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Number of medically prescribed 
pharmaceutical agents as predictor 
of mortality risk: a longitudinal, 
time‑variable analysis 
in the EPIC‑Heidelberg cohort
Verena A. Katzke 1*, Rashmita Bajracharya 1, Mohamad I. Nasser 2,3, Ben Schöttker 4 & 
Rudolf Kaaks 1

The number of prescribed medications might be used as proxy indicator for general health status, 
in models to predict mortality risk. To estimate the time-varying association between active 
pharmaceutical ingredient (API) count and all-cause mortality, we analyzed data from a population 
cohort in Heidelberg (Germany), including 25,546 participants with information on medication use 
collected at 3-yearly intervals from baseline recruitment (1994–1998) until end of 2014. A total of 
4548 deaths were recorded until May 2019. Time-dependent modeling was used to estimate hazard 
ratios (HR) and their 95% confidence intervals (CI) for all-cause mortality in relation to number of APIs 
used, within three strata of age (≤ 60, > 60 to  ≤ 70 and > 70 years) and adjusting for lifestyle-related 
risk factors. For participants reporting commonly used APIs only (i.e., API types accounting for up 
to 80% of medication time in the population) total API counts showed no association with mortality 
risk within any age stratum. However, when at least one of the APIs was less common, the total API 
count showed a strong relationship with all-cause mortality especially up to age ≤ 60, with HR up to 
3.70 (95% CI 2.30–5.94) with 5 or 6 medications and 8.19 (5.61–11.97) for 7 or more APIs (versus none). 
Between > 60 and 70 years of age this risk association was weaker, with HR up to 3.96 (3.14–4.98) for 
7 or more APIs, and above 70 years it was weakened further (HR up to 1.54 (1.34–1.79)). Multiple API-
use may predict mortality risk in middle-aged and women and men ≤ 70 years, but only if it includes 
at least one less frequently used API type. With advancing age, and multiple medication becomes 
increasingly prevalent, the association of API count with risk of death progressively attenuates, 
suggesting an increasing complexity with age of underlying mortality determinants.
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Many populations show a high prevalence of medically prescribed drug use among the elderly due to age-related 
health conditions and morbidities, often with a high percentage of individuals simultaneously using multiple 
medications to treat more than one health condition1–7. Multiple medication use has been speculated to lead to 
adverse health effects caused by negative pharmacological (“drug-drug” or “drug-disease”) interactions, over-
medication, or suboptimal prescriptions. Related to these concerns, the concept of “polypharmacy” was coined, 
often defined by an arbitrary threshold of five or more medications used simultaneously by one individual2,8.

Epidemiologic studies have shown increased risks of all-cause mortality in association with higher numbers 
of medications used and polypharmacy2,6–9. In these studies, however, it is difficult to ascertain whether mortal-
ity excess is caused by over-medication or is mostly due to the morbidity conditions for which medications had 
been prescribed. Independently of this question, however, the number and types of APIs used may be utilized 
as instrumental proxy indicators for underlying health conditions, in statistical models to predict an individual’s 
mortality risk and residual life expectancy10–13. Studies exploring such use have mostly focused on relatively 
short-term associations of mortality risk with polypharmacy and did not investigate individuals’ medication 
trajectories over more prolonged periods of time14,15.

To further explore the potential of individuals’ medication data as a possible proxy indicator for health condi-
tions and related mortality risks, we performed an analysis within the Heidelberg component of the European 
Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg cohort). In the EPIC-Heidelberg cohort 
detailed data on medication use and lifestyle-related risk factors were collected at 3-year intervals between 1994 
and 2014. Using a time-dependent modelling approach, we present findings from a life course perspective, by 
examining the relationship between the number of active pharmaceutical ingredients (API) used and all-cause 
mortality risk over an approximately 20-year follow-up period.

