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Examples of atoms absorbing 
photon via Schrödinger equation 
and vacuum fluctuations
Yongjun Zhang 

The absorption of photons by atoms encompasses fundamental quantum mechanical aspects, 
particularly the emergence of randomness to account for the inherent unpredictability in absorption 
outcomes. We demonstrate that vacuum fluctuations can be the origin of this randomness. An 
illustrative example of this is the absorption of a single photon by two symmetrically arranged atoms. 
In the absence of a mechanism to introduce randomness, the Schrödinger equation alone can govern 
the time evolution of the process initially. Then, it becomes stuck, and an entangled state of the two 
atoms emerges. This entangled state consists of two components: in one, the first atom is excited by 
the photon while the second is in the ground state, and in the other, the second atom is excited while 
the first remains in the ground state. These components form a superposition state characterized 
by an unbreakable symmetry in the absence of external influences. Consequently, the absorption 
process remains incomplete. When vacuum fluctuations come into play, they can induce fluctuations 
in the weights of these components, akin to Brownian motion. Over time, one component diminishes, 
thereby breaking the entanglement between the two atoms and allowing the photon absorption 
process to conclude. The remaining component shows which atom completes the photon absorption. 
Vacuum fluctuations not only introduce randomness but also have the potential to give rise to the 
Born rule in this context. Furthermore, the Casimir effect, which is closely tied to vacuum fluctuations, 
presents a promising experimental avenue for validating this mechanism. Similar studies can also be 
conducted with varying numbers of atoms.

Quantum optics probes the intricate interactions between light and matter, surpassing the realm of classical optics 
to examine the behavior of individual photons and their interactions with atoms and subatomic  particles1. A 
fundamental aspect in this domain is the absorption of photons by atoms, a core quantum-mechanical process 
characterized by an atom transitioning from a lower to a higher energy state, the excited state, upon photon 
absorption. Studying this process offers crucial insights into quantum mechanics, particularly in unraveling four 
interconnected perspectives that remain less understood.

First, there is a challenge in aligning quantum unitary time  evolution2 with the discrete eigenstates of atoms. 
Consider a hydrogen atom transitioning from its ground state to an excited state due to photon absorption. 
In a scenario without discrete states, unitary time evolution could seamlessly map the initial state to the final 
state. However, the inherent discreteness of atomic eigenstates complicates this mapping. According to measure 
 theory3, such a direct mapping would effectively have a measure of zero, thereby making the transition impossible. 
To enable the transition, the rigid framework of unitary time evolution must be relaxed. This relaxation should 
allow multiple initial states to converge to the same final state, inherently leading to some loss of information 
from the initial state and the subsequent emergence of randomness.

Second, the nature of randomness in quantum mechanics remains enigmatic. Einstein’s famous dictum, “God 
does not play dice,” challenges the notion of intrinsic randomness and resonates through various interpretations 
of quantum phenomena. The Copenhagen  Interpretation4,5 attributes randomness to wave function collapse 
according to the Born  rule6. However, this interpretation has been contested due to its implications of observer-
dependency and perceived incompleteness of  reality7–9. Alternative approaches include the deterministic pilot 
wave theory, which posits hidden variables and a guiding  wave10–12, and the many-worlds  interpretation13,14, 
which suggests a branching universe for each quantum event, rendering randomness as emergent. Decoher-
ence theory, on the other hand, deals with randomness at the statistical level of quantum  ensembles15–20. The 
Ghirardi-Rimini-Weber (GRW)  model21–24 and its successor, the Continuous Spontaneous Localization (CSL) 
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 model25–28, introduce spontaneous collapse into the quantum framework to account for state vector reduction, 
but the source of underlying randomness remains unspecified.

Third, research on ensembles may not fully elucidate the dynamics of individual quantum systems, underscor-
ing the need for distinct approaches at these two analytical levels. An ensemble-based approach is often indis-
pensable and more feasible, particularly when detailed knowledge of the underlying dynamics is sparse. A prime 
example is Einstein’s investigation of Einstein  coefficients29 through thermodynamic considerations, a domain 
intrinsically tied to the concept of ensembles. However, it is crucial to recognize that ensemble studies are not a 
replacement for delving into the intricacies of individual quantum systems. This becomes especially apparent in 
the context of the Born rule: while its application in ensemble scenarios is often direct and taken for granted, in 
the case of single systems, the rule’s relevance is dictated by the dynamics of the system itself, which determine all 
potential outcomes and their probabilities, and the Born rule must naturally arise from the dynamics. Some ele-
ments of the dynamics involve randomness. These elements might be overlooked in ensemble-focused theories, 
but are essential in the analysis of individual systems. In the context of the CSL model, Pearle’s use of the gambler’s 
ruin problem as an analogy has facilitated the derivation of the Born rule for individual quantum  systems30,31.

