
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports

Graph autoencoder with mirror
temporal convolutional networks
for traffic anomaly detection
Zhiyu Ren 1,4, Xiaojie Li 1,4, Jing Peng 1, Ken Chen 2*, Qushan Tan 2, Xi Wu 1* & Canghong Shi 3

Traffic time series anomaly detection has been intensively studied for years because of its potential
applications in intelligent transportation. However, classical traffic anomaly detection methods often
overlook the evolving dynamic associations between road network nodes, which leads to challenges in
capturing the long-term temporal correlations, spatial characteristics, and abnormal node behaviors
in datasets with high periodicity and trends, such as morning peak travel periods. In this paper, we
propose a mirror temporal graph autoencoder (MTGAE) framework to explore anomalies and capture
unseen nodes and the spatiotemporal correlation between nodes in the traffic network. Specifically,
we propose the mirror temporal convolutional module to enhance feature extraction capabilities
and capture hidden node-to-node features in the traffic network. Morever, we propose the graph
convolutional gate recurrent unit cell (GCGRU CELL) module. This module uses Gaussian kernel
functions to map data into a high-dimensional space, and enables the identification of anomalous
information and potential anomalies within the complex interdependencies of the traffic network,
based on prior knowledge and input data. We compared our work with several other advanced deep-
learning anomaly detection models. Experimental results on the NYC dataset illustrate that our model
works best compared to other models for traffic anomaly detection.

In recent years, intelligent transportation have become increasingly complex due to rapid urbanization and
population growth. There is a growing need for abnormal event detection in transportation networks. The
Shanghai Bund trampling incident that occurred on December 31, 2014, in China is a widely known tragedy
closely associated with traffic anomaly detection1. Furthermore, on January 26, 2017, in Harbin, the largest city
in northeastern China, a single traffic incident resulted in a chain of rear-end collisions, leading to eight fatali-
ties and thirty-two injuries2. The above events show that early detection and prediction of anomalies before
they occur are of significant value in preventing serious incidents. Therefore, an efficient and accurate anomaly
detection system holds significant research value as it enables continuous monitoring of specific indicators and
effective prevention of potential anomalies.

Anomaly detection is widely used in smart cities, especially in intelligent transportation systems. The intel-
ligent transportation system discussed in this paper is an artificial intelligence-based technology that aims to
detect intelligent traffic anomalies. By learning the relationships between sensors, we could detect anomalies from
sensors data3–5. However, traffic anomalies usually exhibit complex forms due to two aspects: high dimensionality,
sparsity, abnormal scarcity (i.e., the need to correlate time and space, including speed or flow), and difficulty in
capturing the hidden relationship between nodes (i.e., spatial modeling in the face of different data sources with
varying degrees of anomalies in density or distribution and scale)6,7. Therefore, it is important to explore ways
to capture complex inter-sensor relationships and detect anomalies from node relationships. Several methods
are based on Generative Adversarial Networks (GANs) based method3. However, the generator of GANs may be
ineffective in fully capturing the hidden distribution of the data, which leads to a high false alarm rate and miss
alarm rate due to the combination of the Binary CrossEntropyLoss (BCE) loss function. Most previous methods
for anomaly detection are variants of Long Short Term Memory (LSTM)8,9, such as FC-LSTM10, which focuses
on capturing both the various static factors and dynamic interactions that affect traffic flow. Moreover, there
exists a category of networks, such as TCNs (temporal convolutional networks), designed to address temporal
dependencies, which can capture global temporal information11. However, TCNs may not be as flexible in the
context of traffic timing due to variations in the amount of historical information needed for model predictions

OPEN

1The College of Computer Science Chengdu University of Information Technology, Chengdu 610225,
China. 2Sichuan Digital Transportation Technology Co., Ltd, Chengdu, China. 3School of Computer and Software
Engineering, Xihua University, Chengdu 610039, China. 4These authors contributed equally: Zhiyu Ren and Xiaojie
Li. *email: scsz@scsz.com; xi.wul@cuit.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-51374-3&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

across different domains. When TCNs (temporal convolutional networks) face a dynamic transportation net-
work, their performance may be poor because their perceptual field is not large enough to describe the dynamics,
complexity, and capture the global contextual information12.

The most advanced approach employs a graphical convolutional neural network (GNN) for spatial modeling
reuse and combines LSTM to deal with anomaly prediction in time series3. There is also a method of passing
adversarial training, learning the spatiotemporal features of traffic dynamics and traffic anomalies, respectively13.
Existing methods of anomaly detection using graph convolutional neural networks (GCNs) do not well-address
data sparsity and capture unseen nodes and the spatiotemporal correlation between nodes in the traffic network.

To solve the above problem, we propose a mirror temporal convolutional module (MTCM) to capture the
anomalous information related to input data and hidden dynamic nodes in traffic networks. We mainly design
two modules in MTGAE: mirror temporal convolutional module (MTCM) and graph convolutional gate recur-
rent unit cell (GCGRU CELL). Combined with self-adaptive, the MTCM can efficiently input into its modules
in the face of sections of varying lengths in the dataset. MTCM explores the potential association between nodes
and nodes by learning the complex hidden relationships and dependencies between nodes in traffic networks.
GCGRU CELL module fully uses the existing prior knowledge (historical data). It captures road information,
hidden node relationships, and dependencies for anomaly information redistribution, thus allowing us to obtain
anomaly information more easily. We summarize the contributions of this paper as follows:

• We propose an anomalous detection framework called MTGAE, which maximizes the exploration of pos-
sible anomalies between nodes in the complex interdependencies, and better captures the hidden features
between node-to-node in the traffic network.

• We construct a mirror temporal convolutional module, which is self-adapt to dataset and captures and
cascades the hidden information between nodes by maximizing the breakthrough of the perceptual field of
view of TCN.

• We propose the GCGRU CELL module, which captures long-term and short-term dependent anomalies in
the traffic network space-time and maximizes the extraction of spatiotemporal features and possible anomaly
information by cooperating with MTCM.

Related work
In this section, we introduce the graph convolution networks, temporal convolutional networks, and autoen-
coder-based anomaly detection.