Methods
Study design
The current prospective study is based on the EPIC-Heidelberg cohort, which comprises 25,546 men and women 
from the general population living in the southern German city of Heidelberg and its surrounding municipality at 
recruitment. The study design and methods for the EPIC prospective cohort study have been described in detail 
previously16. The recruitment period in EPIC-Heidelberg lasted from June 1994 to October 199817, and included 
women aged 35–65 years and men between the ages of 40–70 years at the time of first inclusion in the study. 
Baseline examinations included measurement of anthropometric indices by trained staff, assessment of lifestyle 
factors and dietary habits via comprehensive questionnaires, and collection of a blood sample. The question-
naire data on non-dietary variables included those on education and socio-economic status, current job, current 
and past occupation, history of previous illness, lifetime history of tobacco smoking (duration [years], average 
intensity [cigarettes/day], time since quitting for ex-smokers [years]), lifetime history of consumption of alcohol 
beverages, medication use and physical activity. Informed consent was obtained from all participants at baseline, 
the Medical Ethics Committee of the Heidelberg University and the International Agency for Research on Cancer 
(IARC) approved the EPIC-Heidelberg study. After baseline recruitment, individuals were asked to return up 
to six additional follow-up questionnaires at approximate 3-year intervals, until end of 2014. Standardized core 
questions derived from baseline were asked in each follow-up round, including assessment of medication intake, 
resulting in six follow-up waves with detailed medication data available.

Medications classification and polypharmacy definition
Information about the use of medications was collected at baseline and then in up to six follow-up questionnaires 
that were sent to the study participants every 3 years. On every occasion, participants were asked to report all 
prescribed medications and hormones that they had used or applied regularly over the last four weeks, including 
those purchased over the counter. Medication names, dosages and types were reported. For medications present 
on the German market (“Gelbe Liste”: https://​www.​gelbe-​liste.​de/​atc), the data were coded through the Anatomi-
cal Therapeutical Chemical (ATC) classification system18. Multiple medication-use in our cohort was defined as 
the number of different active pharmaceutical ingredients (APIs) used; thus, medications containing multiple 
APIs were counted as multiple medications, using the coding system developed by Schöttker et al.19. We excluded 
medications that did not require medical prescription—i.e. food supplements, minerals, and vitamins, homeo-
pathic or anthroposophical drugs, some herbal drugs, and non-systematically acting APIs that have no known 
adverse drug reactions (ADRs) other than local reactions—from the present analyses (Appendix 1). Furthermore, 
we also excluded sex hormones and modulators of the genital system (GO3), i.e. hormone replacement therapy, 
oral contraceptives, as generally these are prescribed for contraception or for menopausal symptom relief but 
not, in the vast majority of cases, for the primary purpose of treating a morbidity condition.

Outcome classification
Participants in EPIC-Heidelberg were followed from study entry (1994–1998) until date of death, loss to follow-
up or censoring date (31/05/2019), whichever occurred first. Mortality outcomes were ascertained through 
regular record linkages with municipal registries, which provide information about vital status, as and with 
regional health offices for more detailed death certificates.

Statistical analysis
Our analyses were conducted using an extension of Cox proportional hazard model, namely a time-dependent 
Cox model, to estimate the effect of time-varying covariate on survival20 . Briefly, our API count was a longitu-
dinal, time-varying variable based on the multiple follow-up questionnaires. Entry times were left-truncated at 
age-at-recruitment. In all models, the individuals’ age was used as the underlying time scale.