Finally, determining the exact nature of photon absorption-whether it is continuous, instantaneous, or a 
hybrid process starting continuously and completing instantaneously-remains an open question. Bohr’s  model32 
depicts electron transitions in hydrogen atoms as instantaneous, a view echoed by the Copenhagen interpre-
tation, especially in the context of treating photon absorption as a quantum measurement. This perspective 
aligns well with the randomness introduced by the Born rule. On the other hand, the CSL model proposes a 
continuous process for introducing  randomness25,26, yet it contends with the ’tail problem,’ where remnants of 
the wave function persist post-collapse31. Furthermore, the derivation of Einstein coefficients within quantum 
mechanics implies a continuous  process33. Extending this concept to quantum  electrodynamics34 suggests that 
vacuum fluctuations play a role in atom-photon interactions and may trigger spontaneous  emission35,36. These 
fluctuations, arising from Heisenberg’s uncertainty  principle5, occur because a quantum field’s amplitude and 
rate of change cannot simultaneously be zero, even in a vacuum. The Casimir effect provides empirical evidence 
for these vacuum  fluctuations37,38.

This paper investigates the absorption of a single photon by atoms, based on two hypotheses: the absorption 
process is continuous, and its inherent randomness arises from vacuum fluctuations. Our focus is primarily on 
individual systems, as opposed to ensembles. We begin by studying an example of two atoms absorbing a single 
photon. Next, we examine the role of vacuum fluctuations and draw an analogy with Brownian motion. Following 
this, we propose methods to validate the mechanism experimentally. Subsequently, we analyze two additional 
examples before discussing the interplay of information and randomness.

Two atoms absorbing one photon
We consider a scenario depicted in Fig. 1, where a single photon interacts with two identical atoms that are 
initially in their ground states. For simplicity, we assume that each atom has only two energy levels: the ground 
state and an excited state, with an energy difference of �E . If the frequency ν of the photon is off-resonance—
i.e., hν  = �E , where h is Planck’s constant—the atoms will not absorb the photon. Instead, the photon will be 
diffracted, leading to an interference pattern. In an extended atomic lattice, this pattern would correspond to 
Bragg’s  law39.

The system is initially symmetric, with the photon’s wave function interacting equally with both atoms. How-
ever, this symmetry is broken upon photon absorption, as one atom becomes excited while the other remains in 
the ground state. This symmetry breaking introduces randomness.

An instantaneous process would imply infinite changes in energy and momentum, which are physically unre-
alistic. Therefore, at least in the initial stages of absorption, the process is continuous. This process is governed 
by the Schrödinger equation:

where |�I� represents the overall wave function of the system, including both atoms and the photon. Here, HI is 
the Hamiltonian, and the subscript I indicates that we are working within the interaction picture.

The initial symmetry may be maintained if both atoms partially absorb and then re-emit the photon, similar 
to a double-slit experiment. This would result in an observable interference  pattern40. However, to absorb the 
photon, the symmetry must be broken. The deterministic nature of the Schrödinger equation alone is insuffi-
cient to achieve this break in symmetry. When the equation is unable to further evolve the system, it essentially 
“freezes”, leading to:

(1)i �
d

dt
|�I� = HI|�I�,

atom A

atom B

a photon

Figure 1.  Two atoms interacting with a single photon. The photon initially interacts symmetrically with both 
atoms but ultimately is absorbed by only one, breaking the symmetry and introducing randomness.
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At this point, the overall wave function takes the form:

where |0� and |1� denote the ground and excited states of an atom, respectively. The two atoms are entangled.
We can rewrite Eq. (3) as follows:

The coefficient 
√
2 in the first term arises due to the non-orthogonality of the three terms. Note that the first term 

is unique and cannot be represented by any combination of the remaining terms. This term captures a unique 
feature of the system: both atom A and atom B are at least partially in the intermediate state 1√

2
(|0� + |1�) . Addi-

tionally, while the components |0�A|0�B and |1�A|1�B may not satisfy the laws of energy conservation, they are 
permitted to appear for a very short time due to Heisenberg’s uncertainty  principle5.