Graph convolution networks
Recently, Graph Neural Network (GNN) variants, such as Graph Convolutional Networks (GCN), have dem-
onstrated ground-breaking performances on many deep-learning tasks. In addition, it is modular, scalable,
stronger in generalization ability, and explores insights that direct further research14. GCN captures the complex
dependencies of node embeddings through information across vertices15. Due to these powerful features, in vari-
ants of GCN, the sensors on the road of the traffic network are considered nodes in intelligent transportation,
and each node’s traffic speed or flow rate is regarded as a dynamic input feature. Among them, the Graph atten-
tion network (GAT) updates the node features through a pairwise function between the nodes with learnable
 weights16. However, it only computes one restricted form of static attention. To address this limitation, GATv217
introduces dynamic attention alongside static attention, allowing for more dynamic and adaptive computation
of graph attention. In the subsequent development of the GCN, CorrSTN18 effectively incorporates correlation
information into the spatial structure. PDFormer19 captures both short-range and long-range spatial dependen-
cies by utilizing various graph masking, which enables the learning of dynamic urban traffic patterns and over-
comes the restriction of modeling spatial dependencies statically. Moreover, STAEformer20 takes into account the
intrinsic spatial-temporal relationships and temporal ordering information in traffic time series. These methods
are widely used in traffic forecasting, while graph embedding for traffic anomaly detection is less studied. For
example, ST-Decompn solves the legal problem caused by changes in location and time in traffic cities through
decomposition, as well as anomalies that may show up differently in the face of different datasets21, ConGAE
detects traffic anomalies using semi-supervised frameworks such as autoencoders only for OD (origin-destination
pairs) datasets on data washing and high dimensionality13. Besides, Graph Convolutional Adversarial Network
(STGAN) uses adversarial training, which is divided into three modules to capture different features respectively:
the recent module for local, the trend module for Long-term, and the external module for other traffic dynamics
and anomalies, but the unsupervised learning, like an adversarial neural network, brings instability for anomaly
 detection3. Influenced state of the art, we borrowed the graph convolutional gated recurrent unit (GCGRU)22
simultaneously to solve the problem of Spatiotemporal characteristics of traffic anomalies. Our work is focused
on the traffic anomaly prediction capabilities of GCN.

Graph autoencoders (GAEs) are a kind of unsupervised learning method, which means they map nodes
to a potential vector space through an encoding process, reconstructing graph information from the vector to
generate a graph similar to the original one (decoding)15,23. For example, ADN24 is a graph autoencoder structure
and achieves information diffusion through alternating spatial and temporal self-attention. Due to the power of
 GAE25, it is widely used in different research directions, such as link prediction26–30, graph clustering31,32, hyper-
spectral anomaly detection33. While the traditional GCN takes node features and adjacency matrix as input and
node embedding as output, GAEs compresses the node embeddings of all nodes in a graph to a single graph
embedding to obtain information about the context.

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

Temporal convolutional networks
Earlier research methods focus on traffic-related problems but have shown significant inaccuracies in anomaly
prediction. Deep learning has gradually dominated time series prediction tasks with sophisticated data modeling
capabilities and autonomous learning abilities in recent years. Most studies in the field of transportation rely on
gated linear Unit (GLU)34, or gated recursive units (GRU)35 to capture the dynamic temporal correlation of time
series data. Moreover, based on the transformer architecture, STGM36 introduces a novel attention mechanism
to capture both long-term and short-term temporal dependencies. Temporal convolutional networks (TCNs)
also have significant advantages in addressing temporal dependencies, especially in time series prediction tasks.
However, most traffic flow anomaly prediction frameworks use the original Temporal Convolutional Network
(TCN)37,38 structure without modification, and traffic anomaly detection is still under-explored. In this study,
we have enhanced the TCN to better detect anomalies within this domain, allowing for a more comprehensive
analysis of time series data.

Autoencoder‑based anomaly detection
The autoencoder, an unsupervised neural network, has seen significant success across various fields. This suc-
cess is largely due to its superior ability to discriminate between abnormal and regular inputs, making it widely
used in anomaly detection39–44. In the field of graph convolutional networks (GCN), GCN-based autoencoders
are also employed for anomaly detection45–48. They are mainly studied in graph embedding, which is consistent
with the direction of our work, thanks to the network structure of the graph, which can connect various points
in the intricate world for anomaly detection.

Methodology
Although many traffic anomaly detection methods have achieved optimal performance, they often overlook
the hidden relationships between nodes during the detection process. For instance, traffic congestion during
peak periods upstream can impact downstream traffic. This oversight results in many models lacking the ability
to capture long-term temporal correlations, spatial characteristics, and high periodic trends. To address this,
we aim to identify abnormal information and potential anomalies in the complex interdependencies among
nodes in traffic networks. Consequently, we propose a traffic anomaly detection framework, MTGAE, with node
interaction (see Fig. 2).

MTGAE consists of two main modules: MTCM and GCGRU CELL. The original input first passed through
an adaptive process. This allows our module to better self-adapt to existing datasets by converting graph signals
in low-dimensional spaces into potential vectors in high-dimensional spaces. Then we construct MTCM and
GCGRU CELL. Specifically, we built MTCM to expand the hidden information in spacetime. MTCM internally
expands x to the latent variables xm by mirror flip, and increases dilation factors and generates the hidden states
H to capture both long-term spatiotemporal complex dependencies combining with TCN. Meanwhile, we built
GCGRU CELL module to capture long-term and short-term 84 dependent anomalies in the traffic network. It
combines original inputs and the hidden spatiotemporal states H as prior information. We first redistribute it
through the Gaussian kernel module but without changing the overall structure of the traffic network (see in
Fig. 2), then combine with our GCN modules to extract more spatiotemporal information. Subsequently, based
on the output of the first GCGRU CELL, the spatio-temporal information h(t)1 and MTCM’s hidden information
H, the second GCGRU CELL module adds more hidden details to correct the defects generated. Finally, we link
the reconstructed results with the loss function to determine whether there are anomalies. In this section, we
introduce the details of the MTGAE.

Problem definition
In this paper, traffic anomaly is monitored and detected in discrete time series T ∈ (t1, t2, . . . , tn) . We denote
the adjacency matrix representation graph as G(T) = (V ,E,W) where V indicates different nodes, such as
two nodes vi and vj , E denotes the set of edges between two nodes and W is the weighted adjacency matrix. A
larger weight between two nodes means they are closer in the road networks and vice versa (see Fig. 1). Given
G(T) = (V ,E,W) , we aim to find the abnormal event ta ∈ T in the graph G that disrupts the regular traffic
operation.

We aim to find the event ta ∈ T in the graph G that disrupts the regular traffic operation. We get the hid-
den state through a specially designed contextual encoder, embed the information as a coded low-dimensional
embedding, and then decode it to derive the average reconstruction error that minimizes the weighted adja-
cency matrix. It should be noted that our model is specifically trained using data representing normal traffic
conditions. Consequently, when an anomaly occurs in the traffic operation, it deviates significantly from this
’normal’ baseline. This deviation is captured as a high reconstruction error by our model, effectively indicating
the presence of an anomaly.

Encoder
Our encoder process comprises three steps: the adaptive process, the mirror temporal convolutional module
(MTCM), and the graph convolutional neural network recurrent cell (GCGRU CELL). Initially, the original data,
denoted as x, passes through the adaptive process, and MTCM is constructed to capture the evolving states that
are not visible in the spacetime continuum among the road network nodes over time. In the GCGRU CELL,
based on prior knowledge of the hidden states H from MTCM, our GCN layer, through the Gaussian kernel
module, explores potential anomalies in the complex interdependencies between nodes. The encoder is trained
to learn up to 24 hours in a day and 7 days in a week, facilitating interaction between the GCGRU CELL and a
full connection (refer to Fig. 2). Finally, the graph embedding h(t)2 is applied.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

Figure 1. Illustration of two parts of NYC dataset graph (first column) and corresponding weighted adjacency
matrix (second column) corresponding to scaled inverse travel times between points on the graph. Note that
the mobility data is modeled as a series of time-dependent directed weighted graphs. (a) A portion of the
visualizable NYC mobility data. (b) the adjacency matrix corresponding to subfigure (a). (c) Another portion of
the visualizable NYC mobility data, but it is not part of subgraph (a). (d) the adjacency matrix corresponding to
subfigure (c).