https://www.gelbe-liste.de/atc
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The statistical analyses were restricted to APIs classified at level 2 of ATC coding (e.g., “A10”, for all glucose-
lowering medications). The total number of APIs used by each individual was updated at each of the six follow-up 
rounds after baseline. We categorized an individual as being in the polypharmacy group if he or she was taking 
5 or more API in order to compare our results to previous investigations. To determine which API individuals 
had been taking most frequently and for the longest duration we tabulated the total person-years spent on API 
across age strata (age windows of ≤ 60, 60- ≤ 70, and > 70 years). Out of 25,520 individuals, 19,677 (77% of the 
cohort) had complete medication information at baseline and across all the six follow-up questionnaires (FUP1, 
FUP2, …., FUP6), 12% missed one, 6% missed two and 5% had missing data on medication use on three or more 
follow-up occasions. The numbers of missing values were equally distributed across the three age windows. In 
our statistical modeling, from baseline till FUP6, the last observation on medication use was carried forward 
up until either the subsequent follow-up ascertainment of medical use or, if a participant did not respond to 
a follow-up questionnaire, for 3 further years (or date of death, whatever came first). For all participants who 
had completed the 6th follow-up questionnaire (FUP6), this last observation was carried forward until the final 
censoring date of May 2019 (or date of death, whichever came first). The median duration between FUP6 and 
date of censoring, or death, was 5.5 years (inter-quartile range, 5.3–5.7 years).

All proportional hazards analyses were adjusted for age, which is implicit in our left-truncated age-as-time-
scale model. In addition, models were adjusted for several baseline-covariates, including body mass index (BMI), 
physical activity, smoking intensity and history [lifetime duration of smoking (years), average daily cigarettes, 
and time since quitting (in years) for former smokers], and highest level of formal education as a proxy for socio-
economic status. We used Schoenfeld residuals and the “cox.zph” function of the “survival” package in R-studio 
to determine possible violations of the proportional hazards assumption for each variable. The proportional 
hazards assumption appeared violated for mortality risk in relation to the number of APIs, indicating that the 
relative risk association of API count with mortality was not constant with age; we therefore allowed the hazard 
ratio for API to change with age, and estimated separate hazard ratios for each of three age windows: below age 
60, between 60 and 70 years, and 70 years and above. We also tested for interactions between API count and sex 
regarding mortality risks, but we found no evidence for such interaction.

Since the concept of multiple medication use such as the polypharmacy score or other, combines multiple 
medications of differing clinical effect, we investigated which medications were responsible for the association 
of multiple medication-use with mortality, by building a similar score using only the APIs responsible for 80% 
of the person-years of API use by the participants (further referred to as “common” APIs), and comparing the 
effect of this score to one constructed using the remaining 20% of API use, further referred to as “uncommon” 
APIs, Appendix 2.

All statistical analyses were carried out using R (version 4.0.1, 2020)21.

Ethics declaration
This project is covered by the ethical approval for the EPIC-Heidelberg cohort (Ethical Committee of the Medical 
Faculty Heidelberg, reference number 13/94).

Consent for participation
Informed consent was obtained from all participants at baseline (1994–1998).

Results
Baseline characteristics of the study population (N = 25,540) are displayed in Table 1. A total of 4,548 deaths (18% 
or study participants) were recorded, over an average of about 20 years of prospective follow-up. The mean ages 
at recruitment were 50 years (SD = 8 years, interquartile range (IQR) = 43–56 years) and 56 years (SD = 7 years, 
IQR = 53–62 years), and the mean follow-up durations were 22 years (SD = 2 years, IQR = 21–23 years) and 14 
years (SD = 6 years, 10–19 years), respectively, for the participants alive at the end of the study and for those 
deceased. Although men represented only 43% of the study participants, the proportion of men in the deceased 
group was 64%. Furthermore, thepercentage of current smokers (32%) was higher in the deceased group than in 
the alive group (21%). The prevalence of polypharmacy was more than three times higher in the deceased group 
(12%) compared to the alive group (4%), and the prevalence for self-reported diseases at baseline recruitment 
was also higher in the deceased group.

