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Physical interpretation 
of non‑normalizable harmonic 
oscillator states and relaxation 
to pilot‑wave equilibrium
Indrajit Sen 

Non-normalizable states are difficult to interpret in the orthodox quantum formalism but often occur 
as solutions to physical constraints in quantum gravity. We argue that pilot-wave theory gives a 
straightforward physical interpretation of non-normalizable quantum states, as the theory requires 
only a normalized density of configurations to generate statistical predictions. In order to better 
understand such states, we conduct the first study of non-normalizable solutions of the harmonic 
oscillator from a pilot-wave perspective. We show that, contrary to intuitions from orthodox quantum 
mechanics, the non-normalizable eigenstates and their superpositions are bound states in the sense 
that the velocity field vy → 0 at large ±y . We argue that defining a physically meaningful equilibrium 
density for such states requires a new notion of equilibrium, named pilot-wave equilibrium, which is 
a generalisation of the notion of quantum equilibrium. We define a new H-function Hpw , and prove 
that a density in pilot-wave equilibrium minimises Hpw , is equivariant, and remains in equilibrium 
with time. We prove an H-theorem for the coarse-grained Hpw , under assumptions similar to those for 
relaxation to quantum equilibrium. We give an explanation of the emergence of quantization in pilot-
wave theory in terms of instability of non-normalizable states due to perturbations and environmental 
interactions. Lastly, we discuss applications in quantum field theory and quantum gravity, and 
implications for pilot-wave theory and quantum foundations in general.

Pilot-wave theory (also called de Broglie-Bohm theory or Bohmian mechanics) is a realist, nonlocal formula-
tion of quantum mechanics originally presented in the 1927 Solvay conference by de Brogile1,2. In 1952, Bohm 
showed how the theory solves the vexed measurement problem in orthodox quantum mechanics by describing 
the measurement apparatus within the theory3,4. The theory has been extended to relativistic domain5–9, applied 
to astrophysical and cosmological scenarios10–13, and provides a counter-example to the claim that quantum 
phenomena imply a denial of realism.

In his description of the theory, Bohm pointed out that certain assumptions are necessary to reproduce 
orthodox quantum mechanics. Further, he opined that these assumptions may need modifications in regimes 
not yet experimentally accessible, so that the theory may either supersede or depart from orthodox quantum 
mechanics in the future3–5,14. One of these assumptions is that the initial density of configurations equals the Born 
rule density. This assumption has been criticised on the grounds that, since there is no logical relation between 
the initial configuration density and the quantum state in the theory, it is ad hoc15,16. Bohm was able to show that 
adding random collisions14 or random fluid fluctuations17 to the dynamics of the theory leads to relaxation from 
an arbitrary density to the Born rule density. Later, Valentini showed that the original dynamics alone is sufficient 
for relaxation to occur at a coarse grained level18,19. Numerous computational studies have since been conducted 
that have furthered our understanding of the relaxation process in various scenarios (see13 for a review).

However, a simple but important conceptual point has remained largely unnoticed in the literature: if there 
is no logical relationship between the configuration density and the quantum state in pilot-wave theory, then 
why should the quantum state be normalizable? In orthodox quantum mechanics, normalizability is necessary 
as statistical predictions are extracted from the quantum state according to the Born rule. On the other hand, in 
pilot-wave theory the quantum state serves as a physical field that determines the evolution of the configuration. 
To extract statistical predictions from the theory, one only needs to define an ensemble with a normalized density 
of configurations – normalizability of the quantum state is unnecessary. This opens up the possibility of physically 
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interpreting non-normalizable quantum states that occur as solutions to physical constraints in quantum gravity, 
such as the Kodama state20–22.

However, to the best of our knowledge, the behaviour of non-normalizable solutions to the Schrodinger 
equation has not been studied from a pilot-wave perspective. In this article, we make a first step in this direc-
tion by studying the non-normalizable solutions of the harmonic-oscillator potential. We choose the harmonic 
oscillator as it is widely found in nature, and because the normalizability constraint leads to the important dis-
cretization of energy levels. The article is structured as follows. We first study the non-normalizable solutions 
of the harmonic oscillator, using both the analytic approach and the ladder operator approach. We then study 
the pilot-wave theory of the non-normalizable states. We show that the pilot-wave velocity field for the non-
normalizable states vy → 0 at large ±y . We discuss the relaxation behaviour for these states. We then introduce 
the notion of pilot-wave equilibrium and define the new H-function Hpw . We prove an H-theorem applicable 
to non-normalizable states using a coarse-grained Hpw , analogous to the H-theorem for quantum equilibrium. 
We study the relationship between relaxation to pilot-wave equilibrium and relaxation to quantum equilibrium. 
Lastly, we discuss the theoretical and experimental implications of our work. In particular, we show that non-
normalizable states are unstable in the presence of perturbations and environmental interactions, and thereby 
give an explanation of quantization in pilot-wave theory.

Non‑normalizable solutions of the harmonic oscillator
We start by noting that several elementary theorems in orthodox quantum mechanics are no longer applicable 
once the normalizability constraint on quantum state is dropped. In the non-normalizable scenario, eigenstates 
in one dimension are generally degenerate and complex as relevant theorems on degeneracy and reality of eigen-
states no longer apply. Furthermore, a non-normalizable quantum state does not have a Fourier transform, and 
therefore a momentum representation, in general. This is because Fourier transform exists only if the concerned 
function does not diverge faster than a polynomial at large values of its argument. Therefore, we are restricted 
to the position representation of the quantum state in general. This makes sense from a pilot-wave perspective, 
as the position basis is the preferred basis in the theory. We also note that the momentum operator is in general 
non-Hermitian in this scenario.

For the harmonic-oscillator potential, the energy eigenvalues are not quantized and can also take negative 
values in this scenario. Mathematically, the eigenvalues can also be complex in this scenario, but this is not physi-
cally meaningful from a pilot-wave perspective. Consider a von-Neumann energy measurement, which leads 
to apparatus wavefunctions of the form ψ(y − gEt, 0) , where E is the energy eigenvalue and g is the strength of 
interaction between the system and apparatus. The wavefunction ψ(y − gEt, 0) is not defined on configuration 
space if E is complex. Therefore, allowing complex eigenvalues is only possible if one abandons the configuration 
space as the fundamental arena of pilot-wave theory. Lastly, we restrict the initial wavefunction to only eigenstates 
and finite superpositions, as the time-evolution operator e−iĤt/� may not be not well-defined for an arbitrary 
initial wavefunction23. With these facts in mind, let us study the non-normalizable solutions to the harmonic 
oscillator from a pilot-wave perspective.

The time-independent Schrodinger equation for the harmonic-oscillator potential can be written as

where y ≡
√
mω/�x and K ≡ 2E/�ω . The equation is traditionally solved by using the ansatz e−y2/2hK (y) . 

Substituting the ansatz into Eq. (1), we get

Equation (2) is known as the Hermite differential equation. It contains both normalizable and non-normalizable 
solutions to (1). Using the Frobenius method, the general solution to (2) can be written as

where a0 and a1 are two arbitrary complex constants and the recurrence relation between an ’s can be obtained to 
be an+2 = (2n+ 1− K)an/(n+ 1)(n+ 2) . It is useful for us to rewrite Eq. (3) as

(1)− d2ψ
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where hK0 = (1+
∑∞

n=1

∏n−1
j=0 (4j+1−K)

(2n)! y2n) and hK1 = (y +
∑∞

n=1

∏n−1
j=0 (4j+3−K)

(2n+1)! y2n+1) . Clearly, the term hK0  consists 
only of even powers of y, whereas the term hK1  consists only of odd powers.