Figure 2. The architecture of the MTGAE. The architecture consists of two main components: an Encoder
and a Decoder. The Encoder includes an adaptive process, the MTCM, and the GCGRU CELL. The MTCM is
designed to effectively capture relevant information from data of variable length. It incorporates the TCN for
processing data that has undergone a ’mirroring’ transformation, adjusting the length of mirrored data back to
its original state prior to input. The GCGRU CELL, comprising a Gaussian Kernel and Graph Convolutional
Networks (GCNs), is instrumental in mapping finite-dimensional data to a higher dimensional space. This
mapping aids in anomaly detection while preserving data distribution. The GCNs within the GCGRU CELL
leverage the GRU architecture to extract spatial-temporal dependencies. Lastly, the Decoder’s primary function,
facilitated by the Bilinear module, is to resample features derived from the Encoder’s output, enhancing the
overall data interpretation process.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

Mirror temporal convolutional module (MTCM)
Inspired by TCN11 (see Fig. 3a), we proposed a superior module named MTCM that wides application in traffic
prediction. Although TCNs can use the extended convolution to expand the perceptual field, they are weaker
than advanced networks (e.g., Transformer) which can use correlation information of arbitrary length. Moreover,
TCNs need strong adaptability to different historical information, which may have uneven predictive power and
perceptual field. To overcome the above situations, we adapt the TCN before transmitting the traffic network
features to reduce the fluctuation of different historical information on the ability of the TCN. We then perform
a mirror flip to further preserve the features and capture the complex hidden relationships and dependencies
between nodes in the traffic network. This explores the potential associations between nodes. Furthermore,
thanks to the one-dimensional convolution of the TCN, we can keep the output sequence consistent with the
original input in length. Finally, this output sequence will be passed as the subsequent hidden state H. More
formally, for a 1-D sequence input x = {x1, x2, x3, . . . xi} ∈ R

i and a filter f : {0, . . . , j − 1} → R , k is the kernel
size (the kernel size in the Fig. 3 is 2), and d is the causal factor (see Fig. 3a). The dilated convolution operation
f on element x of the sequence is defined as:

where xm is the sequence input in mirror flipping, ⊕ denotes concatenate. This further increases the range of
perceptual field and prevents more historical data from being lost in the process of inflated convolution.

GCGRU CELL
It mainly includes the Gaussian kernel module and GCN layer. We did not adopt GRU model (as shown in Fig. 4)
but construct the GCN model inspired by GRU after the Gaussian kernel module. In GCGRU CELL, we replace
the original gated cyclic unit of GRU to our GCN, which has the following two significant: the reset gate helps to
capture short-term dependencies in the sequence, and the update gate helps to capture long-term dependencies
in the sequence. This effectively predicts both long-term and short-term traffic network cycles, and combine with

(1)(xm ⊕ x) ∗ f (j) =
k−1∑

i=0

f (i) · j − d · i

Figure 3. (a) The illustration explains: MTCM uses a hole convolution kernel with a size of 2. The left xm is
the mirror image feature of x , uses the expansion factor K, selects the input of each k step, and then uses 1D
convolution. (b) The figure explains how an embedded node and surrounding embedded nodes are connected
through GCN, where the orange node is the original node, and its neighbour nodes are white and enclosed in
the ellipse. (c) The figure explains ur GCN layer is different from the original GCN, our GCN layer can associate
more sub-nodes. (d) The diagram shows how our GCN layer is associated with its child nodes (blue nodes)
through the example orange node, and then the child nodes (blue nodes) spread to its child nodes (yellow
nodes).

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

Gaussian kernel processing and prior knowledge H (hidden information of MTCM), GCN can capture anomaly
information and possible anomalies in complex interdependencies among nodes while predicting. Unlike image
data, Graph convolution is an essential operation to extract a node’s features. Figure 3b gives examples of an origin
node (orange node) to take the average value of the node features within its neighbours (white nodes in ellipse).

(1) Gaussian kernel module To further enhance the anomaly detection capability of our module, we employ
Gaussian kernel function. It could maintain the ability of high-dimensional data distribution characteristics,
which is crucial for traffic network anomaly detection. Specifically, Gaussian kernels facilitate the mapping of
data from its original space to a higher-dimensional feature space where complex traffic network patterns and
potential anomalies are more easily identified and processed. Moreover, Gaussian kernel exhibit the stability:
It could manage minor fluctuations by adjusting learned scale parameter σ (see Eq. 2) or utilizing a minimax
 strategy49, thereby ensuring more stable anomaly detection results. In summary, embedding Gaussian kernels in
the GCGRU CELL module aims to enhance the model’s performance and accuracy in detecting anomalies within
complex traffic networks. Experimental data demonstrate that using Gaussian kernels to alter the data distribu-
tion effectively improves the accuracy of traffic anomaly detection (see Table 3). Building on this foundation,
we further explored the anomaly detection capabilities of the Gaussian kernel module. As depicted in Fig. 5, we
performed an intermediate variable exploration of the eight feature points generated by 490 edges entering the
GCGRU CELL. This demonstrates the stability and the data mapping capability of our module by conducting
visualization operations on intermediate variables before and after integrating the Gaussian kernel module into
the GCGRU cell. Throughout the experimentation, the overall structure of the data remains unchanged, ensuring
consistency and reliability. Our GCGRU CELL receives two input modes. The first input is from the original input
x after adaptation and receives the hidden information H from the MTCM. Then set the input as Hapt = x +H .
The second input is the output of the first GCGRU CELL h(t)1 , which also receives hidden information H. We
also set this input as Hapt = h

(t)
1 +H . Then, the formula calculated by the Gaussian kernel module is as follows:

where g(Hapt) is generated based on the learned scale σ (we usually set the value between 0.5 and 1) and the i-th
element σi corresponds to the i-th time point. Specifically, for the i-th time point, its association weight to the
Hapt-th point is calculated by the Gaussian kernel.

(2) GCN layer Generally, the traffic network is presented as a weighted digraph. Traditional graph con-
volution networks only operate on adjacent nodes, which results in better short-term prediction than long-
term prediction. Therefore, the spectral graph theory is used in this paper. Let G = (V ,E,W) and establish
spectral matrix L = I − D̂−1/2ÂD̂−1/2 , where I is the identity matrix and D̂ is the degree matrix, Â is the
adjacent matrix. To explore deeper and more complex traffic networks, we extend the graph convolution net-
work to a higher level and divide the traffic graph g(x) sent by the Gaussian kernel module into subgraph
GAsub = {g(Hapt1), g(Hapt2) . . . g(Haptn)} , and the subgraph considers its neighbour nodes GAsub−neighbour , which
achieves more high-order information aggregation.

where W (t)
i represents learnable weights, and r(t) denotes the computed results of graph convolution as time

tincreases.