Despite the entanglement between atoms A and B, each atom can still partially behave as if it were an isolated 
particle in a superposition state. This phenomenon can be further illustrated by the hydrogen atom example. 
Although the hydrogen atom is a two-body system with the electron and proton positionally entangled, the 
electron can nonetheless be described by a wave function, such as ψ1,0,0(r, θ ,φ) , as if it were an isolated particle, 
albeit in a superposition state.

Electrons in atoms occupy discrete eigenstates, resulting in stable wave functions over time scales shorter 
than the lifetime of spontaneous emission. For example, in a hydrogen atom’s 2p state, the electron’s density 
distribution remains time-independent over durations much shorter than the 2p state’s nanosecond lifetime.

In contrast, when considering a superposition of discrete eigenstates, the wave function becomes dynamic. 
Let’s consider hydrogen atoms as examples, with their eigenstates represented as follows:

with corresponding energy eigenvalues E1,0,0 and E2,1,1 , respectively. When atom A is in the state 1√
2
(|0� + |1�) , 

the wave function is given by:

Consequently, the time-dependent density distribution is:

where ω = �E/� , or more specifically, ω = (E2,1,1 − E1,0,0)/� , � is the reduced Planck’s constant. This density 
distribution rotates with an angular frequency ω , potentially leading to an emission of electromagnetic waves or 
interactions with existing fields. In a physical vacuum, electromagnetic waves may arise due to vacuum fluctua-
tions and may interact with this state. In addition, cosmic microwave background  radiation41 may also play a role.

Wave function collapse induced by vacuum fluctuations
When atom A, in the state described by Eq. (6), interacts with a vacuum fluctuation, its wave function undergoes 
a change:

A phase difference between the two terms may also exist, but it should not play a major role in this study and 
is therefore not specified. The energy change from 1

2
(E1,0,0 + E2,1,1) to sin2 φE1,0,0 + cos2 φE2,1,1 necessitates a 

corresponding change in atom B to conserve energy:

This instantaneous correlation between possibly widely separated atoms is a hallmark of quantum entanglement, 
initially proposed by Einstein, Podolsky, and Rosen (EPR)8 and further elaborated by  Bell9. The entanglement 
persists from the moment the photon begins interacting with the atoms until one of the atoms completely absorbs 
the photon, thereby linking the photon absorption process with the creation and destruction of the entangle-
ment between the atoms.

Accordingly, the overall wave function evolves as follows:

where θ = arctan cot2 φ and any possible phase difference between the two terms has been omitted. This expres-
sion ensures the conservation of energy. However, the Heisenberg uncertainty principle permits brief departures 

(2)i �
d

dt
|�I� = 0.

(3)|�I� =
1
√
2
|1�A|0�B +

1
√
2
|0�A|1�B,

(4)|�I� =
√
2

(

1
√
2
|0� +

1
√
2
|1�

)

A

(

1
√
2
|0� +

1
√
2
|1�

)

B

−
1
√
2
|0�A|0�B −

1
√
2
|1�A|1�B.

(5)|0� = �1,0,0(r, θ ,φ, t), |1� = �2,1,1(r, θ ,φ, t),

(6)�A(r, θ ,φ, t) =
1
√
2
�1,0,0(r, θ ,φ, t)+

1
√
2
�2,1,1(r, θ ,φ, t).

(7)|�A(r, θ ,φ, t)|2 = f1(r, θ)+ f2(r, θ) cos(φ − ωt),

(8)�A(r, θ ,φ, t)
a vacuum−−−−−−→
fluctuation

sinφ�1,0,0(r, θ ,φ, t)+ cosφ�2,1,1(r, θ ,φ, t).

(9)�B(r, θ ,φ, t)
same vacuum−−−−−−−→
fluctuation

cosφ�1,0,0(r, θ ,φ, t)+ sin φ�2,1,1(r, θ ,φ, t).

(10)|�I�
vacuum−−−−−−→

fluctuation
sin θ |1�A|0�B + cos θ |0�A|1�B,
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from the usual rule of energy conservation. This means that the above expression can be temporarily deviated 
from, allowing the two atoms to interact with vacuum fluctuations independently for a short time. Eventually, 
these independent interactions reconcile to ensure energy conservation over a longer timescale.

The entanglement between the two atoms suggests the presence of faster-than-light correlations. Interestingly, 
this faster-than-light feature is also present within each individual atom. As described by Eqs. (6) and (7), the 
electron cloud extends infinitely, giving the appearance of superluminal rotation in its outer regions. However, 
this does not violate causality, as the electron cloud represents a single quantized entity rather than a multi-
particle system. Causality is preserved as long as the speed at which the wave function propagates to regions 
where it previously had zero amplitude, from the nearest region with non-zero amplitude, does not exceed the 
speed of light.