After excluding four ATC code groups (Appendix 1), 80 percent of medication use time was related to only a 
relatively small subset of medication classes (Appendix 2A; two-level ATC categories), which included only 16 
basic ATC medication classes up to the age of 60, and only 12 basic ATC medication groups when EPIC study 
participants were older than 70. The most common prescriptions were for medications targeting the cardiovas-
cular system (C-category), which represented 33.4% of medication use up to age 60, increasing to 47.4% when 
participants were older than 70. The use of anti-thrombotic medications (B01) gradually rose from 4.8% of time 
below age 60 to 11.9% after age 70, whereas the relative part of medications used for thyroid diseases diminished 
from 11.1% to 4.6%. Other categories of commonly used APIs included glucose-lowering medications (A10, 
2.4–3.9% depending on age window), medications used to treat gastro-intestinal reflux problems (A02, 3.7–4.3%) 
and APIs with anti-inflammatory and/or anti-rheumatic actions (M01, 4.7–2.7%). The group of less commonly 
used medications, which jointly accounted for the remaining 20% of API use, included a total of 29 API classes 
described in Appendix 2B, where each individual class accounted for only 0.3% to 2.5% of estimated time of use 
(Appendix 2A). The numbers of APIs used simultaneously, increased with age, almost linearly (Fig. 1).

Models adjusted for age, BMI, physical activity, smoking history, highest school level as a proxy for socioeco-
nomic status, and self-reported myocardial infraction, diabetes, stroke, and hypertension at baseline recruitment 
showed significant associations between increasing API count and mortality rates (Table 2). Yet, the strength of 
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association between API count and risk of death varied across different age windows. Below the age of 60, we 
observed a hazard ratio (HR) of 1.87 (95% CI: 1.20, 2.91) for those using 4 APIs, 2.50 (1.67–3.73) for those using 
5 or 6 APIs and 6.28 (95% CI: 4.37, 9.03) for those using 7 or more APIs, relative to individuals who did not use 
any medications. For the age window of 60–70 years the HR estimates were moderately lower. For 70 years and 
above, the number of APIs used overall had no major association with mortality risk, except for individuals using 
seven or more APIs [HR = 1.35 (95% CI: 1.17, 1.55)].

Comparing commonly used to less used medications, we observed that the relative mortality hazards were 
increased especially for those individuals who used at least one uncommon API type (Table 2) (Fig. 2). For 
individuals aged 60 years or younger, the HR for five or six APIs versus none is 1.39 (95% CI: 0.76, 2.56), when 
no uncommon APIS are present, and 1.65 (95% CI: 0.67–4.07) for those using 7 or more APIs. However, when 
at least one of the APIs was of a less commonly used type the HRs increased to 3.70 (95% CI: 2.30, 5.94) and 
8.19 (95% CI: 5.61–11.97), respectively. Also, in the age window of > 60 to ≤ 70 years an increasing API count 
was related to increasing mortality risk only when medication use included at least one less common API type, 
but with more moderate HRs as compared to the younger age window. Above age 70, even when at least one less 
common API type was used, higher API counts were not related to any major increase in mortality risk unless 
7 or more APIs were used (HR = 1.54; 95%CI: 1.34–1.79).

Discussion
Using a time-dependent modelling approach we assessed the relationships between age-varying medication use 
and all-cause mortality in a general population cohort of men and women initially 35 to 65 years of age (40–65 
years for men). Adjusting for age, smoking history, BMI and level of formal education we found that mortality 
risk increased significantly with increasing number of APIs, relative to no medication use, but only if at least 
one of the APIs belonged to medication classes that were used less commonly. Furthermore, higher numbers of 
APIs were related to the most prominent increase in mortality risk when the study participants were below the 
age of 60 and to a smaller increase when they were between ages of 60 and 70 years, whereas above the age of 70 
the number of APIs no longer showed a clear association with mortality risk. Overall, our data indicate that API 
count may be a useful predictor for mortality risk, especially below the age of 70 years.

Table 1.   Baseline characteristics of the EPIC-Heidelberg cohort (N = 25,540). *Number of active 
pharmaceutical ingredients taken.