It is useful to note that hK0 (y) , h
K
1 (y) can be expressed in closed form as follows:

where

is the confluent hypergeometric function of the first kind and (t)j ≡ Ŵ(t + j)/Ŵ(t) is the Pochhammer symbol.
The general solution to the time-independent Schrodinger Eq. (1) can be written as

where ϕK
0 ≡ e−y2/2hK0 (y) and ϕK

1 ≡ e−y2/2hK1 (y) . Equation (10) is a valid solution to the Schrodinger Eq. (1) for 
all (real) values of K. It can be shown that the series hK0 (y) ( hK1 (y) ) terminates only if K = (2n+ 1) for an even 
(odd) n. In that case, ϕK

0 (y) ( ϕK
1 (y) ) has a e−y2/2 dependence at large ±y and is normalizable. If K  = (2n+ 1) for 

an even (odd) n, then ϕK
0 (y) ( ϕK

1 (y) ) has a ey2/2 dependence at large ±y and is non-normalizable.
The complex coefficients a0 , a1 contain a total of 4 real parameters. We can eliminate 2 of the parameters by 

a) normalizing the coefficients so that |a0|2 + |a1|2 = 1 (note that the quantum state is itself non normalizable 
in general) and b) eliminating the global phase. Both steps a) and b) make sense from a pilot-wave theory per-
spective as the pilot-wave velocity field v(y) = j(y)/|ψ(y)|2 , where j(y) is the quantum probability current (see 
Eq. (17) below), does not depend on the global magnitude or the global phase of the quantum state. That is, a 
transformation of the form ψ(y) → αψ(y) , where α is a complex constant, does not change v(y). Therefore, we 
may further simplify Eq. (10) to

where cos θ = |a0|/
√

|a0|2 + |a1|2  , sin θ = |a1|/
√

|a0|2 + |a1|2  , φ = −i ln(a1|a0|/a0|a1|) and θ ∈ [0,π ] , 
φ ∈ [0, 2π) . In this form, it is clear that ϕK

0 (y) and ϕK
1 (y) act as basis vectors of the doubly degenerate subspace 

corresponding to K. We note that, in orthodox quantum mechanics, steps (a) and (b) are justified (for normaliz-
able states) on the grounds that |ψ(y)|2 is a probability density. Clearly, |ψ(y)|2 cannot be interpreted as a prob-
ability density in our case but a), b) are still valid from a pilot-wave perspective.

We can connect the general solution (11) to the allowed solutions in orthodox quantum mechanics as follows. 
We know that the allowed energy levels in orthodox quantum mechanics are given by K(n) = (2n+ 1) , where 
n is a non-negative integer. Furthermore, we know from the preceding discussion that for all even n, ϕK(n)

0 (y) 
is normalizable and ϕK(n)

1 (y) is non-normalizable. Similarly, for odd n, ϕK(n)
1 (y) is normalizable and ϕK(n)

0 (y) is 
non-normalizable. Therefore,

where �n(y) is the nth harmonic-oscillator eigenstate in orthodox quantum mechanics, and Nn is the relevant 
normalization constant.

Let us consider a superposition of eigenstates corresponding to different values of K. Suppose 
ψ(y) =

∑

n cnψ
Kn
θn ,φn

(y) . As before, we normalize the coefficients ( 
∑

n |cn|2 = 1 ) and eliminate the global phase 
of ψ(y) , as the velocity field is unaffected by these changes. We also know, from the time-dependent Schrodinger 
equation, that ψ(y) will evolve as

Lastly, it is straightforward to extend the discussion to a system of N particles, each in a harmonic oscillator 
potential. Consider the quantum state
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We normalize the coefficients cm and eliminate the global phase of ψ(y1, y2, ...yN ) . The time evolution of 
ψ(y1, y2, ...yN ) can be easily calculated by the time-dependent Schrodinger equation. We discuss the action of 
ladder operators on non-normalizable states in the Supplementary Information.

Bound‑state interpretation of non‑normalizable harmonic oscillator states
In pilot-wave theory, the quantum state serves to define the velocity field for the evolution of the system configu-
ration. This can be a configuration of particles, as in pilot-wave theory of non-relativistic quantum mechanics, or 
a configuration of fields, as in pilot-wave theory of quantum field theory. Let us consider a system of N particles 
in the harmonic oscillator potential with the quantum state (14). Without loss of generality, we suppose that 
all the particles have the same mass m for simplicity. The time-dependent Schrodinger equation implies the 
continuity equation

where −→y = (y1, y2, ...yN ) is a point on the configuration space, and the current

is defined in terms of �∇ =
∑N

i=1 ŷi∂/∂yi and ψ̄(
−→y , t) which is the complex conjugate of ψ(

−→y , t) . From Eq. 
(15), the quantity

is defined as the pilot-wave velocity field. Let us consider an ensemble of the N-particle harmonic oscillator 
systems. As there is no a priori relationship between the quantum state and the configuration density in pilot-
wave theory, we can define an initial normalized density ρ(−→y , 0) for the ensemble. Equation (17) supplies the 
velocity field to evolve ρ(−→y , t):

Clearly, experimental probabilities are well-defined as ρ(−→y , t) is normalized. However, there remains the ques-
tion whether the velocity field (17) behaves physically for non-normalizable states. One example of an unphysical 
behaviour would be if vyi (

−→y , t) increases with yi as ∼ y1+ǫ
i  ( ǫ > 0 ) for i ∈ {1, 2, ...N} . In that case, the system con-

figuration will escape to yi → ∞ in finite time. In orthodox quantum mechanics, we know that such behaviour 
cannot occur as the normalizability constraint ensures that the probability density |ψ(

−→y , t)|2 → 0 as yi → ±∞ . 
For this reason, the normalizable states are referred to as bound states in orthodox quantum mechanics.

We can straightforwardly generalise the definition of bound state to the non-normalizable scenario: if the 
velocity field (17) defined by ψ(

−→y , t) is such that vyi (
−→y , t) → 0 in the limit yi → ±∞ for all i ∈ {1, 2, ...N} , then 

ψ(
−→y , t) is a bound state. Such a velocity field ensures that any initial normalized configuration density ρ(−→y , 0) 

will evolve to ρ(−→y , t) such that ρ(−→y , t) → 0 as yi → ±∞ for all i ∈ {1, 2, ...N} . That is, the system configuration 
−→y  remains bounded at all (finite) times.

Below, we prove that the non-normalizable solutions of the harmonic oscillator are bound states in this sense. 
We begin with the simplest case, that of an eigenstate in one dimension.

Velocity field of an eigenstate in one‑dimension
Let us consider the velocity field of a harmonic oscillator eigenstate ψK

θ ,φ(y) . We know from orthodox quantum 
mechanics that the normalizable eigenstates �n(y) defined by (12) are real. This implies that, for these states, the 
velocity field is zero everywhere and the particle is stationary. However, ψK

θ ,φ(y) = cos θϕK
0 (y)+ sin θeiφϕK

1 (y) is 
complex in general. This implies that the velocity field for non-normalizable eigenstates is non-zero in general. 
Let us then calculate this velocity field.

