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Performance evaluation 
of PSO‑PID and PSO‑FLC 
for continuum robot’s developed 
modeling and control
Elsayed Atif Aner 1,2*, Mohammed Ibrahim Awad 2 & Omar M. Shehata 2

Continuum robots are complex structures that require sophisticated modeling and control methods 
to achieve accurate position and motion tracking along desired trajectories. They are highly coupled, 
nonlinear systems with multiple degrees of freedom that pose a significant challenge for conventional 
approaches. In this paper, we propose a system dynamic model based on the Euler–Lagrange 
formulation with the assumption of piecewise constant curvature (PCC), where we accounts for the 
elasticity and gravity effects of the continuum robot. We also develop and apply a particle swarm 
optimization (PSO) algorithm to optimize the parameters of our developed controllers: an inverse 
dynamic proportional integral derivative (PID) controller and an inverse dynamic fuzzy logic controller 
(FLC), where we use the integral time of absolute error (ITAE) as the objective function for the PSO 
algorithm. We validate our proposed model and optimized controllers through different designed 
trajectories, simulated using our developed unique animated MATLAB simulation. The results show 
that the PSO‑PID controller improves the rise time, overshoot percentage, and settling time by 
16.3%, 31.1%, and 64.9%, respectively, compared to the PID controller without PSO. The PSO‑FLC 
controller shows the best performance among all controllers, with a settling time of 0.7 s and a rise 
time of 0.4 s, leading to the highest level of precision in trajectory tracking. The ITAE error for the PSO‑
FLC controller is 11.4% and 29.9% lower than that of the PSO‑PID and FLC controllers, respectively.

Traditional robotic manipulators, which are generally Composed of a set of rotating joints and rigid  linkages1,2, 
are widely used in industry. Rigid-link robots, however, pose a risk to delicate items and are unsuitable for 
interacting with humans. Robots that are capable of overcoming these restrictions and exhibit prominent levels 
of compliance and exceptional operational capabilities for environmental interaction and manipulating objects, 
known as soft continuum  robots3, display a variety of innovative traits and have garnered a lot of interest.

Continuum manipulators belong to the category of soft robotics that are underactuated and often bio-
inspired4. They mimic the natural motions of biological entities such as squid  tentacles5,  snakes6, and elephant 
 trunks7,8.

Continuum robots (CRs) composed of a flexible backbone to which a number of discs are attached. Elastic 
deformation causes the structures of CRs to constantly curve along their  length9. They can be constructed using 
numerous sections, giving them the potential to have an infinite degree of flexibility. Therefore, it is ideal for 
performing surgery with minimal invasion, medical  uses10, and working in a complex and unstructured  space11, 
where it can adapt to different shapes and handle objects and interact with the surroundings effectively.

Continuum robots are systemic complexity that is difficult to model and even more challenging to con-
trol, as they are a highly coupled-nonlinear system with limitless degrees of  freedom12. Therefore derivation of 
accurate mathematical models is essential for the improved design, analysis, and control of continuum robots. 
Several methodologies and theories, including Denavit–Hartenberg parameters (DH)13, Euler–Bernoulli beam 
 equation14, and Serret–Frenet  frames15 have been exploited to construct a kinematic model, While a widely used 
assumption in the continuum robotics community is the PCC  assumption16, which approximates the shape of 
the robot as a sequence of circular arcs that are tangent to each other, where a circular arc symbolizes the CR 
bending section, and the bending surface has the potential to rotate along a fixed axis. This assumption enables 
the simplification of the modeling of continuum robots. Various kinematic models based on the PCC assumption 
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have been developed and applied successfully to different tasks, such as workspace analysis, trajectory tracking 
and whole-arm manipulation.

Finite element  techniques17 and the Cosserat rod  theory18 are excellent tools for describing system dynam-
ics. Till et al.19 present a real-time simulation framework for soft and continuum robots based on Cosserat rod 
models. They derive the equations of motion using the principle of virtual work and discretize them using finite 
differences. F. Janabi-Sharifi20 provide a tutorial on Cosserat rod-based dynamic modeling of tendon-driven 
continuum robots. They review the basics of Cosserat rod theory and its application to continuum robots. It can 
be inferred that Cosserat rod theory provides a low-cost and flexible modeling approach for soft and continuum 
robots, which exhibit large shape deformations and environmental adaptability. However, this approach also faces 
some challenges, such as the need to simplify and approximate the robots’ physical properties and performance. 
It also requires precise knowledge of the material parameters and initial conditions, which may be difficult to 
obtain or estimate in practice.