Participants alive Participants deceased

n (%)/mean (SD) n (%)/mean (SD)

N 20,992 (82.1%) 4548 (17.8%)

Age (years) at recruitment 49.7 (7.8) 56.5 (6.7)

Mean age of censoring 71.8 (8.1) 70.9 (9.3)

Duration of follow-up (years) 22.1 (1.9) 14.4 (6.1)

Sex (males) 9045 (43.1%) 2288 (63.3%)

BMI (kg/m2) 25.8 (4.1) 27.5 (4.6)

Smoking

 Never 9098 (43.3%) 1562 (34.3%)

 Former 7362 (35.1%) 1506 (33.1%)

 Smoker 4472 (21.3%) 1465 (32.2%)

 Unknown 60 (0.2%) 15 (0.3%)

Highest school level

 None 105 (0.5%) 48 (1.1%)

 Primary school completed 5437 (25.9%) 1876 (41.2%)

 Technical/professional school 7197 (34.3%) 1458 (32.1%)

Secondary school 1569 (7.4%) 241 (5.3%)

Longer education (incl. university deg.) 6664 (31.7%) 922 (20.2%)

Physical activity

 Inactive 4968 (23.6%) 755 (16.6%)

 Moderately inactive 5823 (27.7%) 1411 (31.0%)

 Moderately active 8261 (39.3%) 2062 (45.3%)

 Active 1940 (9.2%) 320 (7.0%)

Alcohol intake (mg/day) 16.6 (20.7) 23.1 (32.4)

API count*

 0 11,402 (54.3%) 1739 (38.2%)

 1—4 8855 (42.1%) 2264 (49.7%)

 Polypharmacy (≥ 5) 735 (3.5%) 545 (11.9%)



5

Vol.:(0123456789)

Scientific Reports |          (2024) 14:106  | https://doi.org/10.1038/s41598-023-50487-5

www.nature.com/scientificreports/

Reviews and meta-analyses of epidemiologic studies showed an average relative mortality risk of about 1.3 
for individuals falling into a “polypharmacy” category, mostly defined by use of ≥ 5 medications, relative to indi-
viduals using a smaller number of medications6,8,9. Based on a smaller subset of studies, meta-analyses further 
showed an all-cause mortality HR of 1.08 per single additional medication used, and showed a pooled adjusted 
risk ratio of 1.24 (95% CI 1.10–1.39) for studies using a threshold of 1–4 medications, 1.31 (1.17–1.47) for 5 
medications, 1.59 (1.36–1.87) for 6–9 medications, and 1.96 (1.42–2.71) for 10 or more medications6,7. The stud-
ies included in these meta-analyses reported associations of variable strength between number of medications 
used, polypharmacy and mortality risk, and were also highly diverse with regard to overall study size, types of 
study population (e.g., community-dwelling individuals within variable age ranges; people living in care institu-
tions; geriatric patients; hospital discharge patients), and different definitions for individuals classified as being 
exposed to polypharmacy or to a comparison (reference) group. In addition, studies varied widely regarding 
adjustments made for confounding by indication or for confounding by general health-related risk factors: some 
of studies included adjustments for selected comorbidities or for more comprehensive multi-morbidity scales 
such as Charlson’s Comorbidity Index. Other studies used more novel methods such as propensity score match-
ing to assess whether polypharmacy itself had causal effects on mortality risk independently of the underlying 
health conditions. The heterogeneity in the analytical approaches used may reflect differences in the original 
study objectives, either aiming to examine medication use as a potential cause of death, or rather focusing on 
medications prescribed as a substitute indicator for health conditions in the prediction of mortality risk. In our 
analyses, we chose to calculate HRs without any adjustment for self-reported co-morbidities. We believe that 
medication data may be used merely as an instrument to predict mortality risk and life expectancy, as a substitute 
indicator for underlying morbidities that are the more likely risk determinants.