We first note the general result that, if ψ(y) is an eigenstate of the Hamiltonian, then

In orthodox quantum mechanics, c = 0 as ψ(y) → 0 as y → ∞ . In our case, on the other hand, ψ(y) → ∞ as 
y → ∞ so that the left-hand side of Eq. (19) becomes indeterminate at y → ∞ . However, it is convenient to 
evaluate the left-hand side of (19) for ψK

θ ,φ(y) at y = 0 . This is because the following readily verifiable calculations

(15)∂t |ψ(
−→y , t)|2 + �∇ · �j(−→y , t) = 0
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2mi
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]
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�j(−→y , t)
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−→y , t)+ �∇ ·

(
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−→y , t)�v(−→y , t)

)

= 0

(19)ψ̄(y)ψ ′(y)− ψ(y)ψ̄ ′(y) = c (constant)

(20)ϕK
0 (0) = 1

(21)ϕK
1 (0) = 0

(22)
dϕK

0 (0)

dy
= 0
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imply that

so that the current j(y) is constant and independent of K.
Therefore, the velocity field is

where, in Eq. (28), we have used ψK
θ ,φ(y, t) = e−iKwt/2ψK

θ ,φ(y, 0) and (24).
Let us discuss the velocity field (28). First, Eq. (28) tells us that, for an eigenstate corresponding to K, the 

velocity field is constant with time. Second, it tells us that the velocity field depends on the angles θ , φ , so that 
degenerate eigenstates corresponding to the same K will, in general, have velocity fields that are different but 
proportional to each other at every y. Third, the velocity field does not change sign with y. Fourth, we note that 
the velocity field for an eigenstate corresponding to K = −K0 ( K0 > 0 ) has no apparent connection with the 
velocity field for an eigenstate corresponding to K = +K0 . Lastly, and most importantly, Eq. (28) tells us that the 
velocity fields are inversely proportional to |ψK

θ ,φ(y, 0)|2 . This implies that, for y → ±∞

as we know that ψK
θ ,φ(y, t) diverges like ∼ ey

2/2 at large ±y . Therefore, the velocity field decreases very quickly to 
0 as |ψK

θ ,φ(y, 0)|2 becomes large at y → ±∞ (see Fig. 1). This implies that ψK
θ ,φ(y, 0) is a bound state, according to 

our definition, although it is non-normalizable. This is a surprising behaviour from the viewpoint of orthodox 
quantum mechanics, as a naive application of the Born rule would imply an infinitely large probability of the 
particle being found at large ±y.

(23)
dϕK

1 (0)

dy
= 1

(24)ψ̄K
θ ,φ(0)ψ

′K
θ ,φ(0)− ψK

θ ,φ(0)ψ̄
′K
θ ,φ(0) = 2i cos θ sin θ sinφ = c

(25)v(y, t) = j(y)

|ψK
θ ,φ(y, t)|2

(26)= �

2mi

ψ̄K
θ ,φ(y, t)ψ

′K
θ ,φ(y, t)− ψK

θ ,φ(y, t)ψ̄
′K
θ ,φ(y, t)

|ψK
θ ,φ(y, t)|2

(27)= �

2mi

ψ̄K
θ ,φ(0, t)ψ

′K
θ ,φ(0, t)− ψK

θ ,φ(0, t)ψ̄
′K
θ ,φ(0, t)

|ψK
θ ,φ(y, t)|2

(28)= �

m

cos θ sin θ sin φ

|ψK
θ ,φ(y, 0)|2

(29)v(y, t) ∼ �

m

cos θ sin θ sinφ

ey
2

Figure 1.   Schematic illustration of (a) |ψ(y)|2 and (b) v(y) for the sample non-normalizable eigenstate 
ψ(y) = ψ14

16π/5,3π/2(y) . Note that v(y) → 0 at large ±y.
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Velocity field of a superposition of eigenstates
Let us consider a quantum state ψ(y, t) =

∑

j cj(t)ψ
Kj

θj ,φj
(y) that is a superposition of eigenstates corresponding 

to various K’s. We know from Eq. (17) that the velocity field is

To study the asymptotic behaviour of (30) as y → ±∞ , we first need an asymptotic expression for ψ(y) as 
y → ±∞ . We derive such an expression in the supplementary material, using the approach given in ref.24.

Asymptotic behaviour of the velocity field
Using the expansion ψ(y, t) =

∑

j cj(t)ψ
Kj (y) , we can express the current as

Using  the  asymptot ic  form der ived in  the  Supplementar y   Informat ion,  we  wr ite 

ψKj (y) ≈ e
y2

2 y−
1+K
2 [1+ (3+K)(1+K)

16y2
] at large ±y , Eq. (32) becomes

where we have retained only the leading order of y. Similarly, we can prove that

Therefore, the velocity field

Equation (35) implies that limy→±∞ v(y, t) = 0 (see Fig. 2). Therefore, a superposition of eigenstates correspond-
ing to different K’s is a bound state. Let us proceed next to the case of multiple particles.

Velocity field for multiple particles
We want to check whether the asymptotic behaviour of the velocity field discussed in the previous subsections 
also hold in the case of multiple particles, each in a harmonic oscillator potential. Consider an N-particle quan-
tum state

(30)v(y, t) = �

2mi

ψ̄(y, t)ψ ′(y, t)− ψ(y, t)ψ̄ ′(y, t)

|ψ(y, t)|2

(31)j(y, t) = �

2mi
ψ̄(y, t)ψ ′(y, t)− ψ(y, t)ψ̄ ′(y, t)

(32)= �

2mi

∑

l,j

c̄lcj
[

ψ̄Kl (y)ψ ′Kj (y)− ψKj (y)ψ̄ ′Kl
(y)

]

(33)j(y, t) ≈ �

2mi

∑

l,j

c̄l(t)cj(t)
ey

2
(Kl − Kj)

2y2
√

yKj
√

yKl

(34)|ψ(y, t)|2 ≈
∑

l,j

c̄l(t)cj(t)
ey

2

y

√

yKj
√

yKl

(35)v(y, t) = j(y, t)

|ψ(y, t)|2 ∼ 1

y
at large± y

Figure 2.   Schematic illustration of (a) |ψ(y)|2 and (b) v(y) for a sample superposition 
ψ(y) = 1/

√
6ψ15.2

π/3,π/4(y)+
√
2/3eiπ/5ψ5.8

π/2,π (y)+ 1/
√
6eiπ/8ψ10.2

π/7,π/5(y) . Note that v(y) → 0 at large ±y.
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where ψK
g
j (yg ) is an eigenstate of the g-th particle corresponding to the eigenvalue Kg

j  in the j-th term of the 
superposition. We know that the current in the r-th direction is

Similar to the previous subsection, we can express ψKr
j (yr) ≈ ey

2
r /2y

−
1+(Krj )

2

2
r [1+ (3+ Kr

j )(1+ Kr
j )/(16y

2
r )] at 

large ±yr , and then simplify (37) as

On the other hand,

which implies that
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n
∑
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N
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ψ
K
g
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N
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K
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N
∏

w �=r
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ψ̄Kr
l (yr)ψ

′Kr
j (yr)− ψ

Kr
j (yr)ψ̄ ′K

r
l (yr)

]

(38)jr(
−→y , t) ≈ �

2mi

∑

l,j
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N
∏

g �=r

ψ
K
g
j (yg )

N
∏

w �=r

ψ̄Kw
l (yw)

ey
2
r (Kr
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j )

2y2r

√

y
Kr
j

r

√

y
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l

r

(39)|ψ(
−→y , t)|2 ≈

∑
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N
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ψ
K
g
j (yg )

N
∏

w �=r

ψ̄Kw
l (yw)

ey
2
r

yr

√

y
Kr
j

r

√

y
Kr
l

r

Figure 3.   Schematic illustration of (a) density plot for |ψ(y1, y2)|2 , (b) velocity plot for �v(y1, y2) , 
(c) y1-velocity field vy1(y1, y2) and (d) y2-velocity field vy2(y1, y2) for a sample superposition 
ψ(y1, y2) =

√
2/3ψ1.4

3π/4,4π/3(y1)ψ
8
2.2π ,4.1π (y2)+

√
2/3eiπ/5ψ5

8π/5,5.8π (y1)ψ
15.6
2π/5,9π/16(y2)+ 1/3eiπ/8ψ9

π/5,π/7

(y1)ψ
0.75
π/6,π/9(y2)+ 2/3eiπ/9ψ11.4

5π/3,6π/7(y1)ψ
12.6
2π/5,7π/16(y2) . Note, from figures (b), (c) and (d), that 

vy1(y1, y2) → 0 at large ±y1 and vy2(y1, y2) → 0 at large ±y2.
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Equation (40) confirms that the velocity field is such that vr(−→y , t) → 0 as yr → ∞ ∀r ∈ {1, 2, ...N} . Therefore, 
the system configuration −→y  remains bounded at all times and ψ(

−→y , t) is a bound state (see Fig. 3).