(2)g(Hapt) =
1

σi
√
2π

e
− 1

2

(
Hapt−i

σi

)2
,

(3)r(t) = ReLU(GA
(t−1)
sub ·W (t)

1 + GA
(t−1)
sub−neighbour ·W

(t)
2),

Figure 4. The image shows the GRU architecture, on which we were inspired to change the gating unit of GRU
to GCN, giving it the same ability as GRU to capture short-term and long-term dependencies in a sequence. The
s
(t) update gating and z(t) reset gating are reflected in the derivation equations of GCGRU in this paper.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

In a separate aspect, the use of GRU 49 simplifies the model, reducing complexity and enabling a faster,
more effective characterization of sentence semantics. Compared to LSTM, GRU reduces the number of gating
parameters, utilizes fewer training parameters, requires less memory, and offers faster execution and training.
Owing to these advantages, our model adopts the GRU architecture over the traditional LSTM approach. We
have transformed the gating unit into a graph convolution layer, as outlined in Eq. (3). This adaptation allows the
GRU architecture to imitate the gating unit effectively. Consequently, the GCN layer can discern more hidden
states from data processed by the Gaussian kernel module, capturing the dynamic spatial correlations within the
traffic network and identifying previously unseen network connections. Formally,

where ht−1 is the previous memory state, Wz , Ws and Uz , Us , U are the weight parameters, r(t) is the current feature
input, and σ is a sigmoid activation function. We combine GCN and GRU to capture the long-term dependen-
cies between nodes in the graph.

(3) Graph Embedding (GE) We construct a time embedding (referred to as the GE module in Fig. 2) after the
second GCGRU CELL to effectively capture the intricate weekly and hourly periodicity inherent in the mobility
data. The time embedding consists of two components: hhour ∈ Rday represents the time of day embedding, and
hday ∈ Rweek represents the day of week embedding. For example, at a specific time t (e.g., 13:00 on Saturday,
July 30), we use hhour (i.e., 13:00) and hday (i.e., Saturday) as the time embeddings. These embeddings serve the
purpose of incorporating additional temporal information as context for the conditioned encoder and decoder.
By incorporating these temporal factors as graph embeddings hG(t) , the model could accurately capture and
represent the patterns and variations in mobility data associated with different times and days.

where hG(t) is the graph embedding at time t, Û from the formula 4 and UG is weight matrix.

Decoder
In the decoder, we begin with information extraction about the node embedding from the graph embedding hG(t) .
For each pair of node embeddings (vi , vj) , we embed the time information hhour (t), hday(t) into the information of

(4)

s(t) = σ(Wzr
(t) + Uzg(Hapt)),

z(t) = σ(Wsr
(t) + Usg(Hapt)),

ĥ(t) = tanh (Wr(t) + U(s(t) ⊙ g(Hapt))),

h(t) = z(t) ⊙ h(t−1) + (1− z(t))⊙ ĥ(t),

(5)

h̃
(t)
G = ⊕(h

(t)
1 , h

(t)
2 , . . . , h(t)n , hhour(t), hday(t)),

ũ
(t)
G = Û (t)(Û (t)(h̃

(t)
G)),

hG
(t) = ReLU(UGũ

(t)
G),

Figure 5. We extracted the intermediate variables before and after using the Gaussian kernel module to visually
demonstrate this module’s importance in our model. (a) Before the Gaussian kernel module. (b) After the
Gaussian kernel module.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

each pair of nodes and compute the corresponding weight wij in the weighted adjacency matrix. We then combine
these node embeddings and time embeddings to form a graph embedding information h̃′G(t) that varies over
time t. It contains both the information of the nodes and the time information (that is, the embedding includes
the collective features of all nodes in the graph at that moment t). Subsequently, a fully connected layer is used
to process this graph embedding, to recover useful vector representations from it. After processing by the fully
connected layer, the vectors i and j, corresponding to hi(t) and hj(t) , are unstacked to recover the embedding of
each individual node at time t. Consequently, the outcome of this process is the embedding representation hn(t)
of a particular node n under specific time t conditions. Finally, to obtain the reconstructed edge weights, we
first used the ReLU activation function to process the graph embeddings, resulting in a feature vector Ŵij(t) that
has undergone a nonlinear transformation. Then, the reconstructed edge weights WR

ij (t) are obtained from the
feature vector Ŵij(t) and the Sigmoid function.

The presence of a bilinear module in the decoder is significant. The bilinear module applies a transformation
to the incoming data, serving two main benefits: 1) The bilinear module ensures that edge weight predictions
consider directionality. In the directed graph, the edge weight from node i to node j could differ from the weight
from node j to node i. 2) The bilinear module employs the formula wij = hi

(t)Ahj
(t) to calculate the edge weights,

where A is a learned parameter. This approach enables the model to distinguish edge weights based on direction,
more accurately depicting directed graph relationships.

where decG is weight matrix, dec1 is the weight matrix of feature vector Ŵij(t) and dec2 is the weight matrix of
WR

ij (t) . The Sigmoid ensure the output WR
ij (t) ∈ [0, 1].

Loss function
We use the mean squared error (MSE) as the loss function, a measure of the difference between the actual value
y and the predict ŷ , to evaluate our model. Formally:

where i is the value of each point in the sequence. And the reconstructed weights are WR
ij (t) and the actual

weights are Wij . During testing, the loss function Eq. (7) for each testing instance is used as its anomaly score.

Experiments
Datasets and implementation
To ensure the model’s credibility, we focused on general datasets that target traffic anomaly detection in our
experiments. We verify our MTGAE method on two public traffic network datasets.

• PEMS-BAY dataset: It is collected in real-time from nearly 40,000 individual detectors spanning the freeway
system across all major metropolitan areas of California50. The dataset comprises 365 sensors located in the
bay area, and it contains traffic data recorded from April to May 2014. For our analysis, we selected a subgraph
of six sensors, each with recorded speed and traffic flow information pertaining to our network. Furthermore,
we extended the duration of each traffic incident from CHP (CHP Traffic Incident Information https:// www.
chp. ca. gov/ traffi c), by one hour to account for the impact of traffic accidents.

• New York City (NYC) taxi dataset: The New York City (NYC) taxi trips dataset is publicly released by the
Taxi and Limousine Commission (TLC). We use it to record the time and location of each taxi pick-up and
drop-off and pool the records formed for each hour of that taxi into a matrix. This dataset includes six months
of data, from January 2019 to March 2019. Since the NYC dataset lacks exception tagging points, we utilized
exception injection to add exceptions into the timing of the dataset51,52.

Baselines
To validate our method’s effectiveness in anomaly detection within the NYC dataset. We obtained these methods
from their official public code repositories and employed their optimal experimental setups, running all models
on the NYC dataset to guarantee fairness:

• Con-GAE13: The method was developed to tackle the challenges posed by extreme data sparsity and high
dimensionality, specifically to address anomalies in traffic conditions. Moreover, It utilizes context-enhanced
graph autoencoders to enhance the effectiveness of anomaly detection.

• SuperGAT 53: A self-supervised graph attention network, uses edge information to guide attention learning.
SuperGAT analyzes two common attention forms, revealing their limitations in capturing label agreement
and edge presence, and proposes enhanced attention mechanisms tailored to graph characteristics.

