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An extensive quantitative 
analysis of the effects of errors 
in beat‑to‑beat intervals on all 
commonly used HRV parameters
Maurice Rohr 1*, Mika Tarvainen 2,3, Seyedsadra Miri 4,5, Gökhan Güney 1, Antti Vehkaoja 4,5,6 & 
Christoph Hoog Antink 1,6

Heart rate variability (HRV) analysis is often used to estimate human health and fitness status. More 
specifically, a range of parameters that express the variability in beat‑to‑beat intervals are calculated 
from electrocardiogram beat detections. Since beat detection may yield erroneous interval data, 
these errors travel through the processing chain and may result in misleading parameter values 
that can lead to incorrect conclusions. In this study, we utilized Monte Carlo simulation on real data, 
Kolmogorov–Smirnov tests and Bland–Altman analysis to carry out extensive analysis of the noise 
sensitivity of different HRV parameters. The used noise models consider Gaussian and student‑t 
distributed noise. As a result we observed that commonly used HRV parameters (e.g. pNN50 and LF/
HF ratio) are especially sensitive to noise and that all parameters show biases to some extent. We 
conclude that researchers should be careful when reporting different HRV parameters, consider the 
distributions in addition to mean values, and consider reference data if applicable. The analysis of 
HRV parameter sensitivity to noise and resulting biases presented in this work generalizes over a wide 
population and can serve as a reference and thus provide a basis for the decision about which HRV 
parameters to choose under similar conditions.

Heart rate variability (HRV) is an indirect indicator of the state of the autonomic nervous system (ANS). HRV 
has been increasingly used for example in exercise recovery  assessment1 and in wellness applications for assessing 
sleep  quality2. Many research articles have also proposed its use in clinical applications. According to a recent 
review on HRV applications in the medical domain by Faust et al.3 cardiology is the most studied application 
area for HRV followed by mental health and sleep physiology. In cardiology, HRV is widely used for detecting 
cardiac arrhythmias. However, in arrhythmia applications, the purpose is not to obtain information on the state 
of ANS but rather to detect and analyze ectopic heartbeats originating from elsewhere in the heart rather than 
the sinoatrial node. Cardiological HRV applications assessing ANS include early detection of surgical  stress4, 
detection and monitoring of heart failure, risk prediction for sudden cardiac death, and several  others3. HRV 
has been proposed as a clinical tool for routine risk stratification in myocardial infarction  patients5, but generally 
more trials and research are needed for a wider application in clinical practice.

One of the most widely used HRV parameters is the standard deviation of beat-to-beat intervals (SDNN)1. 
It reflects the overall activity of ANS regulation and it is considered as the gold standard for evaluating cardiac 
 risk6. It has been found to be directly affected by myocardial infarction (MI)7, autonomic  dysfunction8 and mental 
conditions such as depression and  anxiety9.

In several applications, it is important to detect even small changes in the HRV parameter values. However, 
the parameters are sensitive to the uncertainty or errors in the heartbeat intervals. Given that different HRV 
parameters carry redundant information about the ANS, it would be interesting to assess the differences in their 
sensitivity to the heartbeat interval errors. This would help to select those HRV parameters that are less sensitive 
to the errors but still provide relevant information.
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While the ECG-based RR-interval tachogram is the gold standard data for HRV estimation, using pulse 
intervals measured with photoplethysmography (PPG) for HRV estimation has recently received a lot of interest. 
PPG-based HRV is usually referred to as pulse rate variability (PRV) to highlight the inevitably higher uncertainty 
in the heartbeat intervals as well as the fundamental difference caused by the variations in pulse arrival time due 
to changes in blood  pressure10. In PRV analysis, the robustness of HRV parameters to uncertainty in beat-to-beat 
intervals is therefore even more important.

