ogram.​com26. Relevant data appear in survey rounds V (Guinea 2005, Liberia 2007, Sierra Leone 
2008), VI (Guinea 2012, Liberia 2013, Sierra Leone 2013), and VII (Guinea 2018, Liberia 2019, Sierra Leone 
2019); round IV data are also available for Guinea (1999). Children in rounds IV-VI were born and surveyed 
before the start of the epidemic; children in round VII were born during or after the end of the epidemic and 
surveyed at least 21 months afterwards. The surveys report whether a child has received the following WHO-
recommended vaccinations: BCG, DPT (doses 1–3), measles (doses 1–2), and polio (doses 1–3). A fully vacci-
nated child therefore has nine vaccinations. Further information about the surveys appears in the Supplementary 
Materials.

Each survey uses a stratified sampling design: households are randomly selected from enumeration areas in 
each province of the country. These enumeration areas comprise one or two villages, or a suburb of a town. They 
are randomly selected from the towns and villages in a province, but the ratio of sample households to the total 
population of a province can vary from one province to another. For this reason, a sampling weight is attached 
to each enumeration area, and each child in a given enumeration area has the same sampling weight. Note, 
however, that the objective stated in the introduction relates to parental behaviour: our objective is to estimate 
the effect of the epidemic on decisions that parents make (or are forced to make). For this reason, we construct 
a sampling weight for each child that is equal to the enumeration area weight divided by the total reported 
number of children of that child’s mother. This weighting system ensures that our sample is representative of 
the population of mothers in each country, rather than the population of children. However, results using just 
the enumeration area weight (which are representative of the population of children) are very similar to those 
reported here. Overall, there were 9000 children in the Guinean sample, 6542 children in the Liberian sample, 
and 9255 children in the Sierra Leonean sample, but some observations were excluded from the analysis because 
of missing covariate values (455 in Guinea, 539 in Liberia, and 345 in Sierra Leone).

Data analysis
The data analysis is based on a comparison of vaccination rates before and after the epidemic in districts that had 
a relatively high incidence of Ebola with those that had a relatively low incidence. (“District” indicates a major 
administrative division of a country, i.e. one of the 34 Guinean prefectures, 15 Liberian counties, or 14 Sierra 
Leone districts.) The definition of high incidence varies across the three countries, for the reasons illustrated in 
Fig. 1. Using a threshold of 10 per 100 K in Guinea means that about 50% of children in the sample live in high-
incidence districts, giving some robustness to tests of the significance of differences between high-incidence and 
low-incidence districts. However, using this threshold in Sierra Leone means that approximately 95% of children 
live in high-incidence districts, and results based on this threshold are unlikely to be robust. In the results below, 
the threshold used in each country places over 30% and under 70% of children in high-incidence districts. For 
Guinea, there are two alternative thresholds: 10 per 100 K and 25 per 100 K. For Liberia, the alternative thresh-
olds are 25 per 100 K and 50 per 100 K. For Sierra Leone, the results are based on a threshold of 100 per 100 K. 
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Figure 1.   The fraction of children in each national sample inhabiting high-incidence districts. The figure shows 
fractions for four different definitions of high incidence at the district level: > 10 per 100 K, > 25 per 100 K, > 50 
per 100 K, and > 100 per 100 K. The samples are Guinean children aged 12–35 months in DHS rounds IV–VII, 
Liberian children aged 13–35 months in DHS rounds V–VII, and Sierra Leone children aged 12–35 months in 
rounds V-VII.
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Results using other thresholds appear in the Supplementary Materials. The district-specific incidence figures are 
taken from Fig. 1 of Dahl et al.27, which is based on World Health Organization data for the confirmed, probable 
and suspected number of cases per 100 K population. See WHO Ebola Response Team (2014) for more details 
regarding the derivation of the data28. The association of vaccination rates with Ebola incidence is measured using 
a “difference-in-differences” model29. The post-epidemic difference in vaccination rates between high-incidence 
and low-incidence districts is compared with the pre-epidemic difference. The change in the difference, condi-
tional on observable child characteristics, is interpreted as the effect of the epidemic.

The difference-in-differences model allows for the possibility that changes in mean child characteristics 
varied systematically between high-incidence and low-incidence districts, and that these characteristics were 
themselves associated with vaccination rates. The vaccination status of each child in each round of the DHS is 
modelled as a function of (i) the observed characteristics of the child and its household, (ii) whether the child 
was surveyed in round VII, (iii) whether the child was living in a district that had (or would later have) a high 
Ebola incidence, and (iv) the interaction of (ii) and (iii). The coefficient on this interaction term measures the 
difference in differences, capturing the effect of living in a high-incidence district after the epidemic. This is a 
conservative estimate of the effect of the epidemic, because it excludes any indirect effect through an association 
of the characteristics in (i) with Ebola incidence.