(6)

h̃′G(t) = ReLU(decGConcat(hG
(t), hhour

(t), hday
(t))),

{h1(t), h(t)2 , . . . , h(t)n } = unstack(h̃′G(t)),

Ŵij(t) = ReLU(dec1Concat(hi
(t), hj

(t))),

WR
ij (t) = Sigmoid(dec2Ŵij(t))

(7)Loss(WR
ij (t),Wij) =

1

n

n∑

i=1

(WR
ij (t)−Wij)

2,

https://www.chp.ca.gov/traffic
https://www.chp.ca.gov/traffic

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

• EG54: The Efficient Graph Convolution (EGC) method is an isotropic Graph Neural Network (GNN) architec-
ture.EGC outperforms comparable anisotropic models like GAT and PNA in terms of accuracy and efficiency.
This finding challenges the prevalent belief that anisotropic GNNs are inherently superior.

• GraphGPS55: A modular and scalable framework designed to build graph transformers, integrating message
passing with global attention. This framework also categorizes positional and structural encodings, thereby
injecting useful inductive biases. GraphGPS demonstrates state-of-the-art performance in various graph
learning tasks and scales effortlessly to thousands of nodes.

• GATv217: Graph Attention Networks (GATs) are limited by their computation of restricted “static” attention,
inhibiting their ability to dynamically prioritize neighbors. To overcome this limitation, GATv2 alters the
order of operations in the scoring function, enabling more expressive dynamic attention.

• Dir-GNN56: The method enhances message passing neural networks (MPNNs) by incorporating edge direc-
tionality and conducting distinct aggregations for incoming and outgoing edges. Moreover, It significantly
betters learning on heterophilic graphs, where neighboring nodes often have different labels, and maintains
performance on homophilic graphs, characterized by label-sharing neighbors.

• PMLP57: The method introduces propagational MLPs, which employ MLP architecture for training and add
message passing layers before inference. This approach bridges the gap between MLPs and GNNs, achiev-
ing performance that is comparable to or surpasses that of GNNs. It demonstrates the effectiveness of GNN
architectures for generalization, even without training in a graph context. Additionally, PMLPs offer faster
and more robust training than GNNs.

Experimental setups
Our experiments were conducted using a GPU 2080TI and an Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz.
Considering the anomaly problem, we experimentally used anomaly injection, randomly selecting time slices θ
in each sequence to inject anomalies. Then extract a portion of the time series corresponding uniformly distrib-
uted time slices θ for perturbation factors for anomaly perturbation (e.g., 10 am for 10 pm). In this experiment,
we set three pollution ratios and magnitudes α , β , and γ on the data set NYC. Anomalies in traffic networks are
mainly divided into two types58,59: (1) Spatial anomalies: where the current traffic conditions are inconsistent with
normal traffic conditions (for example, the flow of traffic vehicles is inconsistent with the normal flow of travel
in the past). (2) Temporal anomalies: where the current traffic conditions conform to the normal spatial pattern,
but not to the current time. In this paper, we perform some anomaly handling on the dataset: Let γ represent the
proportion of time slices randomly selected for contamination, which is applicable to the injection of both spatial
and temporal anomalies; Let α denote the proportion of origin-destination pairs selected for contamination; Let
β defines the range of the uniform distribution used to perturb the travel time. In fact, β defines the magnitude
of spatial anomalies, i.e., the maximum possible value of travel time perturbation.

In the experiments, we adjust the levels of pollution ratios and magnitudes (α , β , and γ), to evaluate the effec-
tiveness of anomaly detection under different scenarios. The specific steps are as follows: For spatial anomalies,
we first randomly select a certain proportion (γ) of time slices and randomly choose a certain proportion (α)
of origin-destination pairs in each contaminated time slice, and then perturb the travel time of these pairs by
factors drawn from the uniform distribution U(−β , β). Temporal anomalies are created by randomly selecting a
certain proportion (γ) of time slices and shifting the time in the data by 12 hours (e.g., changing 8 PM to 8 AM,
and vice versa). We set α ∈ {25%, 50%} , β ∈ {5%, 10%, 20%} , and γ ∈ {5%, 10%, 20%}.

For the training process, we initially set the epoch number at 150 and the batch size at 10 per epoch. In the
previously mentioned day of the week and hour of the day metrics, set both hday and hhour to 100, and the dimen-
sion of the graph embedding we set to 150 and 50, respectively, the discard rate was set to 0.2, the learning rate
is 0.001 by default. Then, we set the learning rate decay in the process, each time, the growth is 0.1 times the last
learning rate so that the model can learn the parameters better. Finally, we selected the NYC datasets from Janu-
ary 8 to March 31, 2019, as the training set and extracted 10% from it for validation. We used the NYC datasets
from January 1 to January 7, 2019, and a portion of the Uber Movement as the test set. Note that the sampling
process was based on uniform distribution random sampling, and both training set and test set were mutually
exclusive (i.e., the same data point would not appear in both the training set and test set).

In addition, ablation experiments were performed on the PEMS dataset to verify the effectiveness of the
proposed module, which was evaluated using MAE metrics. The loss functions that MAE and RMSE are more
credible test methods in some anomaly detection, especially in the traffic area3. Six epochs were set for training.
Each period was divided into 128 batches, the generator loss function was 500, the learning rate was 0.001, and
the decayed by a factor of 0.1 per epoch. In this dataset, we set the number of layers of TCN to 9 and transformed
the head nodes in GCN to GAT to improve the model’s parallelism. In learning, we set the hidden layer to 64.

Result and analysis
(1) Comparison with state-of-the-art work Initially, we compared our MTGAE model with some baseline
models using the AUC as evaluation metric. The calculation of AUC considers both the classification ability of
the classifier for positive and negative cases, which can still make a reasonable evaluation of the classifier in the
case of sample imbalance. We fixed α = 50% and β = 10% in the pollution magnitude and used the anomaly
rate to compare the model’s ability to detect anomalies. It can be seen from Table 1 that our MTGAE is signifi-
cantly better than the other models. Our model outperforms others by about 0.1–0.4 at different anomaly rates.

After that, we fixed the time slice γ of pollution to study the abnormal magnitude to change the pollution mag-
nitude differently. As shown in Table 2, we controlled α as 25% and 50% respectively, and β was controlled as the
same pollution magnitude under α . We can see that our models are higher than the baseline but in the higher β .
For example, the AUC of most models with α = 50% and β = 20% is above 0.9, and most of the baseline models

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

with β = 5% are not performing well. Instead, they all gradually increase in AUC capacity after β increases, while
our model has an excellent performance in all aspects, so it is a more competitive model.