Most of the earlier studies on HRV sensitivity to heartbeat interval uncertainty have focused on evaluating the 
effect of ECG sampling rate and resulting uncertainty in the temporal location of the R-peak as well as on the spo-
radic errors in R-peak detection, missing R-peaks, and the effect of beat  replacement11,12. Usually, the studies have 
focused on evaluating the effects in a few most commonly used HRV  parameters13,14. Petelczyc et al.15 performed 
one of the most thorough analysis using Monte Carlo simulation for comparing the sensitivity of various HRV 
parameters on the ECG sampling frequency and QRS complex detection and estimated the effect of RR-interval 
errors in ten commonly used HRV parameters. They found that the most sensitive parameter was pNN50. On 
the other hand, short and long-term slopes, α1 and α2 of the detrended fluctuation analysis (DFA) were found to 
be the least sensitive to RR-interval errors. In the present work, we perform extensive Monte Carlos simulations 
in which we artificially introduce error in real-world RR-interval data and analyze how this noise is reflected in 
34 HRV parameters calculated in 5-min segments. In our simulations, we vary both the distribution of the noise 
(uniform, Gaussian, t-distributed) as well as its standard deviation between 1 to 10 ms to approximate interval 
errors for example due to low sampling rate in ECG and average errors seen in  PPG16. We present our results 
both quantitatively as well as qualitatively and perform statistical tests to find significant differences. We assess 
the consistency of the effect of the noise distribution and evaluate, which HRV parameters show consistent bias 
under the presence of RR-interval uncertainty and which are more and which are less affected by it.

The main contribution of this study is an overview over the error distributions of an extensive selection of 
different HRV parameters. We quantify their sensitivity to noise and show that most parameters show system-
atic biases. Based on our results, we argue that LF/HF ratio and pNN50 should be used with caution and that 
researchers should generally consider the distributions of parameter values instead of only computing mean 
and median values.

Material and methods
In order to obtain realistic beat-to-beat intervals from healthy subjects, the “Autonomic Aging Dataset” was 
 used17, which is a publicly available dataset within the PhysioNet  Database18. It contains recordings of 1121 
healthy volunteers of approximately 8–40 min duration. It is divided into six age groups (below 30, 30–39, 40–49, 
50–59, 60–69, above 69 years) with 670 participants being female and 433 male. For each subject, an ECG signal 
(lead II) and a continuous non-invasive blood pressure signal is available. The ECG is recorded at 1000 Hz either 
by an MP150 (ECG100C, BIOPAC systems inc., Golata, CA, USA) or Task Force Monitor system (CNSystems 
Medizintechnik GmbH, Graz, AUT). All subjects were screened rigorously and remained in a resting state 
sinus rhythm. In order to obtain clean and representative heartbeat interval data and heartbeat annotations, 
we extracted the heartbeat locations from the ECG using a Pan-Tompkins based QRS  detector19 and employed 
a validated beat correction  algorithm20. Instead of using the corrected beats, segments containing overwritten 
missed or erroneous beats were discarded, reducing the number of subjects with more than 5 min of recording 
to 971. The processed dataset contains a total of 989,399 automatically validated heart beats.

In our simulation, we created a representative sample S of n = 15,000 5-min segments from the processed 
dataset. n was chosen as an upper bound for the convergence criterion for the distribution of each HRV param-
eter, which we defined as the point where the normalized standard error for the expectation of the HRV param-
eter distribution (standard error Se/sample mean µs ) drops below 2%, where Se = 1.96σs/

√
n and σs is the sample 

standard deviation. Sampling was performed by first choosing one of the 971 recordings at random, selecting a 
starting heart beat annotation at random, and then including all beat annotations in the following 5-min window, 
leading to windows with partially overlapping information. The average number of heartbeats in each window 
was 344 with a standard deviation of 48, corresponding to an average heart rate of 69 bpm with a standard devia-
tion of 9.6 bpm. Due to the relatively low number of sampling iterations not all subjects were represented equally 
by n/971 = 15 segments. Notably, the distribution of segments per age group matches the age distribution in the 
Autonomic Aging dataset, which is heavily tilted towards the younger groups.

HRV calculation
HRV analyses were carried out using Kubios HRV Scientific 4.0 software (Kubios Oy, Kuopio, Finland). The pre-
processing features of Kubios HRV software including noise detection, beat correction, and detrending were all 
disabled in order to observe the true influence of IBI errors over different HRV analysis parameters. Otherwise, 
the HRV parameters were derived according to the  guidelines21. The extensive set of HRV parameters assessed 
in this study are described in Table 1.