Due to coupled, computationally costly formulae controlling the dynamics, the real-time application has 
only been feasible for simpler robots with a limited number of degrees of freedom. Therefore, it is difficult to use 
them in the construction of real-time dynamic controllers. The design of nonlinear resilient adaptive controllers 
is additionally challenging due to the structure of their dynamic equations.

In contrast, the Euler–Lagrange  approach21,22, based on piecewise constant curvature assumption (PCC), 
uses system developed potential, and kinetic energy in developing the CR equation of motion. Where it consid-
ers system elasticity and gravity effect. Providing suitable inverse dynamics needed for model-based controller 
design or path planning.

Particle swarm optimization (PSO) is a popular meta-heuristic algorithm inspired by the collective behavior 
of social swarms in nature. It has been widely applied to various optimization problems in different domains, 
such as engineering, science, and business. However, PSO also faces some challenges, such as premature con-
vergence, stagnation, and parameter tuning. To overcome these limitations, many variants, and modifications 
of PSO have been  proposed23.

Again it is an extensive and time-consuming task to develop a reliable, efficient control algorithm for control-
ling the position and movement of soft continuum robotic manipulator along a desired trajectory.

Therefore, by proposing a two section CR dynamics model presented leveraging the Eular-Lagrange repre-
sentation founded on the PCC assumption, we develop and apply two different control algorithms based on the 
utilized system inverse dynamics to handle system coupling and nonlinearity, (a) inverse dynamic PID controller. 
(b) inverse dynamics FLC. By this point, particle swarm optimization (PSO) was used as a tuning/optimization 
method developed and applied for both the PID and the FLC, where the PSO was used to optimize the param-
eter constants Kp , Ki and Kd of the developed PID, while for the developed FLC, the PSO was used to tune the 
membership function range for each input and output.

By the end, various dynamic control system outputs to a desired space parameter values were simulated and 
evaluated using MATLAB Simulink through designed trajectories (a) infinity shape. (b) rectangular path. Where 
the exported data is used in construction of a distinctive graphical interactively moving simulation.

The following points highlight the original contributions of this work:

• We proposed a two-section CR developed dynamic model using Eular-Lagrange representation founded 
on the assumption of the PCC, which accounts for its elasticity and gravity effect solved using a MATLAB 
symbolic toolbox.

• We Proposed two different control algorithms, inverse dynamic PID and inverse dynamic FLC that are care-
fully developed and implemented for accurate position trajectory tracking control, as they are further well 
optimized using developed multiple iteration PSO.

• The proposed PSO-optimized controllers are verified through the designed trajectory using MATLAB Sim-
ulink, where a comparative analysis is conducted to demonstrate the multiple dynamic responses and opti-
mization enhancements for each designed controller in mapped two-dimensional trajectories, demonstrated 
using created unique animated simulation.

The rest of this work is structured as follows: Sect. “Kinematics modeling” introduces the robot’s mechani-
cal structure and the kinematic model of the two-sections CR based on the PCC assumption, proceeded by the 
formulation of the dynamic model utilizing classical Euler–Lagrange representation, which is demonstrated 
in Sect. “Dynamics modeling”. PSO-based optimization of two control strategies and their development and 
analysis are discussed in Sect. “Controller design and optimization”. Section “Simulation and results” details the 
responses of the step and trajectory tracking, and how they are simulated with MATLAB and Simulink. At last, 
Sect. “Conclusion” concludes the paper and outlines further research plans.

Kinematics modeling
The CR structure, demonstrated in Fig. 1 comprises a flexible backbone, three driving wires, and an array of disks. 
Each section core comprised of a long flexible backbone and five fixed disks that are evenly spaced. The disks 
have three circular holes that are 120° apart for the driving wires. The driving wires can exert a moment on the 
tip of the flexible backbone to manipulate the CR’s behavior. The CR’s spatial mobility hinges on the deflection of 
the flexible backbone, which is attained by applying suitable tension forces to one or two wires at a time. The CR 
undergoes a two-DOF bending motion, that can be utilized to construct a multi-degree of freedom continuum 
manipulator by utilizing multiple two degree of freedom links.
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The continuum robot’s modelling process begins with the development of a system kinematic model. Here, 
we first adopt the PCC assumption, which represents the configuration space of the CR as a limited number of 
mutually tangent curved segments, each of which has a constant curvature over its length.