(2) Ablation study In the ablation study, we evaluated several MTGAE variants to evaluate the effects of dif-
ferent parts of our MTGAE (see Table 3). The variants include: (i) MTGAE-gan: We used the framework of GAN
instead of an autoencoder. (ii) MTGAE-ot: We adopted the approach of using an autoencoder and only employed
the original TCN instead of our proposed MTCM. (iii) MTGAE-mt: We removed TCN and incorporated our
proposed MTCM module. (iv) MTGAE-lstm: We removed the GRU and replaced it with the LSTM. (v) MTGAE-
grumt: We removed the LSTM and replaced it with the GCGRU CELL. (vi) MTGAE-Transformer: We removed
the GCGRU CELL and replaced it with the Transformer. (vii) MTGAE-gb: We incorporated the Gaussian ker-
nel module into MTCM and GCGRU CELL, placing it in the final data processing stage of the GCGRU CELL.
(viii) MTGAE: Our complete model framework. The study indicates that the basic TCN variant underperforms

Table 1. Given fixed α and β , the AUC scores of different models with the fraction γ of the time slices chosen
to be polluted.

anomaly rate γ 5% 10% 20%

HA (1981) 0.728 0.687 0.711

RTC (2020) 0.736 0.765 0.790

AE (2002) 0.813 0.812 0.806

EncDec-AD (2016) 0.584 0.582 0.582

REBM (2018) 0.844 0.859 0.833

DAGMM (2016) 0.550 0.546 0.507

GraphSAGE (2017) 0.842 0.840 0.860

GCN (2016) 0.708 0.717 0.744

Con-GAE (2021) 0.903 0.908 0.913

SuperGAT (2021) 0.901 0.908 0.910

EG (2021) 0.883 0.902 0.912

GraphGPS (2022) 0.894 0.906 0.911

GATv2 (2022) 0.887 0.899 0.902

Dir-GNN (2023) 0.882 0.899 0.911

PMLP-layer128 (2023) 0.960 0.965 0.968

MTGAE 1.000 1.000 1.000

Table 2. Given fixed fixed γ , the AUC scores for anomaly detection. Results are shown under different α and β.

Spatial anomaly rate α 25% 50%

Anomaly magnitude β 5% 10% 20% 5% 10% 20%

HA (1981) 0.405 0.533 0.804 0.455 0.687 0.934

AE (2002) 0.294 0.572 0.936 0.405 0.812 0.994

EncDec-AD (2016) 0.410 0.483 0.727 0.452 0.582 0.896

GCN (2016) 0.443 0.564 0.844 0.498 0.717 0.966

DAGMM (2016) 0.511 0.527 0.567 0.525 0.546 0.639

GraphSAGE (2017) 0.381 0.627 0.963 0.491 0.840 1.000

REBM (2018) 0.389 0.633 0.958 0.491 0.859 0.997

RTC (2020) 0.626 0.699 0.863 0.648 0.765 0.942

Con-GAE (2021) 0.946 0.755 0.985 0.610 0.908 1.000

SuperGAT (2021) 0.904 0.910 0.911 0.893 0.908 0.911

EG (2021) 0.897 0.904 0.906 0.888 0.902 0.906

GraphGPS (2022) 0.900 0.909 0.911 0.890 0.906 0.911

GATv2 (2022) 0.894 0.901 0.902 0.885 0.899 0.902

Dir-GNN (2023) 0.893 0.902 0.904 0.883 0.899 0.904

PMLP-layer1 (2023) 0.895 0.902 0.905 0.884 0.900 0.905

PMLP-layer2 (2023) 0.880 0.887 0.888 0.871 0.885 0.889

PMLP-layer64 (2023) 0.916 0.924 0.926 0.906 0.922 0.926

PMLP-layer128 (2023) 0.960 0.967 0.968 0.952 0.965 0.968

MTGAE 1.000 1.000 1.000 1.000 1.000 1.000

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

unless combined with the Gaussian kernel function for processing, which illustrates the importance of MTCM
and GCGRU CELL for anomaly detection. Notably, incorporating a mirror into TCN significantly improves its
efficacy in enhancing GCGRU CELL performance, this demonstrates superior ability in capturing both long and
short-term memory and temporal information in time series.

(3) Real world reflects abnormal traffic We used the NYC dataset from January 1, 2019, to January 7, 2019,
to test the real-world traffic situation to prove the effectiveness of our model. We used the reconstruction loss to
represent the possibility of anomalies, as shown in Fig. 6. January 4 is Friday in the real world, and we can see
that the possibility of anomalies in the afternoon distribution of this day is very intensive, from which we can
infer that Black Friday Shopping is prone to traffic anomalies due to traffic jams.

(4) Sensitivity analysis To study how MTGAE varies for weekly, hourly, and node embedding, we put
α = 50% and β = 10% γ = 10% . We explored the model’s affectivity on spacetime, and we changed the dimen-
sion of node embedding to 25 to 200 (the dimensionality is acceptable for the first GCN and the second GCN)
and the week and hour dimension of temporal embedding to 10 to 200 for training. As shown in Fig. 6b, our
model does not change much, and the AUCs all remain between 0.9 and 1, indicating that our model works well
in most environments. Moreover, we can further see that the AUC of our model is lower when the time node
embedding is large than when the embedding is small.

(5) Generalization ability To explore the generalization ability of MTGAE, we performed experiments on a
large-scale dynamic graph dataset DGraphFin in the financial domain60. It contains over 3.7 million nodes and
4.3 million dynamic edges. Nodes represent financial loan users, and directed edges represent emergency con-
tact relationships. Each dimension represents 17 different elements of personal profiles, such as age and gender.
Among the nodes in the dataset, 15,509 are categorized as fraudsters, 1,210,092 as normal users, and the remain-
ing 66.8% of nodes (2,474,949 nodes) are registered users who have not borrowed from the platform. Based
on the officially published baseline and code, we input the DGraphFin data into our MTGAE, then carry out
feature learning through the 17 features in the structure of MTGAE, and finally divide into two categories (other
baselines also divide into two categories) for anomaly detection, with results shown in the Table 4. Compered

Table 3. Ablation study.

Model MAE RMSE Note

MTGAE-gan 3.076 6.770 Replace our model architecture with GAN

MTGAE-ot 3.150 6.880 The temporal convolution module without mirror

MTGAE-mt 3.019 6.713 The temporal convolution module with mirror

MTGAE-lstm 3.224 6.940 Replace GRU with LSTM

MTGAE-grumt 3.052 6.751 Add the GCGRU-Cell module to the architecture

MTGAE-Transformer 17.020 32.507 Replace our model architecture with Transformer

MTGAE-gb 3.088 6.780 The Gaussian kernel module as a post-processing step

MTGAE 2.990 6.679 Our method

Figure 6. (a) Our model’s ability to detect traffic anomalies. The horizontal axis denotes an hour, the vertical
axis denotes date, and the color depth indicates the possibility of traffic anomalies (reconstruction loss). (b) The
sensitivity experiment of the model. It is guaranteed to be between 0.9 and 1.0 under different node embedding
and time embedding.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

with the network specifically designed for DGraphFin dataset, experiments results illustrates that our MTGAE
possesses certain generalization capabilities.

Conclusions
This paper proposes MTGAN, a spatio-temporal anomaly detection framework for traffic. In the encoder, we
propose two modules: the Mirror TCN (MTCM) and a variant of GCGRU, namely the GCGRU CELL that
captures correlations in spatial and temporal dimensions, and a practical approach: adaptive TCN. We then
performed anomaly injection on the dataset by three contamination metrics and tested it on the NCY dataset.
Experiment results show that our framework outperforms the baseline in traffic anomaly detection, particularly
in aspects of sparsity and high dimensionality, thereby contributing to further research. In future work, we will
explore additional extensions of MTGAE in more datasets and further explore methods for learning dynamic
spatial correlations.