Noise simulation
We added noise to the beat timings by sampling from three differently distributed random variables. We inves-
tigated 10 equally spaced noise levels with standard deviations σ ranging from 1 to 10 ms. The distributions 
in Fig. 1 were parameterized to have the same standard deviations and zero-mean. The analytically derived 
parameters were computed as follows:

(1)Gaussian : µ̂ = 0, σ̂ = σ ,
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where ν̂ is chosen as the minimal possible value, thus the second moment is defined to achieve very heavy tails.
The choice of distributions is motivated by errors introduced during signal processing. Due to the finite sam-

pling frequency, peak locations in the raw data always show a uniformly distributed  error30. Besides the sampling 
error, the uniform distribution is chosen because typical QRS detectors with beat corrections usually come with 
an upper and a lower threshold for discarding beats, which limits the possible error, but apart from that arbitrary 
errors are possible. Interestingly, the triangular distribution (not directly applied in this study) is generated when 
we compute the inter-beat intervals from uniformly distributed peaks and should therefore be considered as 
relevant for inter-beat interval analysis. The Gaussian distribution models the combination of multiple unknown 
error sources in the signal generation and processing pipeline, such as sampling-noise, quantization noise, 

(2)uniform : lower = −
√
3σ , upper =

√
3σ ,

(3)triangular : A = −1/
√

3/18σ , B = 0, C = −A,

(4)t-distribution : µ̂ = 0, σ̂ =
√

(ν̂ − 1)σ 2/ν̂, ν̂ = 3,

Table 1.  Descriptions of assessed time-domain, frequency-domain and nonlinear HRV parameters and 
related analysis settings.

Parameter Units Description

Time-domain HRV parameters

  Mean RR (ms) The mean of RR intervals

  Mean HR (bpm) The mean heart rate (60 s/Mean RR)

  SDNN (ms) Standard deviation of (normal-to-normal) RR intervals

  RMSSD (ms) Square root of the mean squared differences between successive RR intervals

  NN50 (beats) Number of successive RR intervals that differ more than 50 ms

  pNN50 (%) NN50 divided by the total number of RR intervals × 100%

  HRVti HRV triangular index derived as the area of the RR interval histogram divided by the height of the histogram

  TINN (ms) Baseline width of the RR interval histogram derived using triangular interpolation

  SI Square root of the Baevsky’s stress  index22

  DC (ms) Heart rate deceleration capacity (DC) derived as four-point difference from the deceleration  phase23

  DCmod (ms) Modified DC computed as a two-point  difference24

  AC (ms) Heart rate acceleration capacity (AC) derived as four-point difference from the acceleration  phase23

  ACmod (ms) Modified AC computed as a two-point  difference24

Frequency-domain HRV parameters

  LF power (ms2) Absolute power of low frequency (LF: 0.04–0.15 Hz) component

  HF power (ms2) Absolute power of high frequency (HF: 0.15–0.4 Hz) component

  pLF power (%) Relative power of LF component: LF (%) = LF (ms2)/Total power (ms2 ) × 100%

  pHF power (%) Relative power of HF component: HF (%) = HF (ms2)/Total power (ms2 ) × 100%

  nLF power (n.u.) LF power in normalized units: LF (n.u.) = LF (ms2)/[Total power (ms2 ) − VLF (ms2 )] × 100%, where VLF is the power of the very 
low frequency (0–0.04 Hz) component

  nHF power (n.u.) HF power in normalized units: HF (n.u.) = HF (ms2)/[Total power (ms2 ) − VLF (ms2 )] × 100%

  LF/HF Ratio between LF and HF component powers

  Total power (ms2) Total spectral power

Nonlinear HRV parameters

  Poincaré SD1 (ms) In Poincaré plot, the standard deviation perpendicular to the line-of-identity25

  Poincaré SD2 (ms) In Poincaré plot, the standard deviation along the line-of-identity25

  Poincaré SD2/SD1 The ratio between SD2 and SD1

  ApEn Approximate  entropy26

  SampEn Sample  entropy26

  DFA α1 In detrended fluctuation analysis (DFA), the short-term fluctuations  slope27

  DFA α2 In DFA, the longer-term fluctuations  slope27

  D2 Correlation  dimension28

  RPA REC (%) In recurrence plot analysis (RPA), recurrence  rate29

  RPA DET (%) In RPA,  determinism29

  RPA Lmean (beats) In RPA, the mean line  length29

  RPA Lmax (beats) In RPA, the maximum line  length29

  RPA ShanEn In RPA, the Shannon entropy of the line  lengths29
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peak-uncertainty as well as the influence of signal noise on the detection and is the most common assumption. 
On other accounts, Petelczyc et al.15 assume that the QRS detection procedure amplifies existing errors. The 
t-distribution is a heavy-tailed distribution and thus allows extreme errors with non-zero probability such as 
outliers from missed beats, extra beats, or misaligned beats due to motion artifacts or undetected ectopic beats.