In each country, the difference-in-differences model is fitted to a pooled sample of children across all rounds 
of the survey (i.e. rounds IV-VII in Guinea and rounds V-VII in the other two countries). There are two versions 
of the model, the first of which estimates the effect of the epidemic on the probability that the ith child is fully 
vaccinated using the following Probit function:

P(i vaccinated) is the probability that the ith child is fully vaccinated and Φ(.) is the cumulative normal density 
function. Ebolai = 1 if child i was living in a high-incidence district, otherwise Ebolai = 0; seveni = 1 if the child was 
surveyed in round VII of the DHS, otherwise seveni = 0. Each of the variables xki (k = 1,…, K) is a characteristic 
of the child or its household. These characteristics are discussed in the Supplementary Materials; they include 
the child’s age, sex and birth order, the mother’s age, education level and religion, the household wealth level, 
the age and sex of its head, and the local population density and rainfall level. The β and φ terms are parameters 
to be estimated. Equation (1) is fitted to the data using the child-specific sampling weights described above.

The size of the effect of living in an Ebola-affected district after the epidemic on the probability of being fully 
vaccinated depends on the value of ϕ3, but the effect is not uniform across all districts, because Φ(.) is a non-linear 
function30. The average effect is computed by applying the following formula to the sample of round-VII children:

Here, M denotes the number of children in round VII and hats denote parameter estimates. Values of ϕ̂3 
appear in the Supplementary Materials.

The second version of the model estimates the effect of the epidemic model on the number of vaccinations 
received by child i, expressed as a fraction of the total possible number (nine). A fractional Probit model is fit-
ted to the data31:

E[vaccinationsi] is the expected fraction for child i, and the δ and η terms are parameters to be estimated. 
Again, the estimated effect of living in an Ebola-affected district is not uniform across districts, so the average 
effect is computed by applying the following formula to the sample of round-VII children:

Values of η̂3 appear in the Supplementary Materials.
It will also be necessary to construct confidence intervals around the estimates in Eqs. (2) and (4). In both 

cases, these confidence intervals are based on standard errors of the parameter estimates that allow for cluster-
ing at the district level.

Performing precise ex ante power calculations in this type of model is problematic, because such calculations 
depend on assumptions about the values of all of the βk and δ k parameters, and for some child characteristics, 
evidence on these values is very limited. Nevertheless, previous studies of factors affecting the probability of vac-
cination using other DHS samples with similar samples sizes and estimation methods (but focussing on factors 
other than exposure to previous epidemics) have reported significant effects (p < 0.05), even when the estimated 
effect size is a difference in vaccination rates of less than five percentage points32,33. It is therefore reasonable to 
expect that any effect of five percentage points or more in the population could be identified by our method.

Implicit in our estimation method is the assumption that, in the absence of the treatment (high Ebola inci-
dence versus low Ebola incidence), the difference in vaccination rates between the treated and untreated locations 
(conditional on the covariates xki) would have remained constant. In other words, it is assumed that the trend 
over time the vaccination measure would have been the same in the treated and untreated locations. One way to 
examine the plausibility of this assumption is to measure the trends in the treated and untreated locations over 
the sample periods preceding the epidemic. If the trends are parallel, then the assumption is more credible. The 
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Supplementary Materials include an exercise of this kind. In one case (the probability of being fully vaccinated 
in Sierra Leone), the hypothesis of parallel trends can be rejected at the five percent level. However, in all other 
cases (including the number of vaccinations in Sierra Leone), the hypothesis cannot be rejected, suggesting that 
our results are robust overall.

Results
Before presenting the difference-in-differences results, we observe that the data show some variation in both 
the level of and change in overall vaccination rates across the three countries. This is illustrated in Fig. 2, which 
depicts the distribution of the number of vaccinations per child in each country before the epidemic (rounds 
IV-VI) and afterwards (round VII). In Guinea, there was a fall in the mean number of vaccinations per child 
from 5.8 across 1999, 2005 and 2012 to 4.7 in 2018. In Liberia, there was a rise in the mean from 6.4 across 2007 
and 2013 to 7.0 in 2019. In Sierra Leone, there was a rise in the mean from 7.4 across 2007 and 2013 to 7.6 in 
2019. The Guinean data indicate a more persistent decline in vaccination rates than suggested by earlier WHO 
estimates30. Using a difference-in-differences model, we can estimate the extent to which local variation around 
these means is associated with local variation in Ebola incidence.

The results are summarized in Fig. 3, which includes estimates of a number of different effects. First, the figure 
shows estimates of average effect of living in a high-incidence district on the probability of being fully vaccinated, 
i.e. having all the vaccinations listed above; these estimates employ the formula in Eq. (2). Second, using Eq. (4), 
there are estimates of the average effect on the number of vaccinations received, expressed as a fraction of the 
recommended number (i.e. nine). Using either a 10 per 100 K or a 25 per 100 K threshold, living in a high-
incidence district in Guinea is estimated to reduce the probability of being fully vaccinated by approximately 
13 percentage points, on average; both effects are statistically significant (p < 0.05). Using a threshold of 10 per 
100 K, there is no significant effect on the number of vaccinations, but using a threshold of 25 per 100 K, there 
is a significant effect (p < 0.05): living in a high-incidence district is estimated to reduce the vaccination fraction 
by approximately 14 percentage points, i.e. approximately 1.2 vaccinations. This is a large effect, considering that 
the nationwide post-Ebola mean is 4.7 vaccinations per child.
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Figure 2.   Distribution of the number of vaccinations per child. In each country, the left-hand panels show the 
distribution for children aged 13–35 months in DHS rounds IV (Guinea only), V and VI. The right-hand panels 
show the distribution in DHS round VII. The vaccinations are for BCG, DPT (doses 1–3), measles (doses 1–2), 
and polio (doses 1–3).