Data availability
The datasets analyzed during the current study are available in the GitHub repository, including the NYC dataset
and the PEMS dataset, which can be found at https:// github. com/ yuehu9/ Con- GAE and https:// github. com/
dleyan/ STGAN, respectively. And the datasets used for testing the generalization capabilities: https:// dgraph.
xinye. com/ datas et. Additionally, we collected and analyzed some of the data used in our experiments. The experi-
mental data collected during the current study available from the corresponding author on reasonable request.

Received: 24 March 2023; Accepted: 4 January 2024

References
 1. Gao, J., Zheng, D. & Yang, S. Perceiving spatiotemporal traffic anomalies from sparse representation-modeled city dynamics. Pers.

Ubiquit. Comput. 27, 1–14 (2020).
 2. Zhang, M. et al. Urban anomaly analytics: Description, detection, and prediction. IEEE Trans. Big Data 8, 809–826 (2020).
 3. Deng, L., Lian, D., Huang, Z. & Chen, E. Graph convolutional adversarial networks for spatiotemporal anomaly detection. IEEE

Trans. Neural Netw. Learn. Syst. 33, 2416–2428 (2022).
 4. Abdallah, M. et al. Anomaly detection and inter-sensor transfer learning on smart manufacturing datasets. arXiv preprint arXiv:

2206. 06355 (2022).
 5. Deng, A. & Hooi, B. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI Con‑

ference on Artificial Intelligence, vol. 35, 4027–4035 (2021).
 6. Zhao, S. et al. GMAT-DU: Traffic anomaly prediction with fine spatiotemporal granularity in sparse data. IEEE Trans. Intell. Transp.

Syst. (2023).
 7. Kim, H., Lee, B. S., Shin, W.-Y. & Lim, S. Graph anomaly detection with graph neural networks: Current status and challenges.

IEEE Access (2022).
 8. Li, D., Chen, D., Goh, J. & Ng, S.-k. Anomaly detection with generative adversarial networks for multivariate time series. arXiv

preprint arXiv: 1809. 04758 (2018).
 9. Park, D., Hoshi, Y. & Kemp, C. C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational

autoencoder. IEEE Robot. Autom. Lett. 3, 1544–1551 (2018).
 10. Liu, X. et al. Traffic anomaly prediction based on joint static-dynamic spatio-temporal evolutionary learning. IEEE Trans. Knowl.

Data Eng. 35, 5356–5370 (2022).
 11. Bai, S., Kolter, J. Z. & Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.

arXiv preprint arXiv: 1803. 01271 (2018).
 12. Zhang, R. et al. Short-term traffic flow forecasting model based on GA-TCN. J. Adv. Transp. 2021, 1–13 (2021).
 13. Hu, Y., Qu, A. & Work, D. Graph convolutional networks for traffic anomaly. arXiv preprint arXiv: 2012. 13637 (2020).
 14. Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y. & Bresson, X. Benchmarking graph neural networks. arXiv preprint arXiv: 2003.

00982 (2020).
 15. Abadal, S., Jain, A., Guirado, R., López-Alonso, J. & Alarcón, E. Computing graph neural networks: A survey from algorithms to

accelerators. ACM Comput. Surv. (CSUR) 54, 1–38 (2021).
 16. Veličković, P. et al. Graph attention networks. arXiv preprint arXiv: 1710. 10903 (2017).
 17. Brody, S., Alon, U. & Yahav, E. How attentive are graph attention networks? arXiv preprint arXiv: 2105. 14491 (2021).
 18. Zhu, W., Sun, Y., Yi, X., Wang, Y. & Liu, Z. A correlation information-based spatiotemporal network for traffic flow forecasting.

Neural Comput. Appl. 35, 21181–21199 (2023).
 19. Jiang, J., Han, C., Zhao, W. X. & Wang, J. PDFormer: Propagation delay-aware dynamic long-range transformer for traffic flow

prediction. arXiv preprint arXiv: 2301. 07945 (2023).

Table 4. The AUC scores of our model and other baselines on the DGraphFin dataset.

Model AUC

GCN 0.707

MLP 0.719

GAT 0.733

GATv2 0.762

TGN 0.774

SAGE 0.776

MTGAE 0.768

https://github.com/yuehu9/Con-GAE
https://github.com/dleyan/STGAN
https://github.com/dleyan/STGAN
https://dgraph.xinye.com/dataset
https://dgraph.xinye.com/dataset
http://arxiv.org/abs/2206.06355
http://arxiv.org/abs/2206.06355
http://arxiv.org/abs/1809.04758
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/2012.13637
http://arxiv.org/abs/2003.00982
http://arxiv.org/abs/2003.00982
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2105.14491
http://arxiv.org/abs/2301.07945

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

 20. Liu, H. et al. Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting. In Proceedings of the 32nd
ACM International Conference on Information and Knowledge Management, 4125–4129 (2023).

 21. Zhang, M. et al. A decomposition approach for urban anomaly detection across spatiotemporal data. In IJCAI International Joint
Conference on Artificial Intelligence (International Joint Conferences on Artificial Intelligence, 2019).

 22. Seo, Y., Defferrard, M., Vandergheynst, P. & Bresson, X. Structured sequence modeling with graph convolutional recurrent net-
works. In International conference on neural information processing, 362–373 (Springer, 2018).

 23. Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2020).
 24. Drakulic, D. & Andreoli, J.-M. Structured time series prediction without structural prior. arXiv preprint arXiv: 2202. 03539 (2022).
 25. Kipf, T. N. & Welling, M. Variational graph auto-encoders. arXiv preprint arXiv: 1611. 07308 (2016).
 26. Mathieu, E., Le Lan, C., Maddison, C. J., Tomioka, R. & Teh, Y. W. Continuous hierarchical representations with poincaré vari-

ational auto-encoders. In Advances in Neural Information Processing Systems, vol. 32 (2019).
 27. Keser, R. K., Nallbani, I., Çalik, N., Ayanzadeh, A. & Töreyin, B. U. Graph embedding for link prediction using residual variational

graph autoencoders. In 2020 28th Signal Processing and Communications Applications Conference (SIU), 1–4. (IEEE, 2020).
 28. Huang, W. R. On edge reweighting for link prediction with graph auto-encoders (2020).
 29. Guo, Z., Wang, F., Yao, K., Liang, J. & Wang, Z. Multi-scale variational graph autoencoder for link prediction. In Proceedings of the

Fifteenth ACM International Conference on Web Search and Data Mining, 334–342 (2022).
 30. Hu, Y., Qu, A. & Work, D. Detecting extreme traffic events via a context augmented graph autoencoder. ACM Transactions on

Intelligent Systems and Technology (TIST) (2022).
 31. Wang, C., Pan, S., Long, G., Zhu, X. & Jiang, J. MGAE: Marginalized graph autoencoder for graph clustering. In Proceedings of the

2017 ACM on Conference on Information and Knowledge Management, 889–898 (2017).
 32. Fan, S. et al. One2multi graph autoencoder for multi-view graph clustering. In Proceedings of The Web Conference, vol. 2020,