Evaluation
For every 5-min segment in S , the HRV values calculated before adding noise are considered the ground truth 
values xi,p , with i ∈ {1, . . . , n}, p ∈ HRVparams . After adding noise of a specific distribution and intensity, the 
estimated HRV value x̂i,p is obtained. The difference to the ground truth that arises from the addition of noise 
as described above is considered the error,

For the Bland–Altman analysis, we also need to calculate the average of the ground truth and the estimation, 
ai,p = (x̂i,p + xi,p)/2 . The systematic bias is defined as the average of the error over all n = 15000 samples,

In addition to the systematic bias, the mean absolute error (MAE)

as well as the root-mean-square error (RMSE)

are calculated. To further analyze the distribution of the error, the 5th and 95th percentile are calculated. The 
Kolmogorov–Smirnov test is performed to test whether the distributions of the HRV parameter error depend on 
the distribution of the noise. In our analysis we consider p-values p < 0.05 to be statistically significant. Finally, 
to allow for a comparison of the noise sensitivity of the different HRV metrics, we calculate the group mean of 
the ground truth of all n windows,

Next, we fit a linear function to determine the dependency of bias, MAE, and RMSE on σ,

(5)ei,p = x̂i,p − xi,p.

(6)�p =
1

n

n
∑

i=1

ei,p.

(7)MAEp =
1

n

n
∑

i=1

∣

∣ei,p
∣

∣

(8)RMSEp =

√

√

√

√

1

n

n
∑

i=1

e2i,p

(9)x̄p =
1

n

n
∑

i=1

xi,p.

(10)�p = αbias/100% · σ · x̄p,

Figure 1.  Error distributions commonly observed. All with standard deviation of 1 ms.
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Results
Kolmogorov–Smirnov‑test
Figure 2 shows the results of the Kolmogorov–Smirnov-test (KS-Test) when comparing Gaussian distribution 
and t-distribution (first row), t-distribution and uniform distribution (second row), and Gaussian and uniform 
distribution for noise levels of σ = 5 ms and σ = 7 ms.

First, if we assume a p-value of 0.05 to indicate statistical significance, we see that the t-distribution results 
in significantly different distribution of errors for the majority of HRV metrics when compared to the uniform 
distribution or the Gaussian distribution. This effect is more pronounced at the higher noise level. At the same 
time, when comparing Gaussian and uniform distribution, only for very few metrics (MeanRR, NN50, pNN50, 
and SampEn), a significant difference could be observed at σ = 7 ms. Hence, we will only examine t-distribution 
and Gaussian distribution in the following.

Error vs. sigma (mean, 5th percentile and 95th percentile)
In the above Fig. 3, we plot the systematic bias, the 5th percentile and the 95th percentile for all HRV metrics over 
σ . The gray shaded area marks the area enclosed by the 95th and 5th percentile when Gaussian noise is added.

As expected, all parameters show an increase in absolute error as indicated by the shaded area with an increase 
in σ . Additionally, with an increase in σ , almost all parameters show an increase in systematic bias with either 
a positive or a negative sign, i.e. almost all parameters are either systematically over- or underestimated when 
heart beat locations are noisy. Unsurprisingly, only the mean heart rate and the mean RR interval do not show 
a systematic bias. Also, although the KS-test has revealed statistically significant differences in error distribu-
tion, when either t-distributed or Gaussian noise is considered, we can only make out small differences for most 
parameters. However, stark differences are obvious in NN50, pNN50, TINN, SI, and all RPA metrics.