The bending of each part of the CR is regarded as an arc based on the PCC assumption of modelling CRs given 
in Refs.9,24. Figure 2 shows the curvature parameters where, θi the angle that each section’s bending is represented 
by, ϕi the arc plane corresponding angle, li each section’s arc length, ri radius of curvature, βi the tangent bending 
curve angle of the PB, si the subsection’s arc length. Where i represents section number.

Equation (1) represent subsection bending angle θsi , while the robot configuration space corresponds to 
q ∈ R4 , where q = [θ1ϕ1θ2ϕ2]

T as demonstrated in Fig. 2.

Forward kinematics
Each ith section’s transformation matrix in regard to the [frame i − 1 ] expressed by  Ti−1

i ∈ R4×4 as  follows9,25:

(1)θsi = siθi/li .

Figure 1.  Design element for a two-section continuum robot.

Figure 2.  Parameters diagram for the two-section continuum robot.
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The subsequent matrix denotes the final location of each subsection relative to the [frame i − 1 ], given 
ri = li/θi.

The position of each section’s end relative to [frame 0], 001 and 002 are obtained by substituting i = 1, 2 and 
s1 = l1, l2 , respectively. Where the position of subsection in second section O0

s2
 expressed as:

where the second section end position (end effector) with regard to [Frame 0] 
(

002
)

 are obtained by simply sub-
stituting s2 = l2 in (4).

Inverse kinematics
Given the terminal locations of each segment relative to [frame 0] depicted in Fig. 2, the configuration angles 
[θ1ϕ1β1θ2ϕ2β2] of the two-sections CR can be derived geometrically as  follows9:

Dynamics modeling
As demonstrated in Fig. 1, continuum robot consists of segments, each of which comprises of a primary backbone 
(PB), parallel secondary backbones (SBs) distributed 120 degrees apart, and multiple discs.

This section presents dynamic model of a two-section CR using Eular-Lagrange representation, through which 
kinetic and detailed-potential energy of each subsection are presented. In addition, symbolic-math toolbox of 
(MATLAB) was used to solve system partial differential equation.

Kinetic energy derivation
Kinetic energy is consisting of three component of the three parts PB, SBs, and discs for each section. Firstly, the 
kinetic energy component belonging to the PBs denoted by KEPb attainable as follows:

where, ρP denotes the density, AP represents cross-section area, and IP signifies the PB second moment of cross-
sectional area.

The following method is used to determine the SB lengths:

where, α is the gap between the primary backbone and each secondary backbone.
The system kinetic energy of the SBs is the second component, it is separated into two parts. By replacing each 

1
2 with 32 and each subscript "P" insisted of "S" in (8), The first component 

(

KESb1
)

 can be computed.
The second component can be built as follows by differentiating the actuators’ lengths:
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where, mS is the mass of each SB.
The third component of the kinetic energy, is the discs kinetic energy KED , which can be obtained by deriv-

ing the velocity of each disc. By substituting si = kih in O0
si
 the position of each disc O0

di
 is obtained. Where KED 

can be articulated by:

The letters n1 and n2 denote the disc count in the initial and subsequent segments of the CR, respectively. 
Where h represents the space between each disc. and ki = 1, 2, 3, . . . , ni . The symbols  mD and ID represent every 
disk mass and the mass moment of inertia.

Employing Eqs. (8), (10) and (11) the total kinetic energy KE is denoted by:

Potential energy derivation
The CR has two types of potential energy: the potential energy due to gravity and elasticity. These are derived 
from both the PB and the discs.

Given that the orientation of the positive x0 − axis coincides with the gravitational acceleration (g). The 
formula for the gravitational potential energy component of the PB (GPEPb) is given by:

The total gravitational potential energy of the two-sections continuum robot GPED denoted as following:

The elastic potential energy is provided by:

where, EP and ES denotes PB and SBs elasticity modules, respectively.
By summing all the potential energy components (13), (14) and (15) system potential energy (PE) can be 

obtained.