Relaxation to equilibrium
In pilot-wave theory for normalizable quantum states, it is well known that an arbitrary initial density of con-
figurations relaxes to the Born rule density |ψ(

−→y , t)|2 (called the equilibrium density) at a coarse-grained level, 
subject to standard statistical mechanical assumptions13,18,19. In this section, we look at whether such a relaxation 
occurs to a well-defined equilibrium density when ψ(

−→y , t) is non-normalizable.

Pilot‑wave equilibrium: a generalisation of quantum equilibrium
Consider an ensemble of systems described by a non-normalizable quantum state ψ(

−→y ) with a normalized 
density of configurations ρ(−→y ) . We want to understand if a physically-meaningful equilibrium density can 
be defined for the ensemble. In the case of normalizable quantum states, we know that the equilibrium density 
satisfies the following conditions: 

1.	 Entropy maximization: The equilibrium density minimises an appropriately defined H-function (the negative 
of which is maximised).

2.	 Equilibrium stability: The equilibrium density continues to be in equilibrium with time.
3.	 Equivariance: The functional form of the equilibrium density in terms of the quantum state is preserved with 

time.
4.	 Quantum-mechanical equivalence: The statistical predictions made by the equilibrium density is equal to 

that predicted by orthodox quantum mechanics for the same quantum state.

Let us check whether these conditions can be met in our scenario. Consider the first condition: we typically seek 
a density ρ(−→y ) that minimises the H-function18

where the integral is defined over all of configuration space C = {−→y |yr ∈ R∀r} and R is the set of all reals. 
Equation (41) immediately lands us in trouble as it is formally the relative entropy from ρ(−→y ) to |ψ(

−→y )|2 – but 
|ψ(

−→y )|2 , being non normalizable, is not a probability density over C . Therefore, Hq is not a mathematically 
well-defined relative entropy.

Fortunately, it is straightforward to rectify the definition of H for our scenario. We note that, in general, the 
density ρ(−→y ) may have support only over a proper subset � ≡ {−→y |ρ(−→y ) > 0} of C . Let us assume that � is a 
proper subset of C , that is, ρ(−→y ) has a compact support. We can then treat |ψ(

−→y )|2 as a probability density over 
� once appropriately normalized. We define a candidate equilibrium density

where N ≡
∫

�
|ψ(

−→y )|2d−→y  . We then replace Hq by

Note that, since ρpw(−→y ) is a valid probability density over C , Hpw is a well-defined relative entropy from ρ(−→y ) 
to ρpw(−→y ) . Equation (43) can be written as

so that the integrand is always non-negative, which implies that the lower bound Hmin
pw = 0 , which is achieved 

when ρ(−→y ) = ρpw(
−→y ) . Therefore, the newly-defined quantities ρpw(−→y ) and Hpw together satisfy the first condi-

tion set out at the beginning of the subsection.
Let us next consider the second condition: does the initial density ρ(−→y , 0) = ρpw(

−→y , 0) evolve to a ρ(−→y , t) 
that minimises Hpw(t) ? We know that14, since both ρ(−→y , t) and |ψ(

−→y , t)|2 satisfy the same continuity equation, 
we have

(40)vr(
−→y , t) = jr(

−→y , t)

|ψ(
−→y , t)|2

∼ 1

yr
at large± yr

(41)Hq ≡
∫

C

ρ(
−→y ) ln

ρ(
−→y )

|ψ(
−→y )|2

d−→y

(42)ρpw(
−→y ) ≡

{

|ψ(
−→y )|2/N , for

−→y ∈ �

0 , for
−→y ∈ C \�

(43)Hpw ≡
∫

C

ρ(
−→y ) ln

ρ(
−→y )

ρpw(
−→y )

d−→y

(44)Hpw =
∫

C

(

ρ(
−→y ) ln

ρ(
−→y )

ρpw(
−→y )

− ρ(
−→y )+ ρpw(

−→y )

)

d−→y
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where f (−→y , t) ≡ ρ(
−→y , t)/|ψ(

−→y , t)|2 . Equation (45) implies that, given an initial density ρpw(−→y , 0) , we have

where �t = {−→y |ρpw(−→y , t) > 0} is the support of ρpw(−→y , t) . We note that Eq. (46) implies

The time-dependent H-function

remains constant at its lower bound Hmin
pw (t) = 0 for the density ρ(−→y , t) = ρpw(

−→y , t) . Thus, an initial density 
that minimises Hpw(0) will evolve in time so as to minimise Hpw(t) at all times.

The third condition, of equivariance, is not directly met as the support �t is not determined by the quantum 
state. However, it is clear from (46) that the functional form of ρpw(−→y , t) in terms of ψ(

−→y , t) over �t is invariant 
with time. We may therefore define the following condition to be pilot-wave invariance: the functional form of 
the density in terms of the quantum state over its support is invariant with time. Pilot-wave invariance is moti-
vated by the notion of equivariance, and reduces to it in the special case that ψ is normalizable and �t = C ∀t.

Is the fourth condition also met? This condition ceases to make sense in our case, as we are dealing with 
quantum states that are non-normalizable. Such states are considered unphysical in orthodox quantum mechan-
ics, and the theory provides no experimental probabilities for ensembles with such states. In view of the fact that 
conditions 1, 2 and 3 (suitably modified) are satisfied, and condition 4 is inapplicable, we may define a density that 
satisfies only the first three conditions to be in pilot-wave equilibrium (as opposed to quantum equilibrium). The 
terminology makes explicit the fact that Hpw quantifies relaxation to an equilibrium density in pilot-wave theory 
regardless of whether that density reproduces orthodox quantum mechanics, whereas Hq quantifies relaxation 
to the equilibrium density that reproduces orthodox quantum mechanics. For normalizable states, the notion of 
pilot-wave equilibrium reduces to quantum equilibrium for the special case when � = C.

To conclude, we define a density ρ(−→y , t) with support � to be in pilot-wave equilibrium if and only if

Clearly, there are infinitely many ρ(−→y , t) that can be in pilot-wave equilibrium, as there are infinitely many 
subsets � of C . The density ρpw(−→y , t) minimises the H-function

at all times. If ρ(−→y , t) does not satisfy condition (49), then we define it to be in pilot-wave nonequilibrium. Note 
that a rescaling ψ(

−→y , t) → αψ(
−→y , t) , where α is a complex constant, does not change the equilibrium condition 

(49), similar to the definition of the velocity field (17). Lastly, we also note that although the concept of pilot-
wave equilibrium has been motivated by a consideration of non-normalizable quantum states, it is applicable to 
normalizable quantum states as well.

H‑theorem for relaxation to pilot‑wave equilibrium
We now turn to the question whether an arbitrary ensemble density will relax to pilot-wave equilibrium at a 
coarse-grained level, analogous to relaxation to quantum equilibrium for normalizable states. We show this is 
indeed the case by proving an H-theorem for Hpw.