Another feature is that vacuum fluctuations enable a smooth process for completing the photon absorption. 
As the system approaches an eigenstate, the factor f2(r, θ) in Eq. (7) decreases, weakening the interaction with 
vacuum fluctuations. This results in a gradual slowing down of the dynamic process, ensuring that the dynamic 
process is continuous even at its conclusion. This phenomenon can be further studied using an analogy with 
Brownian motion.

Like the CSL  model31, our example faces a “tail problem,” but in the temporal dimension, characterized by 
indefinite photon absorption duration. It’s worth noting that some processes in physics, such as the formation 
of a hydrogen atom, inherently demand an infinite duration to comply with causality. For instance, an electron 
transitioning from a  spatially confined state to an eigenstate, such as �1,0,0(r, θ ,φ, t) , which extends to infinity, 
must take an infinite amount of time. In light of this, the temporal tail problem in our example doesn’t pose a 
fundamental issue. Its experimental impact is minimal because the effect diminishes exponentially over time, 
making it practically negligible. In fact, this exponential decrease is so rapid that, on the scale of physical experi-
ments, the entire process appears to occur almost instantaneously.

Brownian motion analogy for disentanglement
For the example illustrated in Fig. 1, the disentanglement begins when the overall wave function is in the state 
described by Eq. (3). In a more general scenario where the two atoms are not arranged symmetrically, the system’s 
wave function, when it is stuck, takes the following form:

where C1 and C2 are complex probability amplitudes that satisfy |C1|2 + |C2|2 = 1 . We define a parameter x such 
that

The disentanglement process in this general case can be likened to a particle undergoing continuous Brownian 
 motion42 on a unit-length line, starting at position x, as depicted in Fig. 2. The particle reaching the endpoints 
0 and 1 corresponds to the disentanglement outcomes |0�A|1�B and |1�A|0�B , respectively. To model the slowing 
down of the disentanglement near eigenstates, we introduce a diffusion  coefficient43 D(x) = x(1− x) . Conse-
quently, the diffusion velocity of the particle is given by:

In other words, as the particle approaches an endpoint, either 0 or 1, its motion slows down, ensuring a smooth 
and continuous end to the Brownian motion.

To be consistent with Born’s  rule6, the probability of the particle reaching endpoint 1 should be x, and the 
probability of reaching endpoint 0 should be 1− x . The Born rule can be reproduced. We show this in the fol-
lowing way. When the particle starts at a position ξ < 1

2
 , it has an equal probability of reaching either 0 or 2ξ , 

provided the Brownian motion does not favor one direction over the other. This remains true even if the diffusion 
coefficient D(x) is not constant. When the particle starts at a position ξ > 1

2
 , it has an equal probability of reaching 

either 1 or 2ξ − 1 . By combining these two scenarios, we can study Brownian motion starting at any position x.
To reproduce the Born’s rule, we expand x ( 0 ≤ x ≤ 1 ) as follows:

where each of c1, c2, . . . , cn, . . . is either 0 or 1. This representation aligns with the binary representation of a 
fraction that is less than 1. Using this representation, we can calculate the probability of the particle reaching 
endpoint 1 by following the flowchart in Fig. 3. The flowchart demonstrates that the probability of the particle 
reaching endpoint 1 is x. This method of reproducing Born’s rule is similar to the gambler’s ruin  mechanism30,31.

(11)|�I� = C1|1�A|0�B + C2|0�A|1�B,

(12)|C1|2 = x, |C2|2 = 1− x.

(13)v(x) ∝ x(1− x).