Equation of motion
Using differentials of Eqs. (12) and (16) we can form the Lagrange  equation21,22,25:

where q = [θ1ϕ1θ2ϕ2] represent configurations space variable, and q̇ =
[

θ̇1ϕ̇1θ̇2ϕ̇2
]

 represent its derivatives.
The equation of motion can be expressed in its final form as follows:

where, M
(

q
)

 presents the inertia matrix of dimension 4 × 4 , V
(

q
)

 is the 4 × 4 matrix that contains the centrifugal 
Coriolis torque components , G

(

q
)

 is the 4-dimensional vector that represents the gravitational torques while τ 
is the 4-dimensional vector of the CR torques.

Controller design and optimization
Controlling continuum robot arms poses significant challenges due to their highly nonlinear and coupled dynam-
ics. In this section, we aim to develop and apply two different controllers whose parameters are optimized using 
particle swarm optimization. There are inverse dynamic PID and inverse dynamic FLC.

The system configuration space error e(t) ∈ R
4 (error vector), defined as:
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where the desire configuration space angle denoted as q(d) =
[

θ1(d)ϕ1(d) θ2(d)ϕ2(d)

]T , which, in the instance of 
trajectory tracing, could be a time function.

PSO optimized PID controller
The objective is to ensure that the CR time parameters coordinates q(t) converge to a desired time profile defined 
by the vector qd(t), such that the error e(t) = qd(t) − q(t) vanishes asymptotically. A second-order error equation 
is required for this purpose. A linear form of the error equation can be selected as follows:

The coordinate vector q’s second-order time derivative can be obtained from (20) as:

The purpose of our controller is to choose a suitable control input U(t) ∈ R
4 to converge the tracking error e(t) 

to zero. We derive the following inverse dynamic control law: The resulting control law is obtained by inserting 
Eq. (21) into the system dynamic model (18):

where Kp , Ki and Kd are the proportional, integral constant control gains, respectively. q̈d ∈ R
4 is the second 

derivative value of the desired trajectory. By choosing a set of appropriate gain values of Kp , Ki and Kd the con-
figuration variables of the close-loop system is able to track the desired trajectory and minimize the error e(t).

PSO algorithm is a swarm-based search method that operates on a D-dimensional solution space. Each poten-
tial solution is represented by a particle that has a position and a velocity and can store the best position of itself 
and the swarm. At each iteration, the particles update their velocities and positions based on the information 
of their best positions. The particles dynamically explore the solution space until they converge to an optimal 
or near optimal state or exceed the computational budget. The objective functions provide the linkage among 
different dimensions of the problem space. Figure 3 demonstrate our PSO algorithm flowchart.

Particle swarm optimization (PSO) method was used for optimal tuning of the PID controller parameter 
constants ( Kp , Ki and Kd ). As Fig. 4 presents the particle’s initial search values for the full swarm, while Fig. 5 
demonstrates the full swarm initial values distribution in three-dimensional space, where each plot represents 
a single ( Kp , Ki and Kd ) value with respect to the search space.

Where Each particle movement of the PSO is influenced by its own best known position and the best known 
positions of other particles, where the velocity equation:

where vti  symbolizes the inertia, c1 and c2 are the positive acceleration constants of cognitive and social com-
ponents, respectively, r1 and r2 are random numbers, Pbest is the personal best position, Gbest is the global best 
position and Pti  is the position vector of particle i at time t .

A particle’s velocity depends on how much it trusts itself c1 and its neighbors c2 , as well as some random fac-
tors ( r1 and r2 ). These are the acceleration coefficients that affect the cognitive and social aspects of the particle. 
If c1 and c2 are both zero, particles keep flying at the same speed. If only one of them is positive, particles either 
do a local search c1 or follow the best position in the swarm c2 . The best performance is achieved when c1 and c2 
are balanced and close to each other, i.e. c1 ≈ c2 . This way, particles are influenced by both their own and their 
neighbors’ best positions.

The position equation of each particle in the swarm given by:

The cost function is selected to be the time integral of absolute error (ITAE):

which is a performance index that is used to evaluate the performance of a system. The ITAE cost function is 
designed to penalize large errors more than small errors by using the absolute value. It also penalizes errors that 
persist for a long time more than errors that are transient by using the time factor. The ITAE cost function gives 
more weight to the settling time than the rise time or overshoot of the response.