Dependency of the relative error on σ
As the previous analysis has demonstrated, all parameters are influenced in terms of absolute error by the addi-
tion of noise, and almost all parameters show an increase in systematic bias. Table 2 shows the distribution of 
the ground truth data for all HRV metrics in terms of mean, 5th percentile, and 95th percentile. Column 5 to 7 
show the results of the linear fit as described in Eqs. (10)–(12), i.e. the linear increase of bias, MAE and RMSE, 
respectively, in dependency of σ . The table is sorted in ascending order in terms of αRMSE (see Eq. 12). To visualize 
the dependency of the normalized error, Fig. 4 shows αbias over αRMSE for all HRV metrics.

Several interesting observations can be made. First, the sensitivity of the parameters varies quite dramatically, 
ranging from close to 0 to almost 9% per ms. As expected, SDNN is very robust, as an increase of the power of 
the noise by 1 ms will increase the RMSE by 0.6% relative to the group mean. This is even more pronounced, 
with absolute LF power (0.2% RMSE per ms). Particularly problematic is the ratio LF/HF, which is a commonly 
used HRV parameter to assess sympathovagal balance, but exhibits strong underestimation as well as a large 
RMSE. This is consistent with the observation that normalized LF power is underestimated, while normalized HF 
power is overestimated. Interestingly, Sample Entropy is also quite sensitive ( ∼ 2%/ms for Bias/MABS/RMSE). 
Similarly, although often used, pNN50 and NN50 show overestimation in the range of 2%/ms and an increase 
in RMSE in the range of 3%/ms.

(11)MAEp = αMAE/100% · σ · x̄p,

(12)RMSEp = αRMSE/100% · σ · x̄p.

Figure 2.  Kolmogorov–Smirnov-test comparing noise of Gaussian distribution, t-distribution, and uniform 
distribution for two different levels of noise, σ = 5 ms (top graph) and σ = 7 ms (bottom graph). Red color 
indicates significant difference.
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Bland–Altman analysis
We have seen in the previous section that the noise may create a systematic bias. It remains to be analyzed if 
this bias is independent of the actual value of the parameter. If that were the case, the Bland–Altman (BA) plots 

Figure 3.  Evolution of the error over the level of noise in terms of mean, 5th, and 95th percentile for all HRV 
metrics. The blue lines show the evolution for t-distributed noise, the red line for Gaussian noise. The unit of the 
error is given in the panel title.
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would be point clouds symmetric to a line parallel to the y-axis. In the following, we present the BA plots for 
a noise level of σ = 10 and consider Gaussian noise. Moreover, we give the Pearson correlation coefficient r of 
average ai,p (x-axis) and difference ei,p (y-axis). To avoid clutter, usually a small random subset of the data is 
used for plotting in the standard BA plot. However, we introduce color-coding for the individual points to give 
information about the point density (Fig. 5).

Discussion
We know from system theory that a linear operation applied to Gaussian noise will result in Gaussian noise, and 
only its mean and standard deviation may be altered. For the general case of nonlinear operations and other dis-
tributions of noise, no straight-forward general description can be given. Instead, an extensive Monte Carlo - type 
analysis as the one presented here can be used. In this mathematical sense, almost all HRV metrics analyzed here 
involve non-linear calculations. Hence, it is not surprising that we can see from all figures and tables that the com-
monly used HRV metrics show great variability when it comes to their behaviour under artificially added noise.

From Fig. 2 we can see that the effect of the distribution of the noise on the HRV metrics when using either 
uniform noise or Gaussian noise are mostly negligible, with the exception of NN50 and pNN50. As argued above, 
uniform noise applied to the location of individual heart beats will result in a triangular noise distribution in 
the intervals. A visual inspection of Fig. 1 shows the similarity of the triangular distribution and the Gaussian 
distribution, and makes this result intuitively plausible. We do however learn that the heavy-tailed t-distribution 
will result in significant differences for almost all parameters. Again, this is plausible as the t-distribution has a 
higher probability of generating outliers compared to the Gaussian distribution (and obviously the uniform dis-
tribution). Still, statistical significance does not give information about the effect size. Hence, if we look at Fig. 1, 
we learn that for most parameters, the distribution of the error is very similar when Gaussian or t-distributed 
noise is added. However, notable exceptions such as, for example, TINN, NN50, pNN50, and SampEn do exist. 
Hence, we would argue that as a first step, analyzing an HRV metric’s sensitivity towards noise can be achieved 
using Gaussian noise. However, for an in-depth analysis, it makes sense to determine the actual distribution of 
noise generated by the measurement system (measurement modality and beat detection algorithm) to be used, 
and quantify its impact on the HRV metric in question.