A general issue with the studies modeling adverse health effects of polypharmacy as a monotonous function 
of a mere count of different APIs used, is the implicit assumption that each additional API, irrespective of its type, 
would increase the risk of the adverse effect to an equal extent. Many studies may have used this assumption to 
allow any form of statistical modeling at all, as often these studies were too small to allow modeling in relation 
to more specific categories of medication exposures. However, our observation that mortality risk was associated 
more strongly with APIs that were used less commonly, as compared to commonly used APIs, indicates that this 
assumption represents an over-simplification that may lead to suboptimal modeling of adverse health effects. 
Recent analyses within very large-scale, national drug prescription databases in Sweden have provided further 
confirmation for this, showing relatively strong risk associations when focusing on more specific medication 
types at the subgroup (3rd or 4th) coding level of the ATC classification, but less clear-cut associations for other 
medications within a same class at the more aggregated, 2nd ATC coding level11,12. In these Swedish studies, 
very strong associations with mortality risk were noted, for example, for serotonin antagonists (N06AB) and for 
propulsive drugs (A03F), frequently prescribed for nausea and vomiting and likely indicators for malignancy 
and associated treatment, or sub-types of diuretics (C03CA, C03DA) prescribed for severe conditions such as 
heart and kidney failure, whereas many other drugs in the “N”, “A” or “C” categories of the ATC system showed 

Figure 1.   API trajectories by outcome in the longitudinal EPIC-Heidelberg cohort. Smoothed trajectory 
‘spaghetti’ plot, using locally estimated scatterplot smoothing (LOESS), excluding G03.
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Table 2.   Hazard ratios (and 95% CI) for API count and mortality across categories, for individuals using all 
API, only common API, or at least one uncommon API. Crude model—adjusted for age and sex. Full model—
adjusted for age, sex, BMI, smoking history (average daily cigarettes, duration, and time since quitting), 
physical activity, highest level of schooling. Death count is the number of individual deaths while in the specific 
API category. Individuals can move across API categories throughout follow-up. a Active pharmaceutical 
ingredient. b Reference category is no API intake.

API count 
categories Model Reference* 1 2 3 4 5 or 6 7 or more

Polypharmacy 
(≥ 5)

Age ≤ 60

 All API
Crude 1.00 1.04 (0.71–1.47) 1.15 (0.79–1.67) 1.48 (0.98–2.24) 2.00 (1.29–3.09) 2.76 (1.87–4.07) 7.46 (5.29–10.5) 4.32 (3.23–5.78)

Full 1.00 1.05 (0.74–1.49) 1.13 (0.78–1.64) 1.40 (0.92–2.12) 1.87 (1.20–2.91) 2.50 (1.67–3.73) 6.28 (4.37–9.03) 3.74 (2.75–5.08)

 Using only com-
mon API

Crude 1.00 0.72 (0.46–1.11) 0.91 (0.57–1.45) 0.85 (0.44–1.64) 1.25 (0.61–2.59) 1.32 (0.57–3.04) 2.61 (0.83–8.16) 1.81 (1.08–3.04)

Full 1.00 0.87 (0.58–1.30) 0.87 (0.56–1.37) 1.07 (0.63–1.81) 0.95 (0.48–1.90) 1.39 (0.76–2.56) 1.65 (0.67–4.07) 1.45 (0.86–2.45)

 Using at least one 
uncommon

Crude 1.00 1.88 (1.06–3.34) 2.04 (1.16–3.57) 2.11 (1.16–3.85) 3.41 (2.01–5.76) 3.99 (2.52–6.34) 9.40 (6.57–13.45) 6.39 (4.68–8.73)

Full 1.00 2.02 (1.14–3.58) 2.09 (1.19–3.67) 2.08 (1.14–3.80) 3.36 (1.97–5.74) 3.70 (2.30–5.94) 8.19 (5.61–11.97) 5.67 (1.67–3.21)

PY 108,404 36,113 29,516 16,260 9907 9111 4546 13,657

deaths 125 44 38 29 25 34 47 81

Age > 60 and ≤ 70

 All API
Crude 1.00 1.03 (0.80–1.32) 0.92 (0.71–1.20) 1.18 (0.91–1.53) 1.38 (1.05–1.81) 1.75 (1.39–2.21) 4.02 (3.28–4.92) 2.68 (2.23–3.22)