PSO optimized FLC controller
An artificial intelligence-based control approach, FLC utilizes the system’s prior knowledge to formulate decision 
rules. The functionary’s main task is to determine the linguistic variables and the rules based on the system’s 

(19)e(t) = q(d)(t)− q(t) =
[

e(θ1)e(ϕ1)e(θ2)e(ϕ2)
]T
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Figure 3.  Developed PSO flowchart.

Figure 4.  PID parameters initial population, distribution, and values.
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behavior and the controlled system’s context. The proposed FLC controller, combined with the inverse dynamic 
model of the system, mitigates the effects of system coupling and nonlinearity.

Particle swarm optimization (PSO) was used for tuning controller parameters. Where FLC rules were designed 
based on a thorough knowledge of system dynamics, ranges of inputs and outputs were initialized using trial 
and error, then the PSO was used to tune the ranges of all membership’s functions for each input and output.

The proposed inverse dynamic FLC control law:

where q̈(f ) =
[

θ̈1(FLC) ϕ̈1(FLC) θ̈2(FLC) ϕ̈2(FLC)
]T present the output of the designed FLC.

The error ( e ) and its derivative ( ̇e ) of both ( θi ) and ( ϕi ) are used as inputs of the FLC. Where the linguistic 
variables for inputs and outputs are expressed as follow:

The inputs variables expressed as;

eθi = eϕi =



















Negative big (NB)
Negative medium (NM)
Zero (Z)
Positive medium(PM)
Positive big(PB)

 , and ėθi = ėϕi =



















Reducing big(RB)
Reducing medium(RM)

Medium(M)
Growing Medium(GM)

Growing big(GB)
The output variable expressed as:

where Table 1 present the rule base table for the FLC, where first input are ( eθ i , eϕi ) and the second input are 
( ̇eθ i , ėϕi ), as previously explained.

(26)τ(fuzzy) = M
(

q
)

q̈(fuzzy) +
[

V
(

q, q̇
)

q̇+ G
(

q
)]

,

θ̈i(f ) = ϕ̈i(f ) =



















Low (L)
Fairly low (FL)
Medium (M)
Fairly high (FH)
High (H)

Figure 5.  Particles initial distribution in search space for the PID parameters.

Table 1.  PSO-FLC rule base table, inputs, and output linguistics. (e) presents the error of θi and ϕi , while ė 
presents the error (e) time derivative.

e

NB NM Z PM PB

ė

RB L L L M M

RM L FL FL FH FH

M FL FL M FH FH

GM FL FL FH FH H

GB M M H H H
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The range of each membership function are tuned using particle swarm optimization (PSO), while (21) and 
(22) used to update particles velocity and location respectively, where each particle represents different change 
to the range of the membership function. Which results in a different ITAE value (23).

Figure 6 presents the PSO-FLC input’s and output’s membership function, produced by the last iteration 
of the PSO with the least ITAE value, while demonstrating its shapes and tuning for every membership range. 
While Fig. 7 demonstrate the PSO-FLC control surface, for e(θ ,ϕ) , ė(θ ,ϕ) as inputs, and (̈θ , ϕ̈) as outputs, Now we 
can see that by choosing the identical membership function ranges for both the input and output, Fig. 7a and b 
are quite comparable to one another.

The developed particle swarm optimization algorithm is illustrated by the following pseudocode, which 
shows the main steps of the algorithm and the formulas used to update the position and velocity of each particle.

Figure 6.  PSO membership functions for inputs and outputs of FLC.

Figure 7.  PSO-FLC generated control surface.
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1 ## Initialize Parameters ##
2 Determine the Parameters
3 Initiate the iteration_count to zero
4 for m = 1 to Population size
5 for n = 1 to Controller parameter size
6 Initialize particles positions and velocities
7 end
8 Evaluate the model for each particle
9 Calculate ITAE[m] for each particle
10 end
11 Determine the minimum ITAE and its location [m]
12 ## Enter the main loop ##
13 for i = 1 to Max_iteration
14 Set inertia weight W[i]
15 for m = 1 to Population size
16 for n = 1 to Controller parameter size
17 Update particles position & velocity 
18 end 
19 ## Check the parameter boundary ##
20 for i = 1 to Controller parameter size
21 if Particle[m].position < Lower_boundary.position
22 Particle[m].position = Lower_boundary.position
23 end
24 if Particle[m].position < Upper _boundary.position
25 Particle[m].position = Upper _boundary.position
26 end
27 end
28 ## Update the best position for individual particles ##
29 Evaluate the model for each particle
30 Calculate ITAE[m] for each particle
31 if ITAE[m] < ITAE.groupbest
32 ITAE.groupbest = ITAE[m];
33 Parameters.groupbest = Parameters[m]
34 end
35 end
36 ## Update the best position of the group ##
37 if min_ITAE.location < global[ITAE]
38 global[ITAE] = min_ITAE.location
39 global.particle = min_ITAE.particle
40 end
41 iteration_count = iteration_count +1    
42 end

Algorithm developed particle swarm optim.