In the proof for relaxation to classical statistical equilibrium25 or quantum equilibrium18, an important role 
is played by the fact that the exact H-function is constant with time. To build an analogous H-theorem for pilot-
wave equilibrium, our first task then, is to ascertain if Hpw(t) is constant with time. From Eqs. (41), (42) and 
(43), the relationship between the two H-functions is

Clearly, it is sufficient to prove the constancy of N (t) to prove that Hpw(t) is constant with time. We know, from 
Eq. (47), that N (t) is constant with time if the initial density is in pilot-wave equilibrium. Let us consider an 
arbitrary initial density ρ(−→y , 0) with support �0 in pilot-wave nonequilibrium, piloted by a non-normalizable 
state ψ(

−→y , t) . We also consider the pilot-wave equilibrium density ρpw(−→y , 0) = |ψ(
−→y , 0)|2/N (0) over �0 , 

where N (0) =
∫

�0
|ψ(

−→y , 0)|2d−→y  . As both ρ(−→y , 0) and ρpw(−→y , 0) are piloted by ψ(
−→y , t) , they will obey similar 

continuity equations

(45)df (−→y , t)

dt
= ∂t f (

−→y , t)+ �∇f (−→y , t) · �v(−→y , t) = 0

(46)ρpw(
−→y , t) = |ψ(

−→y , t)|2/N , if−→y ∈ �t

(47)
∫

�t

|ψ(
−→y , t)|2d−→y = N∀t

(48)Hpw(t) =
∫

C

(

ρ(
−→y , t) ln

ρ(
−→y , t)

ρpw(
−→y , t)

− ρ(
−→y , t)+ ρpw(

−→y , t)

)

d−→y

(49)ρ(
−→y , t) = ρpw(

−→y , t)

(50)Hpw(t) =
∫

C

ρ(
−→y ) ln

ρ(
−→y )

ρpw(
−→y , t)

d−→y

(51)Hpw(t) = lnN (t)+Hq(t)
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where �v(−→y , t) is determined by ψ(
−→y , t) according to (17). The velocity field �v(−→y , t) provides the mapping from 

�0 → �t . We also know from Eq. (46) that

Therefore, the quantity

is in fact constant with time, and we can label it by N  . This implies that an arbitrary initial density ρ(−→y , 0) with 
�0 defined over a region of low (high) |ψ(

−→y , 0)|2 will ‘shrink’ (‘expand’) if it moves to a region of high (low) 
|ψ(

−→y , t)|2 . Lastly, Eqs. (51) and (55) imply that

We are now ready to prove the subquantum H-theorem for Hpw . We first subdivide the configuration space C 
into small cells of volume δV  . We then define the coarse-grained quantities

where the integral 
∫

δV d−→y  is performed over the cell which contains −→y  . Clearly, ρ(−→y , t) and ρpw(−→y , t) are 
constant in each cell. We define the quantity

and its coarse-grained version g(−→y , t) ≡ ρ(
−→y , t)/ρpw(

−→y , t) if −→y ∈ �t  , where �t ≡ {−→y |ρ(−→y , t) > 0} of C . 
Subtracting (53) from (52) and using the definition of g(−→y , t) , we have

which is analogous to Eq. (45). We define the coarse-grained version of Hpw to be

Analogous to the H-theorems for classical statistical equilibrium25 and for quantum equilibrium18, we assume 
that there is no initial fine-grained structure, that is,

Let us consider

Using the initial conditions (63) and (64), and the fact that Hpw(t) is constant with time, we can simplify the 
first term in RHS of (65) as

(52)∂tρ(
−→y , t)+ �∇ ·

(

ρ(
−→y , t)�v(−→y , t)

)

= 0

(53)∂tρpw(
−→y , t)+ �∇ ·

(

ρpw(
−→y , t)�v(−→y , t)

)

= 0

(54)ρpw(
−→y , t) = |ψ(

−→y , t)|2/N (0), if
−→y ∈ �t

(55)N (t) =
∫

�t

|ψ(
−→y , t)|2d−→y = N (0)

(56)
dHpw(t)

dt
= 0

(57)ρ(
−→y , t) ≡ 1

δV

∫

δV
ρ(
−→y , t)d−→y

(58)ρpw(
−→y , t) ≡ 1

δV

∫

δV
ρpw(

−→y , t)

(59)g(−→y , t) ≡
{

ρ(
−→y , t)/ρpw(

−→y , t) , if
−→y ∈ �t

0 , if
−→y ∈ C \�t

(60)dg(−→y , t)

dt
= ∂t g(

−→y , t)+ �∇g(−→y , t) · �v(−→y , t) = 0

(61)Hpw(t) ≡
∫

C

ρ(
−→y , t) ln

ρ(
−→y , t)

ρpw(
−→y , t)

d−→y

(62)=
∫

C

ρ(
−→y , t) ln g(−→y , t)d−→y

(63)ρ(
−→y , 0) = ρ(

−→y , 0)

(64)ρpw(
−→y , 0) = ρpw(

−→y , 0)

(65)Hpw(0)−Hpw(t) =
∫

C

ρ(
−→y , 0) ln g(−→y , 0)d−→y −

∫

C

ρ(
−→y , t) ln g(−→y , t)d−→y

(66)
∫

C

ρ(
−→y , 0) ln g(−→y , 0)d−→y =

∫

C

ρ(
−→y , 0) ln g(−→y , 0)d−→y
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The second term in RHS of (65) can be written as

where the integral over C has been broken up into integrals over each cell of volume δV  . As ρ(−→y , t) and 
ρpw(

−→y , t) are constant over these cells, we can write ρ(−→y , t) = ρi(t) , ρpw(−→y , t) = ρpwi(t) and g(−→y , t) = gi(t) 
if −→y  belongs to the ith cell. It then follows that

where, in Eq. (70), we have used the relation (63). Using (67) and (71), we can rewrite (65) as

We note that

Using (77), we can rewrite Eq. (73) as

Using the identity x ln(x/y)− x + y ≥ 0 for all real x, y, it is then clear from Eq. (78) that Hpw(0)−Hpw(t) ≥ 0 . 
We have, therefore, proven an H-theorem for Hpw(t) , subject to assumptions similar to those assumed for relaxa-
tion to quantum equilibrium.

Relationship between relaxation to pilot‑wave equilibrium and to quantum equilibrium
Although the H-theorem for Hpw gives the theoretical basis for relaxation to pilot-wave equilibrium, we need 
numerical evidence to determine whether relaxation in fact occurs. There exists a large body of results in the 
literature on the numerical evidence for relaxation to quantum equilibrium for normalizable states. It is, therefore, 
of interest to understand the relation between relaxation to pilot-wave equilibrium for non-normalizable states 
and relaxation to quantum equilibrium for normalizable states, if any.

We begin by noting that Eq. (58) can be written as

(67)=
∫

C

ρ(
−→y , t) ln g(−→y , t)d−→y

(68)

∫

C

ρ(
−→y , t) ln g(−→y , t)d−→y =

∑

i

∫

δVi

ρ(
−→y , t) ln g(−→y , t)d−→y

(69)
∑

i

∫

δVi

ρ(
−→y , t) ln g(−→y , t)d−→y =

∑

i

ρi(t) ln gi(t)δV

(70)=
∑

i

ρi(t) ln gi(t)

∫

δV ρ(
−→y , t)d−→y
ρi(t)

(71)=
∫

C

ρ(
−→y , t) ln g(−→y , t)d−→y

(72)Hpw(0)−Hpw(t) =
∫

C

ρ(
−→y , t) ln

g(−→y , t)

g(−→y , t)
d−→y

(73)=
∫

C

ρpw(
−→y , t)g(−→y , t) ln

g(−→y , t)

g(−→y , t)
d−→y

(74)
∫

C

ρpw(
−→y , t)g(−→y , t)d−→y =

∑

i

∫

δVi

ρpw(
−→y , t)

ρ(
−→y , t)

ρpw(
−→y , t)

d−→y

(75)=
∑

i

ρi(t)

ρpwi(t)

∫

δVi

ρpw(
−→y , t)d−→y

(76)=
∑

i

ρi(t)δV

(77)=
∫

C

ρ(
−→y , t)d−→y = 1

(78)Hpw(0)−Hpw(t) =
∫

C

ρpw(
−→y , t)

(

g(−→y , t) ln
g(−→y , t)

g(−→y , t)
− g(−→y , t)+ g(−→y , t)

)

d−→y

(79)ρpw(
−→y , t) = 1

δV

∫

δV

|ψ(
−→y , t)|2
N



12

Vol:.(1234567890)

Scientific Reports |          (2024) 14:669  | https://doi.org/10.1038/s41598-023-50814-w

www.nature.com/scientificreports/

where |ψ(
−→y , t)|2 ≡

∫

δV |ψ(
−→y , t)|2/δV  and −→y ∈ �t . From Eqs. (61) and (80), we can then derive

where

It is clear from (81) that the lower bound of Hq(t) is Hmin
q = − lnN  , corresponding to pilot-wave equilibrium 

Hmin
pw = 0 . The relationship (81) implies that a study of the behaviour of Hq(t) is equivalent to that of Hpw(t) . It 

now remains to recast this study in terms of normalizable states.