3070–3076 (2020).
 33. Fan, G. et al. Hyperspectral anomaly detection with robust graph autoencoders. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2021).
 34. Dauphin, Y. N., Fan, A., Auli, M. & Grangier, D. Language modeling with gated convolutional networks. In International conference

on machine learning, 933–941 (PMLR, 2017).
 35. Cho, K. et al. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:

1406. 1078 (2014).
 36. Lablack, M. & Shen, Y. Spatio-temporal graph mixformer for traffic forecasting. Expert Syst. Appl. 228, 120281 (2023).
 37. Wu, Z., Pan, S., Long, G., Jiang, J. & Zhang, C. Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:

1906. 00121 (2019).
 38. Zhao, W., Zhang, S., Zhou, B. & Wang, B. STCGAT: Spatial-temporal causal networks for complex urban road traffic flow predic-

tion. arXiv preprint arXiv: 2203. 10749 (2022).
 39. Ameli, M., Pfanschilling, V., Amirli, A., Maaß, W. & Kersting, K. Unsupervised multi-sensor anomaly localization with explainable

ai. In IFIP International Conference on Artificial Intelligence Applications and Innovations, 507–519 (Springer, 2022).
 40. Antwarg, L., Miller, R. M., Shapira, B. & Rokach, L. Explaining anomalies detected by autoencoders using shapley additive explana-

tions. Expert Syst. Appl. 186, 115736 (2021).
 41. Givnan, S., Chalmers, C., Fergus, P., Ortega-Martorell, S. & Whalley, T. Anomaly detection using autoencoder reconstruction upon

industrial motors. Sensors 22, 3166 (2022).
 42. Anand, H., Sammuli, B., Olofsson, K. & Humphreys, D. Real-time magnetic sensor anomaly detection using autoencoder neural

networks on the DIII-D tokamak. IEEE Trans. Plasma Sci. (2022).
 43. Tien, C.-W., Huang, T.-Y., Chen, P.-C. & Wang, J.-H. Using autoencoders for anomaly detection and transfer learning in IoT.

Computers 10, 88 (2021).
 44. Santhosh, K. K., Dogra, D. P., Roy, P. P. & Mitra, A. Vehicular trajectory classification and traffic anomaly detection in videos using

a hybrid CNN-VAE architecture. IEEE Trans. Intell. Transp. Syst. (2021).
 45. Zhang, F., Fan, H., Wang, R., Li, Z. & Liang, T. Deep dual support vector data description for anomaly detection on attributed

networks. Int. J. Intell. Syst. 37, 1509–1528 (2022).
 46. Khan, W. & Haroon, M. An efficient framework for anomaly detection in attributed social networks. Int. J. Inf. Technology 1–8

(2022).
 47. Yuan, X. et al. Higher-order structure based anomaly detection on attributed networks. In 2021 IEEE International Conference on

Big Data (Big Data), 2691–2700 (IEEE, 2021).
 48. Vaisman, Y., Katz, G., Elovici, Y. & Shabtai, A. Detecting anomalous network communication patterns using graph convolutional

networks. arXiv preprint arXiv: 2311. 18525 (2023).
 49. Xu, J., Wu, H., Wang, J. & Long, M. Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv

preprint arXiv: 2110. 02642 (2021).
 50. Li, Y., Yu, R., Shahabi, C. & Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint

arXiv: 1707. 01926 (2017).
 51. Yu, W. et al. NetWalk: A flexible deep embedding approach for anomaly detection in dynamic networks. In Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2672–2681 (2018).
 52. Akoglu, L., Tong, H. & Koutra, D. Graph based anomaly detection and description: A survey. Data Min. Knowl. Disc. 29, 626–688

(2015).
 53. Kim, D. & Oh, A. How to find your friendly neighborhood: Graph attention design with self-supervision. arXiv preprint arXiv:

2204. 04879 (2022).
 54. Tailor, S. A., Opolka, F. L., Lio, P. & Lane, N. D. Do we need anisotropic graph neural networks? arXiv preprint arXiv: 2104. 01481

(2021).
 55. Rampášek, L. et al. Recipe for a general, powerful, scalable graph transformer. Adv. Neural. Inf. Process. Syst. 35, 14501–14515

(2022).
 56. Rossi, E. et al. Edge directionality improves learning on heterophilic graphs. arXiv preprint arXiv: 2305. 10498 (2023).
 57. Yang, C., Wu, Q., Wang, J. & Yan, J. Graph neural networks are inherently good generalizers: Insights by bridging GNNs and MLPs.

arXiv preprint arXiv: 2212. 09034 (2022).
 58. Zhang, H. et al. Automatic traffic anomaly detection on the road network with spatial-temporal graph neural network representa-

tion learning. Wirel. Commun. Mob. Comput. 2022, 1–12 (2022).
 59. Tian, Z., Zhuo, M., Liu, L., Chen, J. & Zhou, S. Anomaly detection using spatial and temporal information in multivariate time

series. Sci. Rep. 13, 4400 (2023).
 60. Huang, X. et al. DGraph: A large-scale financial dataset for graph anomaly detection. Adv. Neural. Inf. Process. Syst. 35, 22765–22777

(2022).

Acknowledgements
This work was supported by the National Key Research and Development Program of China (2022ZD0115604)
and National Natural Science Foundation of China (Grant Nos. 42130608, 42075142) and the Sichuan Science

http://arxiv.org/abs/2202.03539
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1906.00121
http://arxiv.org/abs/1906.00121
http://arxiv.org/abs/2203.10749
http://arxiv.org/abs/2311.18525
http://arxiv.org/abs/2110.02642
http://arxiv.org/abs/1707.01926
http://arxiv.org/abs/2204.04879
http://arxiv.org/abs/2204.04879
http://arxiv.org/abs/2104.01481
http://arxiv.org/abs/2305.10498
http://arxiv.org/abs/2212.09034

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:1247 | https://doi.org/10.1038/s41598-024-51374-3

www.nature.com/scientificreports/

and Technology program (Grant Nos. 2023ZHCG0018, 2023NSFSC0470, 2021YFQ0053, 2022YFG0152,
23NSFSC2224, 2020JDTD0020, 2022YFG0026, 2021YFG0018, 2020YJ0241).

Author contributions
Conceptualization, X.L., Q.T., C. S. and X.W.; Data curation, Z.R.; Formal analysis, X.L. and J.P.; Investigation,
Z.R., X.L. and C.S.; Methodology, Z.R.; Project administration, Z.R.; Resources, X.L. and X.W.; Software, Z.R.;
Supervision, X.L. and K.C.; Validation, Z.R. and X.L.; Visualization, Z.R.; Writing—original draft, Z.R.; Writ-
ing—review & editing, X.L. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.C. or X.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Graph autoencoder with mirror temporal convolutional networks for traffic anomaly detection
	Related work
	Graph convolution networks
	Temporal convolutional networks
	Autoencoder-based anomaly detection

	Methodology
	Problem definition
	Encoder
	Mirror temporal convolutional module (MTCM)
	GCGRU CELL

	Decoder
	Loss function

	Experiments
	Datasets and implementation
	Baselines
	Experimental setups
	Result and analysis

	Conclusions
	References
	Acknowledgements