(14)x = c1
1

2
+ c2

(

1

2

)2

+ · · · + cn

(

1

2

)n

+ · · · ,

0 1x

|1〉A|0〉B |0〉A|1〉B

Figure 2.  Brownian motion on a line of unit length, where a particle starts at position x. The probability of the 
particle reaching endpoint 1 is x, while the probability of the particle reaching endpoint 0 is 1− x.
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Model validation
The impact of vacuum fluctuations on photon absorption by two atoms, as shown in Fig.1, can be experimentally 
probed using the Casimir  effect37,38. If vacuum fluctuations are crucial for completing photon absorption, this 
process would be characterized by time-dependence and modulation influenced by fluctuation intensity. The 
Casimir effect demonstrates that this intensity can be controlled by adjusting the proximity of parallel conductive 
plates; reducing the gap results in weakened fluctuations. In an adapted setup, positioning these plates around 
the two atoms from Fig.1 could prolong their entanglement. During this extended entanglement, the atoms 
have a non-zero probability of simultaneously re-emitting the photon, resulting in an observable interference 
pattern akin to a double-slit  experiment40. The observation window for this pattern, or the time duration over 
which the interference occurs, can be measured. If vacuum fluctuations are indeed responsible for disrupting 
the entanglement, then a correlation should exist: the closer the plates, the wider the observation window. This 
provides a foundation for experimental validation.

Additionally, this experimental setup could further validate our proposed mechanism. Following photon 
absorption, spontaneous emission, as per our model, would not produce a two-slit interference pattern but rather 
a single-slit diffraction pattern, attributed to the photon being absorbed by a single atom. Therefore, while obser-
vations within the excitation window are expected to show a double-slit pattern, a shift to a single-slit pattern is 
predicted post-excitation. This transition contrasts with standard quantum mechanics predictions. Drawing from 
Schrödinger’s cat thought  experiment7, which posits that unobserved states maintain coherence, interpreting the 
superposition in Eq. (3) as a Schrödinger’s cat state implies that coherence would persist through photon absorp-
tion and into the spontaneous emission phase, resulting in ongoing two-slit interference. This deviation can be 
leveraged to test our mechanism by observing whether there is a shift from a two-slit to a single-slit interference 
pattern, depending on the timing relative to the initiation of photon absorption. For accurate results, it is crucial 
to ensure that the excited state’s lifetime significantly surpasses the duration of excitation.

Three‑atom photon absorption
A similar study can be carried out for scenarios in which a single photon is absorbed by more than two atoms. In 
a three-atom scenario, as depicted in Fig. 4, the wave function |�I� assumes the following form when it is stuck:

(15)|�I� = C1|1�A|0�B|0�C + C2|0�A|1�B|0�C + C3|0�A|0�B|1�C ,

x = c1
1
2 + · · ·+ cn

1
2

)n + · · ·
ξ = x
p = 0
n = 1

ξ ≥ 1
2?

(or cn = 1?)

(2nd scenario)
ξ = 2ξ − 1

(1st scenario)
ξ = 2ξ

p = p+ cn
1
2

)n

n = n+ 1

YesNo

Figure 3.  The flowchart depicting the process of a particle undergoing Brownian motion with an initial 
position x. It shows that the probability p of the particle reaching endpoint 1 is equal to x, the initial position of 
the particle.

atom A

atom C

atom Ba photon

Figure 4.  A photon interacting with three atoms, eventually being absorbed by one of them.
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where C1,C2, and C3 are complex probability amplitudes that satisfy |C1|2 + |C2|2 + |C3|2 = 1 . The three atoms 
are entangled. We define x1 and x2 as follows:

The disentanglement can be likened to two particles undergoing Brownian motion on the same unit length 
line, starting at positions x1 and x2 respectively, as depicted in Fig. 5. Upon collision, the particles merge. There 
are three possible outcomes:

• Both reach endpoint 1, with probability x1.
• Both reach endpoint 0, with probability 1− x2.
• One at each endpoint, with probability x2 − x1.

The disentanglement leads to one of the following states:

• |1�A|0�B|0�C , with probability x1 , or |C1|2.
• |0�A|0�B|1�C , with probability 1− x2 , or |C3|2.
• |0�A|1�B|0�C , with probability x2 − x1 , or |C2|2.

This framework can be generalized to include more atoms by adding additional particles, while still employing 
the same Brownian motion analogy.

One‑atom photon absorption
A single atom in a superposition of discrete states |0� and |1� may also interact with vacuum fluctuations. To 
illustrate this, consider a scenario with only one atom absorbing a photon. Initially, the system’s wave function 
is |γ �|0� , where |γ � denotes the wave function of the photon. Upon interaction, the wave function evolves to:

where C1 and C2 satisfy |C1|2 + |C2|2 = 1 . Rewriting this equation yields:

The atom is partially in the superposition state C1|0� + C2|1� , enabling it to interact with vacuum fluctuations. 
This introduces randomness: vacuum fluctuations may occasionally prevent the photon from being absorbed 
and alter its wave function in such a way that it goes out into a random direction.

This example could be considered a special case of the CSL model and vacuum fluctuations could serve as the 
random term. However, this random term is likely to be significant only when the atom is in a superposition state.