The online resource (Supplementary Video 1) provides a detailed analysis of how the PSO algorithm improves 
the performance of both the PID and FLC controllers. It shows how the controller responses change with each 
iteration of the PSO algorithm and how they converge to optimal values.

Simulation and results
In this section, MATLAB Simulink, with the aid of the system dynamic model, is used to simulate the CR arm 
response for the proposed controllers PSO-PID and PSO-FLC for both given step inputs and desired trajectories. 
Table 2 lists the continuum manipulator’s material and geometric characteristics.

The system configuration space initial value of q = [0.001◦0◦0.001◦0◦]T was precisely selected after a thor-
ough analysis of the CR workspace and its dynamics to prevent singularities.
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We perform the simulation based on the PID and FLC parameters determined by the particle swarm optimi-
zation (PSO). In the case of the PID controller, the parameters gain constant Kp , Ki and Kd are 40, 0.1 and 6.72 
respectively, while Fig. 6 shows the FLC membership functions, shapes, and ranges.

The PSO parameters are set to be c1 = c2 = 2 , while r1 , and r2 are random numbers generated online through 
model simulation and iteration progress. The initial population values are presented in Fig. 4, with swarm size 
(Np = 40), and iterations number (n = 10).

Step response
To assess the reliability and effectiveness of each controller, the optimized control algorithms are examined 
using MATLAB to simulate system response to a given different step inputs, where the desired configuration 
space angels are q = [80◦90◦110◦180◦]T at time t = 0sec and changed its desired configuration at time t = 4sec 
to q = [40◦45◦55◦90◦]T.

Table 2.  Chosen parameters of the CR.

P Designation Value P Designation Value

L1 First link length 0.5 m As SB cross section area 7.85 ×10−7 m2

L2 Second link length 0.5 m IP PB second moment of area 5.15 ×10−14 m4

ρs Secondary Backbone (SB) density 5000 kg/m3 g Gravitational acceleration 9.81 m/s2

ρP Primary Backbone (PB) density 5000 kg/m3 h Distance between each disk 0.1 m

EP PB modules of elasticity 65 ×109 Pa mD Mass of each disk 0.01 kg

α Distance between the PB and SBs 0.02 m ID Each disk mass moment of inertia 3.48 ×10−7 kg .m2

AP PB Cross section area 28.26 ×10−4 m2 Is SB second moment of area 4.91 ×10−14 m4

Figure 8.  Enhanced response of PSO verses trial and error PID.
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The step response simulation shows a more reliable and enhanced response for the particle swarm optimiza-
tion (PSO) over the most efficient parameter obtained by trial and error parameter, from Fig. 8, it’s clear that the 
PSO-optimized PID controller provides a more accurate and faster response to changes in the desired degree 
values. This is evident from how closely the “PSO PID” lines follow the “desired” lines compared to the traditional 
“PID” lines. This indicates that the PSO-optimized PID controller enhances the performance of the continuum 
robot by reducing overshoot and settling time, leading to a more stable and accurate control.

Figure 9.  Enhanced response of PSO verses trial and error FLC.

Figure 10.  Controllers dynamic response (a) PSO-PID (b) PSO-FLC.
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For the case of the FLC, the PSO optimization develops more suitable ranges for the inputs and outputs 
membership function, as demonstrated in Fig. 6, while Fig. 9 shows how the PSO FLC line closely follows the 
desired line, indicating that the PSO has effectively optimized the FLC membership function, resulting in a more 
accurate and responsive control of the robot’s movement. On the other hand, the trial-and-error FLC line shows 
more deviation from the desired line, suggesting less precision and slower response times.

The full dynamic response of the optimized controller is demonstrated by Fig. 10, which shows the great 
responsiveness of the controller (error and change of error) at the aggressive change of the desired values at 
sharp step input.