Consider the non-normalizable quantum state ψ(
−→y , t) =

∑n
j=1 cj(t)

∏N
g=1 ψ

K
g
j (yg ) from Eq. (36). We know 

that the velocity field vr(−→y ) ∼ 1/y2r  at large ±yr . Suppose a number L sufficiently large such that vr(−→y ) is very 
small at yr = ±L , then an initial distribution ρ(−→y , 0) localised in the region |yr | ≤ L cannot escape to |yr | > L 
for an arbitrarily long time (depending on the value of L chosen). This implies that we effectively need only vr(−→y ) 
for yr ∈ (−L,+L) to know how ρ(−→y , t) evolves in the yr direction. We can utilise this feature of the velocity 
field to define a normalizable quantum state with the same velocity field in the region yr ∈ (−L,+L) as that of 
the non-normalizable quantum state.

Let us define the normalizable quantum state

where θ(x) is the Heaviside-step function, m is a positive integer and L is a very large constant such that vr(−→y ) 
is very small at yr = ±L for all r ∈ {1, 2, ...N} . We know that ψn(

−→y , t) is normalizable as ψK
g
j (
−→y ) ∼ ey

2
r /2 

at large ±yr for all r ∈ {1, 2, ...N} . Clearly, we can replace ψ(
−→y , t) by ψn(

−→y , t) to evolve ρ(−→y , t) if ρ(−→y , 0) 
has an initial support �0 ⊂ � ≡ {−→y |yr ∈ (−L,+L)∀r} . The evolution of ψn(

−→y , t) itself is non-unitary as 
e−iĤt/�ψn(

−→y , 0) �= e−iĤt/�ψ(
−→y , 0) . This is because ψn(

−→y , 0) is numerically, but not functionally, equal to 
ψ(

−→y , 0) in the subset � . Therefore, we can study relaxation to pilot-wave equilibrium using normalizable states, 
but doing so would require non-unitary dynamics. A complete relaxation to pilot-wave equilibrium Hmin

pw = 0 
would correspond to a partial relaxation to quantum equilibrium Hmin

q = − lnN  (see Fig. 4).

(80)= |ψ(
−→y , t)|2
N

(81)Hpw(t) = Hq(t)+ lnN

(82)Hq(t) ≡
∫

C

ρ(
−→y , t) ln

ρ(
−→y , t)

|ψ(
−→y , t)|2

d−→y

(83)ψn(
−→y , t) ≡

N
∏

r=1

e−θ(yr−L)(yr−L)2me−θ(−yr−L)(yr+L)2mψ(
−→y , t)

Figure 4.   Schematic illustration of the relationship between quantum equilibrium (Q eq) and the notion of 
pilot-wave equilibrium (PW eq) introduced in this paper. Given a normalizable quantum state ψ , there is only 
a single density ρq = |ψ |2 that is defined to be in quantum equilibrium (depicted as the dark red dot). On 
the other hand, there is an infinite number of densities ρpw that are in pilot-wave equilibrium (depicted as the 
light red region), corresponding to different subsets � of the configuration space. Quantum equilibrium is a 
special case of pilot-wave equilibrium as depicted. For non-normalizable states, there is no density in quantum 
equilibrium (there is no red dot) but there are densities in pilot-wave equilibrium.
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Theoretical and experimental implications
In this section, we sketch the theoretical and experimental implications of our work. Although we have focused 
on the harmonic oscillator, the general approach adopted in this paper and the notion of pilot-wave equilibrium 
introduced are not exclusive to the harmonic oscillator. Therefore, where applicable, we discuss the implications 
in the broader context of non-normalizable quantum states with a normalized density of configurations.

Non‑relativistic quantum theory
Experimental observation of continuous‑energy eigenstates
We have seen that pilot-wave theory gives a physical interpretation for non-normalizable harmonic oscilla-
tor states as bound states. However, such states have continuous energies and have never been experimentally 
observed. Does this directly falsify pilot-wave theory in favour of orthodox quantum mechanics?

We first note that unitarity imposes restrictions on preparation of non-normalizable states in a laboratory. 
This is because, if the initial joint quantum state of the preparation apparatus (including all the atoms of all the 
equipments etc.) is normalizable, then the joint quantum state will remain normalizable after the preparation is 
completed. The argument can be repeated to conclude that non-normalizable states can be potentially detected 
today only if there existed non-normalizable states in the early universe.

Consider an atom in the early universe in a non-normalizable eigenstate ψK (
−→y ) , where K is continuous. 

The atom will, in general, be subject to small perturbations δV(
−→y , t) across the universe. It can be shown, from 

time-dependent perturbation theory, that the quantum state will evolve as

up to first order in δV  , where Ĥ0 is the unperturbed Hamiltonian of the atom. Note that, as the Dyson series does 
not assume state normalizability26, Eq. (84) is valid for ψK (

−→y ) . Let us consider realistic perturbations δV(
−→y , t ′) 

that are small and localised in space. That is, suppose the perturbations are of the approximate form

so that they rapidly fall off around −→y n(t
′) . Then, using the fact that ψK (

−→y ) is an eigenstate, we can write the 
integrand in (84) as

as δV(
−→y , t ′)ψK (

−→y ) is square integrable (although ψK (
−→y ) is not) and can be expanded in terms of the nor-

malizable eigenstates ψ j(
−→y ) of H0 . Note that a perturbation δV(

−→y , t ′) arbitrarily distant from the atom is suf-
ficient to make δV(

−→y , t ′)ψK (
−→y ) square integrable, given that δV(

−→y , t ′) falls off rapidly. Therefore, for realistic 
perturbations Eq. (84) becomes

so that the quantum state becomes a superposition of the non-normalizable ψK (
−→y ) and the normalizable ψ j(

−→y )

’s. If the atom now interacts strongly with the environment to cause an effective energy-measurement, then the 
possible eigenvalues are the discrete energies Ej as well as the continuous energy EK . Using the von-Neumann 
measurement27 Hamiltonian ĤI = gÊ−→y ⊗ p̂x , we can represent the combined state of the atom and an idealised 
pointer variable after such a measurement to be

where g is the interaction constant, φ(x − gtEn
�2 , 0) is the pointer state, and ψn(

−→y ) is used to represent both 
ψ j(

−→y ) and ψK (
−→y ) in the superposition (87). The probabilities will not be given by the Born rule as �(

−→y , x, t) 
is non-normalizable, but will have to be computed from the normalized  probability density ρ(−→y , t) . Note that 
decoherence will effectively occur as long as the pointer wavefunction φ(x − gtEn

�2 , 0) is normalizable. Further 
interactions with macroscopic bodies will cause further decoherence4, so that the measurement will be effectively 
irreversible as for normalizable quantum states.