We can see from the BA plots in Fig. 5 that in addition to an offset, a systematic error is introduced for most 
parameters with very few exceptions. Again, the effect varies from parameter to parameter. For example, for 
SDNN and RMSSD, small values are systematically over-estimated as shown by r ≈ 0.8 . Note that we learned 
from Table 2 that in general, the bias introduced by noise is relatively small for SDNN, emphasizing that the 
main source of over-estimation stems from comparatively small absolute parameter values. On the other hand, 
we could also see in Table 2 that, for example, absolute HF power is systematically over-estimated with a linear 
factor approximately close to SDNN. But we can see from the BA plot that this over-estimation is manifested in 
a relatively constant offset and is not correlated with the ground truth value of absolute HF power. No correlation 

Figure 3.  (continued)
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is also found for absolute LF power and total power. Again, this is plausible as the addition of noise will always 
result in an addition of signal energy which is measured by these parameters. A common strategy for compen-
sating uncertainty is to use averaging over several segments for which HRV is calculated. However, due to the 
significant bias in most of the parameters, averaging is limited as a tool for error reduction. The relative power 
metrics show a different behavior. This can be explained since additive noise on beat locations will particularly 
influence the higher frequencies of beat-to-beat intervals as they are calculated via differentiation, which amplifies 
high frequencies. Generally, HRV parameters that reflect higher frequencies perform poorer with respect to Bias 
and RMSE. Besides the differentiation, the noise applied is local and statistically independent between different 
time points, which reflects the type of errors expected from the processing pipeline. Notably, lower frequency 
errors that are dependent over multiple beats can appear for specific choices of algorithms and modalities (e.g. 
respiratory amplitude modulation in PPG) as described  in16. In conclusion, we believe that it is important for 
HRV analysis in general to closely examine the distribution of the parameters instead of comparing only mean/
median values. Also, one has to keep in mind that different cohorts may have different baseline distributions 
and hence the impact of noise may be an important factor.

In terms of individual parameters, several interesting observations were made. For example, NN50/pNN50 
show inferior results in terms of bias, RMSE, sensitivity to the distribution of the noise, and dependency of 
the influence of noise on the ground truth value (Fig. 5). These findings align with studies that found pNN50 
to be sensitive to missing  beats14. Hence, we would argue that this simple, seemingly robust parameter should 
be used with caution, in particular when the baseline values are expected to be low (e.g. in older subjects and 

Table 2.  Distribution of all HRV metrics in terms of mean, 5th, and 95th percentile as well as the linear fitting 
factors αbias , αMABS , and αRMSE with respective Pearson correlation r for the goodness of the linear fit. The 
values are sorted by αRMSE in ascending order, see also Fig. 4. Interesting observations are printed in bold.

Parameter Group mean 5th prct. 95th prct.

Linear factor α (r) for

Bias MABS RMSE

MeanHR (bpm) 68.85 54.50 85.91 0.00 (0.28) 0.00 (1.00) 0.00 (1.00)

MeanRR (ms) 888.20 698.38 1101.00 − 0.00 (− 0.41) 0.00 (1.00) 0.00 (1.00)

LFpower (ms2) 1119.17 86.50 3736.62 0.04 (0.96) 0.15 (1.00) 0.24 (1.00)

Poincare SD2 (ms) 52.09 17.50 110.15 0.19 (0.97) 0.20 (0.97) 0.25 (0.98)

RPA DET (%) 96.73 94.42 98.82 − 0.16 (− 0.99) 0.17 (0.99) 0.25 (1.00)

TOTpower (ms2) 2490.91 176.98 8844.93 0.28 (0.96) 0.32 (0.98) 0.41 (0.99)

SDNN (ms) 44.43 13.87 97.98 0.52 (0.97) 0.52 (0.97) 0.61 (0.97)

HFpower (ms2) 1300.68 44.50 4740.47 0.49 (0.96) 0.56 (0.98) 0.71 (0.99)

DFA α2 0.25 0.09 0.46 − 0.30 (− 0.97) 0.33 (0.98) 0.74 (0.99)