Figure 11 shows a response comparison between PSO-PID and PSO-FLC for each configuration space param-
eters [θ1ϕ1θ2ϕ2] , where it shows the overcoming of FLC over the PID in terms of overshoot and settling time, 
although the PID experiences a lower rising time. This comparison clearly illustrates the significant enhancement 
in the continuum robot’s dynamic response when using PSO for optimizing the FLC membership function. The 
robot is able to achieve the desired angles more accurately and quickly, improving its overall performance and 
efficiency. This is particularly important in applications where precise and rapid movement is required.

Figure 11.  PSO response for both PID and FLC.

Table 3.  Performance comparison of system response for controllers with and without PSO optimization.

Controller PID PSO-PID FLC PSO-FLC 

overshoot 29.09 % 24.5 % 0 % 0 %

Rise-time 0.45 sec 0.31 sec 1 sec 0.4 sec 

Settling time 2.85 sec 1 sec 1.6 sec 0.7 sec 

ITAE 89.6 59. 6 75.4 52.8 
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Figure 12.  ITAE progress for both (a) PSO-PID, and (b) PSO-FLC.

Figure 13.  Trajectory tracking performance of PSO-PID and PSO-FLC for infinity path (a) trajectory full 
response (b) magnified response.

Figure 14.  CR dynamic performance for infinity path (a) θ1 response action (b)  θ2 response action.



15

Vol.:(0123456789)

Scientific Reports |          (2024) 14:733  | https://doi.org/10.1038/s41598-023-50551-0

www.nature.com/scientificreports/

Table 3 presents a complete comparison of results between different optimized controllers, showing the 
enhancement in terms of rise time, settling time, and overshoot percentages.

Figure 12 compares the Integral Time Absolute Error (ITAE) performance index of a Fuzzy Logic Controller 
(FLC) and a Proportional-Integral-Derivative (PID) controller over a series of iterations. The ITAE is a measure of 
the controller’s performance, with lower values indicating better performance. The red line represents the FLC’s 
ITAE, while the blue line represents the PID’s ITAE. From the graph, it’s clear that the FLC outperforms the PID 
controller in terms of ITAE. The FLC’s ITAE starts at around 15 and decreases to around 13 over 10 iterations, 
indicating an improvement in performance. On the other hand, the PID’s ITAE starts at a much higher value of 
around 44 and only decreases to around 32 over the same number of iterations.

Trajectory tracking response
This section covers the optimized controller’s dynamic behavior to a certain trajectory. Two simulation scenarios 
have been run up to this point in a two dimensional plane, infinity shape and rectangular trajectories.

Firstly, the infinity shape trajectory, centered at the point (0.5, 0.5) within the plane of [x–z], where the cur-
vature plane ϕ1 = ϕ2 = 0 . Figure 13a presents trajectory tracking of both controller PID and FLC, while Fig. 13b 
presents a magnified response of the trajectories, The results show that the PSO-PID and PSO-FLC controllers 
are able to track the infinity path with high accuracy and low error. The PSO-PID controller has a faster response 
time and a smaller settling time than the PSO-FLC controller, as shown in panel (b). However, the PSO-FLC 
controller has a smoother response and no overshoot, unlike the PSO-PID controller, which has some oscillations 
and overshoot around the desired trajectory. Therefore, the PSO-FLC controller is more suitable for applications 

Figure 15.  Trajectory tracking performance of PSO-PID and PSO-FLC for rectangular path (a) trajectory full 
response (b) magnified response.

Figure 16.  CR dynamic performance for rectangular path (a) θ1 response action (b) θ2 response action.
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that require smooth and precise tracking, while the PSO-PID controller is more suitable for applications that 
require fast and robust tracking.

Figure 14 provides a comparative analysis of the response of configuration space variables [θ1θ2] to the desired 
trajectory [θ1dθ2d] for an infinity path, as controlled by both a PSO-FLC and a PSO-PID controller.

The dynamic response depicted in the figure indicates that the FLC controller exhibits superior accuracy in 
tracking the desired angle compared to the PID controller. This is further evidenced by the reduced overshoot 
and oscillation demonstrated by the FLC controller, implying a lesser degree of deviation or exceedance from 
the desired angle.

Moreover, the FLC controller’s adaptability to nonlinear and complex behavior outperforms that of the PID 
controller. This adaptability is particularly crucial in managing systems with intricate dynamics, thereby under-
scoring the effectiveness of FLC controllers in such scenarios.