Full 1.00 1.06 (0.82–1.36) 0.93 (0.71–1.22) 1.18 (0.90–1.53) 1.30 (0.99–1.70) 1.57 (1.24–1.99) 3.29 (2.65–4.08) 2.28 (1.89–2.76)

 Using only com-
mon API

Crude 1.00 0.95 (0.72–1.25) 0.69 (0.49–0.97) 0.90 (0.64–1.27) 1.29 (0.91–1.84) 1.17 (0.81–1.70) 2.19 (1.40–3.40) 1.48 (1.12–1.97)

Full 1.00 1.03 (0.79–1.35) 0.63 (0.45–0.89) 0.92 (0.66–1.28) 1.07 (0.76–1.52) 1.03 (0.73–1.46) 1.61 (1.06–2.44) 1.19 (0.90–1.58)

 Using at least one 
uncommon

Crude 1.00 1.27 (0.77–2.09) 1.93 (1.36–2.75) 1.70 (1.20–2.43) 1.63 (1.14–2.35) 2.21 (1.68–2.89) 4.63 (3.75–5.73) 3.42 (2.82–4.15)

Full 1.00 1.28 (0.77–2.11) 1.96 (1.38–2.79) 1.71 (1.21–2.44) 1.58 (1.10–2.28) 2.06 (1.57–2.71) 3.96 (3.14–4.98) 3.02 (2.46–3.70)

PY 52,999 24,808 23,287 18,596 14,077 16,613 11,326 27,939

deaths 197 92 77 81 73 114 184 298

Age > 70

 All API
Crude 1.00 0.58 (0.46–0.72) 0.48 (0.38–0.61) 0.61 (0.50–0.75) 0.71 (0.58–0.86) 0.96 (0.82–1.12) 1.59 (1.39–1.81) 1.28 (1.13–1.44)

Full 1.00 0.64 (0.51–0.80) 0.53 (0.42–0.66) 0.65 (0.53–0.80) 0.72 (0.59–0.88) 0.92 (0.79–1.07) 1.35 (1.17–1.55) 1.14 (1.01–1.29)

 Using only com-
mon API

Crude 1.00 0.53 (0.42–0.68) 0.43 (0.33–0.57) 0.54 (0.42–0.70) 0.53 (0.41–0.70) 0.76 (0.62–0.94) 0.92 (0.71–1.19) 0.81 (0.68–0.97)

Full 1.00 0.62 (0.49–0.79) 0.50 (0.38–0.65) 0.60 (0.46–0.77) 0.54 (0.42–0.71) 0.71 (0.58–0.88) 0.77 (0.59–1.01) 0.73 (0.61–0.88)

 Using at least one 
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Figure 2.   Hazard ratios (with 95% confidence intervals) for API count and mortality across age categories, for 
individuals using at least one uncommon API compared to no API intake.
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no significant association with risk. These examples underlined the importance of information carried in the 
3rd and 4th levels of the ATC code (specifically: the pharmacological subgroup, over the information carried 
by the main anatomical group) when using medication data for the purposes of predicting mortality risk11,12.

Unfortunately, in spite of including a fairly large number of (> 4500) mortality events out study was far too 
small to allow analyses on mortality risk in relation to a more detailed and more specific classification of APIs on 
the 3rd or 4th level of the ATC classification, as was done in the Swedish national database studies. Nonetheless, 
our findings do show that, to a large extent, associations between medication use and increased risk of death 
may be driven by less commonly used drugs that may to indicate more serious underlying medical conditions. 
Interestingly, however, our data also indicate that especially for individuals using at least one less common medi-
cation type, risk of death is also associated with total API count. The latter suggests that also the more common 
medication types (e.g. analeptics, psycholeptics) may gain predictive power for mortality risk for individuals 
treated for a more serious morbidity condition.