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1382  | https://doi.org/10.1038/s41598-024-51633-3

www.nature.com/scientificreports/

Figure 3 also shows that living in a high-incidence district in Sierra Leone is estimated to reduce the prob-
ability of being fully vaccinated by approximately 11 percentage points and the vaccination fraction by approxi-
mately 8 percentage points, i.e. approximately 0.7 vaccinations. Both effects are statistically significant (p < 0.01), 
although, given the parallel trends analysis noted above, the second estimate may be more robust than the first. 
The estimated effects in Liberia are also negative but are mostly insignificantly different from zero.

Discussion
Previous studies indicate that there was a large fall in national child vaccination rates during the Ebola epidemic. 
In particular, Sun et al. report that during the epidemic, the proportion of Sierra Leonean children fully vac-
cinated against measles fell by 26 percentage points, with a partial recovery in vaccination coverage over 201519. 
Similarly, Wesseh et al. report a fall in Liberian vaccination coverage of 37 percentage points during the epidemic, 
followed by a partial recovery over 201520. These data are broadly consistent with those in Masresha et al., which 
indicate similar patterns in national vaccination rates across Guinea, Liberia and Sierra Leone34. Our data indicate 
that by 2018–2019, national vaccination rates in Liberia and Sierra Leone were similar to their pre-epidemic 
levels: see Fig. 2. However, these results tell us nothing about the local variation in vaccination coverage within 
each country. Wesseh et al. do compare changes in Liberian vaccination rates in areas of high Ebola incidence 
with those in areas of low incidence, finding (somewhat surprisingly) that recovery towards pre-epidemic vac-
cination rates was faster in high-incidence areas. However, this study does not control for other factors, such as 
urbanisation, that may have influenced both the severity of the epidemic and the ability of an area to reconstruct 
its healthcare system. Our results indicate that when such factors are taken into account, there is a large, negative 
and statistically significant association between the local severity of the epidemic and child vaccination rates in 
Guinea and Sierra Leone 2–3 years after the end of the epidemic. Controlling for other factors, the proportion 
of fully vaccinated Guinean children in high-incidence districts is estimated to have been 13 percentage points 
lower than the proportion in low-incidence districts; the corresponding figure in Sierra Leone is 11 percentage 
points. (The estimates for Liberia are similar in magnitude but rather less precise and therefore statistically insig-
nificant.) While these differences are somewhat smaller than the national decline in vaccination rates during the 
epidemic, they still indicate substantial regional variation. In the 2–3 years following the end of the epidemic, 
its effect on healthcare services has not been uniform across each country, and locations with a relatively high 
incidence of infectious disease experience a much larger decline in the use of services. To the extent that these 
services protect a local community from future infection, there is likely to be increasing within-country inequality 
in health outcomes, unless the country’s healthcare policy takes local heterogeneity into account.

Evidence from previous research indicates the successful deployment of a large number of healthcare workers 
after the epidemic, but the effectiveness of the deployment has been inhibited by poor co-ordination between 
local and national managers35. The local variation in vaccination rates that we have uncovered underscores the 
importance of co-ordination, so that new healthcare workers are deployed to the places where they are most 
needed. However, the main limitation of our study is that we have not yet identified the extent to which the 
causal channels behind the local variation relate to the “supply side” (higher local Ebola incidence having led to 
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25 per 100 K; subscript 50 indicates a threshold of 50 per 100 K; subscript 100 indicates a threshold of 100 per 
100 K. The Guinean sample comprises children aged 13–35 months in DHS rounds IV–VII (N = 8555); the 
Liberian and Sierra Leone samples comprise children aged 13–35 months in DHS rounds V–VII (N = 6013 and 
N = 8910 respectively).
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more degradation of local health services) or to the “demand side” (parents in high-incidence areas being more 
distrustful of health professionals). For this, a structural model of vaccine supply and demand will be required. 
The development of district-specific interventions will depend on a better understanding of the relative impor-
tance of supply-side and demand-side effects. If supply-side effects dominate, then there is a case for regionally 
targeted expenditure to rebuild local healthcare systems, for example by prioritising the deployment of newly 
trained nurses to specific locations. If demand-side effects dominate, then there is a case for regional targeting 
of policies to address vaccine hesitancy among parents, for example through new forms of communication by 
public healthcare professionals.

We note as a caveat that the covariates xki included in the model might not fully capture all factors of the 
incidental characteristics associated with both Ebola incidence and vaccination rates. For example, for a given 
population density, the quality of an area’s transportation infrastructure may be associated with both ease of 
access to healthcare facilities and the speed at which infections are transmitted. Further information on such 
factors would improve the reliability of the model.

Data availability
Data are available for download from the DHS; see the Supplementary Materials for more details.
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