Extending this example to multi-atom systems, such as the one depicted in Fig. 1, suggests that vacuum 
fluctuations should initiate as soon as atoms enter a superposition. The overall wave function then becomes:

with C1,C2,C3 satisfying |C1|2 + |C2|2 + |C3|2 = 1 . The Schrödinger equation and vacuum fluctuations govern 
the system’s evolution simultaneously as soon as the interaction starts. Specifically, while the Schrödinger equa-
tion governs the transition from the first term to the second and third terms, vacuum fluctuations cause the 
coefficients C1 , C2 , and C3 to fluctuate.

Information and vacuum fluctuations
In the absence of vacuum fluctuations, the complete absorption of a photon by an atom would be impossible. 
Governed solely by the deterministic Schrödinger equation, this process would require the photon’s wave function 
to align precisely with the atom’s discrete eigenstates to facilitate transitions. However, given that the photon’s 
wave function possesses a continuous spatial configuration established prior to its interaction with the atom, 
there is an inherently near-zero probability of achieving such precise alignment.

Vacuum fluctuations offer a solution to these issues by facilitating the transition from the initial to the final 
state through two concurrent ways:

• The Schrödinger equation maps the initial state-which includes both the photon and the atom in its ground 
state-to an output that closely approximates one of the atom’s excited states. Any deviations manifest as 
vacuum fluctuations, which eventually decouple from the excited state, preserving unrepresented information 

(16)|C1|2 = x1, |C2|2 = x2 − x1, |C3|2 = 1− x2.

(17)|�I� = C1|γ �|0� + C2|1�,

(18)|�I� = (|γ � + 1)(C1|0� + C2|1�)− C1|0� − C2|γ �|1�.

(19)|�I� = C1|γ �|0�A|0�B + C2|1�A|0�B + C3|0�A|1�B,

0 1x2x1

|1〉A|0〉B |0〉C |0〉A|1〉B |0〉C |0〉A|0〉B |1〉C

Figure 5.  Two particles undergoing Brownian motion on a line of unit length. Upon collision, the two particles 
merge into a single particle.
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from the initial state. It’s worth noting that this preserved information is not readily extractable and remains 
hidden. Additionally, treating the output as a superposition of the excited state and vacuum fluctuations is 
valid only when all conservation laws are met.

• Most of the time, the Schrödinger equation maps the initial state to an output that is a general superposition 
of the ground and excited states. Pre-existing vacuum fluctuations induce Brownian motion in this output 
state, steering it closer to an eigenstate.

Our study suggests that vacuum fluctuations could be central to explaining the randomness observed in the 
photon absorption process by atoms. These fluctuations, integral to quantum field theory, are essential for accu-
rately calculating phenomena such as the Lamb  shift44,45. Yet, the deterministic nature of quantum field theory 
poses an intriguing paradox: how does it give rise to randomness in photon absorption? Quantum field theory’s 
role in time evolution implies that vacuum fluctuations are dynamic, a notion visually exemplified in Quantum 
Chromodynamics (QCD)46,47. Different from the Lamb shift, photon absorption is a dynamic process and can 
be influenced by the evolving nature of vacuum fluctuations. Should these fluctuations indeed be dynamic, their 
specific initial conditions could hold latent information that manifests as apparent randomness during the photon 
absorption process, as guided by the dynamics of quantum field theory. This phenomenon mirrors the principles 
of chaos  theory48, effectively bridging deterministic and probabilistic frameworks in physics.

Summary
We have investigated scenarios involving the absorption of a single photon by one, two, and three atoms to 
address several fundamental issues. Firstly, we demonstrate that this process can be continuous, with the 
Schrödinger equation playing a significant role in its time evolution. Secondly, vacuum fluctuations are shown 
to contribute to this evolution, introducing randomness. Thirdly, by exploring single-system scenarios instead of 
ensembles, we successfully replicate the Born rule in this context through a Brownian motion analogy. Fourthly, 
the challenge posed by the discrete nature of atomic eigenstates implies that external forces must intervene, lead-
ing to information loss and the emergence of randomness. Additionally, we propose an experiment to investigate 
the impact of vacuum fluctuations on two atoms absorbing a single photon in a double-slit setup, with the atoms 
acting as slits. This experiment aims to ascertain whether the Casimir effect can prolong the timeframe for creat-
ing a two-slit interference pattern.

Data availability
All data generated or analysed during this study are included in this published article.
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