Compared to previous studies, a unique feature of our investigation is that it was based on regular, prospec-
tive data collections over a 20-year period, for a community-dwelling population of women and men who were 
initially between 35 and 65 years of age, applying a time-dependent modelling approach to examine the prospec-
tive relationships between (changes in) medication use and mortality risk. This longitudinal approach, combined 
with fairly large number of mortality outcomes over time, allowed us to examine risk associations within different 
age windows, as participants in the EPIC-Heidelberg grew older. Medication use was defined by a numerical 
threshold depending on the number of APIs contained in each medication, as a more precise definition19. Our 
data also allowed careful adjustments for possible confounding by relevant lifestyle factors. An interesting find-
ing from our analyses is that with advancing age the association of mortality risk with number of APIs used 
progressively appeared to flatten, a phenomenon that, to our knowledge, has not been given much attention in 
previous studies on multiple medication use, polypharmacy scores and mortality risk. While polypharmacy, 
defined as the use of 5 or more APIs, reached a high prevalence above the age of 70 years, we also observed that 
80% of medications within this age group were concentrated in only 12 frequently used API classes. Most of these 
medications were for APIs used as preventive medications, e.g. to avoid worsening of highly prevalent conditions 
related to the cardiovascular system (e.g. hypertension) and blood coagulation, or used as pain killers to combat 
symptoms related to muscular-skeletal problems, which are mostly low-risk conditions. Other studies have also 
shown that among elderly individuals with high prevalence of medication use, most medications belonged to 
a very restricted number of ATC classes22–26. Furthermore, it has been reported that among elderly individuals 
(residents of nursing facilities) the association of polypharmacy with mortality risk may be modified by other 
health conditions such as frailty, and that risk of death was increased mostly by frailty and disability, whereas 
(hyper-)polypharmacy was associated with higher risk of death only among non-frail study participants27.

A minor limitation of our investigation is the proportion of missing medication information across follow-
ups, which adds up to 23% of at least one time missing medication use, although only a small proportion of 
study participants had missing information on three or more follow-up occasions (5%). Theoretically, a selec-
tive drop-out of study participants could have biased our hazard ratio estimates for mortality, if absence of 
response to a follow-up questionnaire was non-random and in itself informative about an individual’s health 
status (“informative missings”). However, information from follow-up questionnaires was carried forward only 
for a limited amount of time, which very much should mitigate any risk for such bias. Also, to further explore 
informative missingness as a potential source of bias, we additionally applied more complex approaches for the 
joint modelling of medication exposures and mortality risk28. The results from this more complex modelling 
(results not shown) were practically identical to those from the simpler time-variable Cox modeling presented 
in the present manuscript.

In summary, our longitudinal analyses show a complex quantitative relationship between multiple medica-
tion-use and risk of all-cause mortality in a general population cohort of middle-aged and older individuals. Our 
data indicate that classifying individuals into risk categories based on the mere number of medications used, 
as with the “polypharmacy” concept, represents an over-simplification that may lead to sub-optimal modeling 
of adverse health effects. More accurate risk modeling would require accounting for a higher level of detail and 
specificity for medication types described for severe vs. less severe health conditions. Furthermore our data 
show that with advancing age, as multiple medication use becomes increasingly prevalent, the prediction of 
mortality risk becomes increasingly complex and may be less directly related to a mere number of APIs used. 
This phenomenon, and the specific relationships of mortality with low- vs. high-risk medication types, should be 
explored further in context of very large-scale studies, e.g. using national drug prescription databases11–13,23–26.

Data availability
EPIC-Heidelberg was launched in the 1990s. Unlike in new studies that we run today, public access to data from 
the EPIC population was not part of the study protocol at that time. Thus, the data protection statement and 
informed consent of the EPIC participants do not cover the provision of data in public repositories. Neverthe-
less, upon special request data may be made available for (a) statistical validation by reviewers and (b) pooling 
projects under clearly defined and secure conditions and based on valid data transfer agreements.
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