ApEn 1.10 0.95 1.24 0.54 (0.96) 0.73 (0.94) 1.01 (0.94)

RPA ShanEn 2.94 2.59 3.36 − 0.71 (− 0.99) 0.73 (0.99) 1.02 (1.00)

TINN (ms) 224.38 71.00 469.50 0.50 (0.97) 0.77 (0.99) 1.04 (0.93)

pLFpower (%) 48.79 19.65 77.89 − 0.67 (− 0.98) 0.71 (0.98) 1.19 (0.99)

ACmod (ms) − 51.82 − 119.81 − 11.51 0.97 (0.97) 1.11 (0.98) 1.37 (0.98)

nLFpower (nu) 51.64 20.14 83.88 − 0.75 (− 0.98) 0.79 (0.98) 1.38 (0.99)

nHFpower (nu) 48.31 16.09 79.82 0.80 (0.98) 0.83 (0.98) 1.46 (0.99)

pHFpower (%) 46.23 14.87 78.08 0.82 (0.98) 0.86 (0.98) 1.49 (0.99)

DCmod (ms) 54.96 11.12 147.21 0.95 (0.97) 1.25 (0.99) 1.53 (0.99)

Poincare SD1 (ms) 33.95 7.42 84.15 1.34 (0.98) 1.35 (0.98) 1.57 (0.98)

RMSSD (ms) 47.94 10.48 118.82 1.34 (0.98) 1.35 (0.98) 1.57 (0.98)

DFA α1 0.88 0.49 1.32 − 1.01 (− 0.99) 1.02 (0.99) 1.82 (1.00)

AC (ms) − 40.87 − 94.96 − 8.60 − 1.16 (− 1.00) 1.38 (1.00) 1.93 (1.00)

HRVti 10.55 4.07 19.80 0.60 (0.97) 1.62 (0.90) 2.19 (0.83)

DC (ms) 44.22 8.65 113.89 − 1.25 (− 1.00) 1.43 (1.00) 2.19 (1.00)

SI 11.86 4.65 23.34 − 0.92 (− 0.99) 1.00 (0.99) 2.19 (1.00)

SampEn 1.68 1.22 2.05 1.78 (1.00) 1.91 (0.99) 2.34 (0.99)

RPA Lmean (beats) 9.19 6.57 13.18 − 1.63 (− 0.99) 1.65 (0.99) 2.39 (1.00)

D2 2.29 0.01 4.22 0.85 (0.94) 1.76 (0.99) 2.60 (1.00)

RPA REC (%) 25.26 16.13 39.01 − 1.71 (− 0.99) 1.73 (0.99) 2.66 (1.00)

pNN50 (%) 23.94 0.00 67.19 2.10 (0.96) 2.31 (0.97) 2.75 (0.97)

NN50 76.06 0.00 202.00 2.31 (0.96) 2.51 (0.96) 3.01 (0.97)

Poincare SD2/SD1 1.77 0.98 2.86 − 2.13 (− 1.00) 2.14 (1.00) 3.62 (1.00)

LF/HF 1.67 0.25 5.22 − 2.50 (− 0.99) 2.54 (1.00) 6.72 (1.00)

RPA Lmax (beats) 92.54 38.00 227.00 − 4.24 (− 0.99) 4.50 (0.99) 9.18 (0.95)
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patients under physiological stress e.g. due to infection). Another “underperformer” is the LF/HF ratio. It can 
be expected that this parameter is very sensitive to noise as its derivation involves the calculation of a ratio of 
values, which are themselves sensitive to noise. Nevertheless, we find it somewhat surprising how poorly this 
parameter performs in terms of bias and absolute error/RMSE compared to the other parameters (Fig. 4). LF/
HF is a popular parameter and we have used it in our previous works as well. In light of our current findings, we 
suggest to use extreme caution when using LF/HF in future studies, as small differences in noise in the groups 
to be distinguished may result in severe differences that may have nothing to do with the underlying physiology. 
The LF power in normalized units is less sensitive to noise and should be preferred over the LF/HF in studies 
which wish to use the frequency-domain analysis of HRV to assess sympathovagal balance of the autonomic 
nervous system.