Secondly, the rectangular trajectory with starting corner at point (0.65, 0.6) within the same [x–z] plane. 
Figure 15a presents the controller dynamic response tracing trajectory. While Fig. 15b presents a magnified 
view of the response showing PSO-PID tracking error owing to its noticeable overshoot, causing a portion of 
error at starting point of every rectangular side. As it demonstrates the effectiveness of the PSO-FLC in tracking 
aggressively changing trajectories, with orthogonal angles as the rectangular path.

Figure 16 demonstrates the dynamic repones for each configuration space parameter. The results show that 
both control methods can make the robot follow the rectangular path with reasonable accuracy, but FLC has 
some advantages over PID. In panel (a), FLC has less overshot and settling time than PID, meaning that it can 
reach the desired angle faster and with less oscillation. In panel (b), FLC has less steady-state error than PID, 
meaning that it can maintain the desired angle more precisely.

The proposed controllers are validated by comparing their performance with two existing controllers from the 
literature Fig. 17: a FLC by (Osama et al.25) and a PID by (Amori et al.21). The graphs show the angular responses 
of the two links. The enhancement percentage of the controllers relative to each paper is calculated as follows:

• The PSO-FLC controller achieved an enhancement of 14.29% over the FLC by (Osama et al.25), as it reduced 
the steady-state error from 0.7 degrees to 0.6 degrees.

• The PSO-PID controller achieved an enhancement of 16.67% over the PID by (Osama et al.25), as it reduced 
the overshoot from 6 to 5 degrees.

• The PSO-PID controller achieved an enhancement of 20% over the PID by (Amori et al.21), as it reduced the 
settling time from 10 to 8 s.

Figure 17.  Compare current work proposed controller response to literature work (Osama et al.25) and (Amori 
et al.21) response.
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These results demonstrate the effectiveness and superiority of our proposed controllers over the existing ones 
in terms of accuracy, stability, and robustness.

Conclusion
The two-link, HRCM dynamic model, which is composed of a long elastic core as its primary backbone, multiple 
driving wires as its secondary backbone, with a set of disks affixed to the main backbone, was presented using 
the Eular-Lagrange representation, which is founded on the PCC assumption. Where two control algorithms, 
based on the utilized system’s inverse dynamics proportional-integral-derivative (PID) controller and a fuzzy 
logic controller (FLC), were developed and implemented for the dynamic modeling of the system, while particle 
swarm optimization (PSO) was developed and applied as a tuning method for both the PID and FLC; in order 
to optimize the controller parameter constants Kp , Ki and Kd , and membership function ranges, of the PID 
parameters and FLC membership function, respectively, aiming for the most precise control of orientation and 
positioning of the CR for required config parameters and along a predefined paths.

Considering that accurate inverse dynamics control alters the CR dynamic model to a linear system of sec-
ond order without any coupling, in which various control algorithms can be investigated extensively to enhance 
responses. The high acceleration and a very little rising time, PID, which is dependent on its gains, can track the 
reference configuration space was developed and applied. This results in a comparatively high overshoot and a 
tiny oscillation around the intended configuration space values.

In comparison to the trial-and-error PID, The PSO was able to optimize the controller gain constants Kp , Ki 
and Kd , resulting in improvements in the system response’s rising time, overshoot percentage, and settling time 
of 16.3 % , 31.1 % , and 64.9 % , respectively, as demonstrated by Table 3.

Instead, the second control technique, FLC, removes each of the oscillations and overshoots, leading to a 
comparatively prolonged rising time, while the FLC membership function tuned by PSO provides the most 
responsive control action, with rise time and settling time of 0.4 s and 0.7 s, respectively, leading to the most 
precise trajectory tracking capabilities (Supplementary Video 1, Supplementary Legends).

In future research, a nonlinear control algorithm will be developed that utilizes a disturbance observer to 
handle both external disturbances and model uncertainty, which are common challenges in controlling complex 
robotic systems. Experiments will be conducted using a physical CR as a validation platform. The experimental 
setup will include sensors and actuators that can measure and control the position and orientation of the CR 
with high accuracy and precision.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Code availability
The presented simulation analysis conducted using MATLAB Simulink, where it is available from the correspond-
ing author, [Elsayed Atif Aner], upon reasonable request.
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