Therefore the atom, on account of perturbations and interactions with environment, may transition to a nor-
malizable energy eigenstate. In that case, the total quantum state �(

−→y , x, t) will remain non normalizable but 
the system configuration will enter an effectively-decohered normalizable branch. After N such measurements, 
the fraction that remains in the non-normalizable branch will be given by

(84)ψ(
−→y , t) = e−iĤ0t/�ψK (

−→y )− ie−iĤ0t/�

�

∫ t

0
dt′eiĤ0t

′/�δV(
−→y , t ′)e−iĤ0t

′/�ψK (
−→y )+O(δV2)

(85)δV(
−→y , t ′) =

N
∑

n=1

e
−|−→y −−→y n(t

′)|4
σn

(86)eiĤ0t
′/�

(

e−iEK t
′/�δV(

−→y , t ′)ψK (
−→y )

)

=
∑

j

ei(Ej−EK )t
′/�cj(t

′)ψ j(
−→y )

(87)ψ(
−→y , t) = e−iEK t/�ψK (

−→y )− ie−iĤ0t/�

�

∫ t

0
dt′

∑

j

ei(Ej−EK )t
′/�cj(t

′)ψ j(
−→y )+O(δV2)

(88)�(
−→y , x, t) =

∑

n

anφ(x −
gtEn

�2
, 0)ψn(

−→y )
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where the fraction lost to the normalizable branches in the j-th measurement is labelled by ǫj . Clearly, f (N) → 0 
as N → ∞ unless ǫj = 0 ∀j > N0 where N0 is some positive integer. The condition ǫj = 0 ∀j > N0 is possible if 
the initial density, the initial joint quantum state of the atom and the idealised measurement apparatus, and the 
perturbations are so finely tuned that the configuration density remains completely in the non-normalizable 
branch for all j > N0 . Without such fine tuning, the probability of the atom remaining in ψK (

−→y ) becomes tiny 
after a sufficiently long time corresponding to a large N. Note the key role played by perturbations here as they 
continuously add superpositions of normalizable eigenstates to the total quantum state. Therefore, we would not 
in general expect non-normalizable states in the early universe to have survived to the present time. Further tech-
nical work is required to ascertain the survival timescales for various non-normalizable states and perturbations.

Signalling and pilot‑wave equilibrium
We know that no-signalling is generally violated in quantum nonequilibrium28. Given that quantum equilib-
rium (when applicable) is a special case of pilot-wave equilibrium, it is of interest to understand the signalling 
behaviour of ensembles in pilot-wave equilibrium. This is important to understand whether non-normalizable 
states in pilot-wave equilibrium are no-signalling. Below, we show that no-signalling is violated generally in 
pilot-wave equilibrium.

Consider an initial two-particle entangled quantum state ψ(y1, y2, 0) , where the two par-
ticles are located in space-like separated wings. Suppose an initial density with the sup-
port �0 ≡ {(y1, y2)|y1 ∈ (Y1,Y1 + δy1), y2 ∈ (Y2,Y2 + δy2)} where δy1, δy2 are ver y small .  Then 
N =

∫

�0
|ψ(y1, y2, 0)|2dy1dy2 ≈ |ψ(Y1,Y2, 0)|2δy1δy2 . The density ρ(y1, y2, 0) ≡ |ψ(y1, y2, 0)|2/N ≈ 1/δy1δy2 

on �0 is in pilot-wave equilibrium by definition.
Suppose ψ(y1, y2, t) evolves under the Hamiltonian Ĥ = Ĥ1 ⊗ Î + Î ⊗ Ĥ2 . The question is whether the mar-

ginal density of y1 is affected by the distant local Hamiltonian Ĥ2 under the control of the experimenter at the 
second wing. We know that, since ψ(y1, y2, t) is entangled, the velocity of the first particle v1(y1, y2, t) will depend 
on y2 and thereby on Ĥ2 . Furthermore, in the limit δy1, δy2 → 0 , ρ(y1, y2, 0) = δ(y1 − Y1)δ(y2 − Y2) and the 
initial marginal density of the first particle will be ρ(y1, 0) = δ(y1 − Y1) . It is then clear that, since v1(y1, y2, t) 
depends on Ĥ2 and ρ(y1, 0) contains only the point Y1 , ρ(y1, t) = δ(y1 − Y1(t)) will depend on Ĥ2 . The statistics 
of a position measurement performed at the first wing at time t will then depend on the Hamiltonian chosen 
by the experimenter at the second wing. We conclude that, in general, correlations generated by an ensemble 
in pilot-wave equilibrium are signalling, unless the ensemble is also in quantum equilibrium. As there is no 
notion of quantum equilibrium for non-normalizable states, we conclude that non-normalizable states generate 
signalling correlations in general.

Quantum field theory
We know that quantum fields can often be treated as a collection of harmonic oscillators29. For illustration, let 
us consider the pilot-wave treatment30 of a free, massless real scalar field φ(�x, t) on a flat expanding space-time, 
with the Lagrangian density L =

(

a3φ̇2 − a(∇φ)2
)

/2 , where a = a(t) is the scale factor and c = 1 for simplicity. 
The functional Schrodinger equation for this system is

where ψ = ψ({q�k,r}, t) is the quantum state defined over the configuration space {q�k,r} ≡ (q�k1,r , q�k2,r , q�k3,r ...) , 
q�k,r (r = 1, 2) are real variables related to the Fourier-transform of φ(�x, t) by

and π�k,r ≡ ∂(
∫

Ld�x)/∂ q̇�k,r = a3q̇�k,r is the canonical momentum. Here V is the box-normalization volume. 
Note that Eq. (90) assumes a regularization so that a finite (but arbitrarily large) number of �k can be considered.

Equation (90) clearly shows that φ(�x, t) can be treated as a collection of independent harmonic oscillators in 
the Fourier space. Notably, although the field φ(�x, t) is assumed to have a Fourier-transform, we need not make 
the same assumption about ψ({q�k,r}, t) which is piloting φ(�x, t) . Therefore, we can consider the non-normalizable 
solutions to (90) explored in this paper. Such solutions may have implications in cosmological settings13,30.

Quantum gravity
It is well known that non-normalizable quantum states are often encountered in quantum gravity21,22,31. Such 
states are also encountered when pilot-wave dynamics is formulated on shape space, where a different approach 
to the problem of non-normalizability from a pilot-wave perspective has been explored32. Recently, Valentini has 
argued for a pilot-wave approach to quantum gravity where statistical predictions are derived from a normalized 
configuration density33. This is close to the approach adopted in our work, but there are several important differ-
ences. It is useful to discuss the implications of our work for quantum gravity in the context of ref.33.

(89)f (N) = �N
j=1(1− ǫj)

(90)
∑

�k,r

(

1

2a3
π2
�k,r +

ak2

2
q2�k,r

)

ψ = i
∂ψ

∂t

(91)φ(�k, t) ≡ 1

(2π)3/2

∫

φ(�x, t)e−i�k·�xd�x =
√
V

(2π)3/2

(

q�k,1(t)+ iq�k,2(t)
)
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First, ref.33 argues that there is no physical equilibrium density for non-normalizable quantum states, on the 
basis that the lower bound of Hq diverges to −∞ . However, this argument has multiple flaws. Firstly, the lower 
bound of Hq diverges only in the particular case where the support � of the configuration density is the entire 
configuration space C , that is � = C . For all other cases the lower bound of Hq is Hmin

q = − lnN  , as can be 
seen from Eq. (51). Secondly, we have argued that, for non-normalizable quantum states, the notion of quantum 
equilibrium must be replaced by the more general notion of pilot-wave equilibrium. Correspondingly, Hq must 
be replaced by Hpw to define a physical equilibrium density. Therefore, our results imply that some form of the 
Born rule arises as a physical equilibrium density for non-normalizable states.