In Table 2 we present the ground truth distribution of the HRV metrics we analyze. From the values and the 
fact that the used “Autonomic Aging”-dataset contains data from a population of young to old individuals of 
both sexes, we believe we cover a reasonable range of values and our results should generalize well. However, 
one hallmark of the database is that the subjects were “rigorously screened” to ensure healthiness and that the 
measurements are performed in a resting condition while maintaining wakefulness. Hence, different results 
may be obtained if data from severely diseased and/or non-resting individuals are used, provided their baseline 
values fall completely out of the ranges analyzed here. Hence, to make sure our results are applicable to a certain 
study, one should first check if the obtained values fall within the ranges of the present study. For certain HRV 
parameters (especially frequency domain variables) implementation details might also change the results slightly 
and pre-processing of the intervals plays a large role.

Figure 4.  Visualization of αRMSE over αbias for all HRV metrics, see also Table 2.
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Let us emphasize again that to make the influence of noise on RMSE and bias comparable, one has to employ 
some sort of normalization. In this case, the error was normalized by the population mean (see Table 2) of a broad 
population. Additionally, our Bland–Altman analysis shows that the over- or underestimation of parameters may 
depend heavily on the ground truth value (e.g., small SDNN values may be over-over-estimated). As a conse-
quence, the sorting of the HRV metrics in Table 2 may differ if a specific population is analyzed. For instance, the 
population mean of SDNN was found to be 44.43 ms, the one of HFpower to be 1300.68 ms2 for this cohort of 

Figure 5.  Bland–Altman plots for all HRV metrics (Gaussian noise, σ = 10 ). To avoid clutter, the density is 
color-coded, i.e. individual points are darker, points with many neighbouring points are brighter.
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more than 1000 subjects. When for instance analyzing the much smaller Fantasia-dataset (20 subjects 20–34 years 
and 20 subjects 68–85 years), SDNN was similar (39.56 ms), while HFpower was on average almost half of the 
value of the large cohort (702.47 ms2 ). Hence, with respect to this population mean, HFpower would be twice 
as sensitive. At the same time, note that the population mean only affects the normalized comparison. Still, even 
on the small dataset we observed the same general tendencies (small errors for MeanHR/RR and SDNN, larger 
errors for HF parameters compared to LF parameters, worst performance for RPA Lmax, NN50, LF/HF).

In order to evaluate in which error-range a given sensor and method M falls we suggest the following pro-
cedure: Take multiple simultaneous measurements with the test-device and a validated ECG-patient-monitor 
with sampling frequency of 1000 Hz or more for 5 min and at least 10 participants and varying age groups. 
Then compute the reference intervals with a validated QRS detector and verification of a trained Cardiologist. 
Subtract the reference intervals from the intervals estimated by M and estimate the standard deviation. Based 
on the standard deviation and the here presented reference values it can be checked if certain HRV parameters 
might be good enough.

Conclusion
In this paper we analysed the effect of uncertainty in temporal heartbeat location in various HRV parameters 
using a Monte Carlo simulation approach. The results showed that there are large differences between the HRV 
parameters in the robustness against errors in the heartbeat interval tachogram. The least tolerant ones being 
HF/LF ratio, pNN50 and NN50 and the most tolerant being RPA DET, LFpower but also SDNN. Three common 
noise distributions were evaluated in this study where the error range was limited to relatively small values and 
the influence of systematical errors over multiple beats was neglected. Future research should evaluate particularly 
the noise profiles (distributions and amplitudes) commonly seen in novel measurement modalities other than 
ECG, e.g., PPG, remote imaging PPG, seismo- and ballistocardiogram that commonly have larger uncertainty 
and/or might be influenced by systematic errors due to physiology. Biases in HRV parameters such as SDNN 
could possibly be partially compensated algorithmically if the noise distribution is known. On the other hand, 
simple averaging of HRV parameters over several analysis segments does not account for systematic bias. Most 
importantly, researchers should be cautious about the robustness of different HRV parameters to noise in the 
beat-to-beat interval data. To bring HRV closer to clinical practice, recommendations specific to application 
should be developed based on our findings.

Data availability
Raw data is available at https:// physi onet. org/. Derived data supporting the findings of this study are available 
from the corresponding author [M.R.] on request.

Figure 5.  (continued)

https://physionet.org/
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