Second, ref.33 has emphasised that non-normalizability of the quantum state is due to the “deep physical 
reason” that the Wheeler-DeWitt equation on configuration space has a Klein-Gordon-like structure. In our 
approach on the other hand, there is no special role played by the structure of any particular equation. We have 
argued that non-normalizability is intrinsic to pilot-wave theory – only a normalized configuration density is 
needed to obtain statistical predictions. The quantum state, which defines the evolution of the configuration, 
need not be normalizable. Therefore, non-normalizable quantum states naturally follow from the first princi-
ples of the theory and the structure of the Wheeler-Dewitt equation can only play a technical role. This implies 
that non-normalizable solutions to the Schrodinger equation or Dirac equation are as valid from a pilot-wave 
perspective, where applicable, as that to the Wheeler-DeWitt equation.

Discussion
We have discussed some of the implications of our work in the previous section. However, the list of implications 
is necessarily inexhaustive as the normalizability constraint is ubiquitous in orthodox quantum mechanics. It 
would, for example, be interesting to study non-normalization solutions to the Schrodinger equation for other 
systems, say the Hydrogen atom, or to the Dirac equation. An important result of our work is that the non-
normalizable harmonic-oscillator solutions are bound states, in the sense that the pilot-wave velocity field vy → 0 
at large ±y . It is important to figure out the general conditions under which the pilot-wave velocity field has this 
behaviour. Another important result is that perturbations and interactions make non-normalizable states unsta-
ble, in the sense that the system configuration becomes overwhelmingly likely with time to be in a normalizable 
branch of the total quantum state. Lastly, it remains unclear how to construct a well-defined basis for such states.

We note that, according to our work, the explanation for quantization given by pilot-wave theory is drasti-
cally different from that of quantum mechanics. Quantization in quantum mechanics arises from the axiom of 
Born rule, whereas in pilot-wave theory quantization is an emergent phenomenon that arises from the instabil-
ity of non-normalizable states due to perturbations and environmental interactions. In this sense, the status of 
non-normalizable states in the theory may be said to be analogous to that of non-equilibrium ensembles as (a) 
the conceptual structure of the theory allows the logical possibility of both non-normalizable states and non-
equilibrium densities, and (b) the theory also possesses the internal logic necessary to explain why we do not 
observe either of them in present-day laboratories.

We note that the H-theorem does not by itself prove that relaxation to pilot-wave equilibrium occurs, but 
provides a general mechanism to understand how equilibrium is approached, similar to the status of the gen-
eralized H-theorem in classical statistical mechanics25. Whether relaxation in fact occurs in finite time, if it is 
monotonic etc. significantly depend on whether the velocity field yields sufficient mixing. It is well-known in 
the literature on relaxation in pilot-wave theory13,19,34 that the velocity field varies rapidly around nodes (if they 
exist) and thereby causes efficient relaxation in general. Therefore, future numerical simulations using superposi-
tions of non-normalizable eigenstates can provide evidence whether relaxation to pilot-wave equilibrium indeed 
occurs, similar to relaxation to quantum equilibrium for normalizable states. It is useful to note here that the 
boundedness of the solutions ensures that the support �t does not necessarily become filamentous with time. 
For example, if �0 is sufficiently large to cover the region around the origin and |ψ(

−→y , t)|2 is very large near its 
boundary ∂�0 , then ∂�t will remain effectively static as the radial velocity field will be very small in that region. 
Lastly, we note that the coarse-graining cells do not become filamentous as they do not evolve with time, unlike 
the configuration density.

From a historical perspective, we know that the initial conditions of pilot-wave theory have usually been so 
restricted as to reproduce orthodox quantum mechanics. An important departure was made when nonequi-
librium densities were taken seriously in the theory, and the notion of quantum equilibrium was defined18,28. 
But the notion of quantum equilibrium is still restrictive as it assumes that a density in equilibrium always 
reproduces orthodox quantum mechanics. The notion of pilot-wave equilibrium makes one further step, in 
which this restriction is jettisoned. Therefore, generalising the notion of quantum equilibrium to pilot-wave 
equilibrium may be seen as a logical step towards treating pilot-wave theory as a theory in its own right, instead 
of as a hidden-variable reformulation of orthodox quantum mechanics.

It may appear that the restriction of the configuration density to compact supports limits the physical appli-
cability of pilot-wave equilibrium. However, this is incorrect as we can always approximate a density with global 
support up to arbitrary accuracy using a density with compact support. This can be done by defining an arbitrarily 
small but finite cut-off parameter ǫ << 1 so that if the global density ρg (−→y ) ≤ ǫ at a particular point −→y  on the 
configuration space, we define the compact density ρc(−→y ) ≡ 0 , where ρc(−→y ) ≡ ρg (

−→y ) (up to normalization) 
at all other −→y  . Further, global supports imply arbitrarily small probabilities that cannot be empirically verified 
and are, therefore, mathematical idealisations. For example, a Hydrogen atom in a lab on Earth has a finite but 
arbitrarily small probability of being found, in a position measurement, arbitrarily far away from the Earth. But 
observing such an extremely tiny probability trillions of light years away would take many times more than the 
current age of the universe in any realistic experimental setup.
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There are several implications of our work for pilot-wave theory. First, our work suggests a constraint on 
the pilot-wave velocity field. We know that the pilot-wave velocity is not uniquely defined as one can always 
add a divergence-free term to the current. In the context of non-normalizable states, the velocity field plays the 
important role of determining whether a given state is bounded. Therefore, it seems reasonable to impose the 
constraint that the addition of divergence-free term to the current does not affect the boundedness of the state. 
That is, if the (usually defined) pilot-wave velocity field vy = jy/|ψ |2 goes to 0 at y → ±∞ , then this behaviour 
must be preserved on modifying �j →�j + �∇ × �A . It would be interesting to figure out the class of possible �A that 
satisfy this property. Second, our work may help in distinguishing pilot-wave theory from orthodox quantum 
mechanics and other realist interpretations of quantum mechanics. For example, some authors have claimed 
that the system configuration in pilot-wave theory is superflous and the theory is actually a many-worlds theory 
in disguise35–37. As we have seen, however, the existence of a configuration density in the theory makes it pos-
sible to extract statistical predictions from non-normalizable quantum states. Therefore, the interpretation of 
non-normalizable states may turn out to be a crucial difference between the two theories. Third, we note that 
the notion of pilot-wave equilibrium, although introduced in the context of non-normalizable quantum states, 
is equally applicable to normalizable quantum states. It would be of interest to figure out whether densities 
partially relaxed to quantum equilibrium in previous numerical simulations have in fact relaxed to pilot-wave 
equilibrium. Lastly, our results imply that a unitary evolution involving non-normalizable states is dynamically 
equivalent to a corresponding non-unitary evolution involving appropriate normalizable states. This suggests 
that non-unitary evolution in some applications of orthodox quantum mechanics may in fact be an artefact of 
insistence on state normalizability. This also implies that, for normalizable states, unitary evolution is not neces-
sary for relaxation to pilot-wave equilibrium.

Our work also has implications for the ψ-ontic versus ψ-epistemic debate38–40. Non-normalizable quantum 
states do not make sense from a ψ-epistemic viewpoint, in which the role of the quantum state is to define 
probabilities. If the existence of non-normalizable quantum states is proved experimentally, or if such states are 
found to be crucial in fields like quantum cosmology or quantum gravity, then it would be difficult to argue in 
favour of ψ-epistemicity. We note that, once pilot-wave equilibrium is reached at a coarse-grained level, then the 
relation ρ(−→y , t) = |ψ(

−→y , t)|2/N  on �t suggests how a ψ-epistemic interpretation may emerge at an effective 
level from an underlying ψ-ontic theory.

We conclude that pilot-wave theory naturally suggests consideration of the possibility of non-normalizable 
quantum states, which we have studied for the case of harmonic oscillator. Such states have a physically-mean-
ingful notion of an equilibrium density. We have argued that quantization emerges in pilot-wave theory due 
to the instability of non-normalizable states to perturbations and environmental interactions. Further work is 
needed to determine whether such states actually exist in nature.
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