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Fetal face shape analysis 
from prenatal 3D ultrasound 
images
Raphael Sivera 1,4, Anna E. Clark 2,4, Andrea Dall’Asta 3, Tullio Ghi 3, Silvia Schievano 1 & 
Christoph C. Lees 2*

3D ultrasound imaging of fetal faces has been predominantly confined to qualitative assessment. 
Many genetic conditions evade diagnosis and identification could assist with parental counselling, 
pregnancy management and neonatal care planning. We describe a methodology to build a shape 
model of the third trimester fetal face from 3D ultrasound and show how it can objectively describe 
morphological features and gestational-age related changes of normal fetal faces. 135 fetal face 
3D ultrasound volumes (117 appropriately grown, 18 growth-restricted) of 24-34 weeks gestation 
were included. A 3D surface model of each face was obtained using a semi-automatic segmentation 
workflow. Size normalisation and rescaling was performed using a growth model giving the 
average size at every gestation. The model demonstrated a similar growth rate to standard head 
circumference reference charts. A landmark-free morphometry model was estimated to characterize 
shape differences using non-linear deformations of an idealized template face. Advancing gestation 
is associated with widening/fullness of the cheeks, contraction of the chin and deepening of the 
eyes. Fetal growth restriction is associated with a smaller average facial size but no morphological 
differences. This model may eventually be used as a reference to assist in the prenatal diagnosis of 
congenital anomalies with characteristic facial dysmorphisms.

Prenatal diagnosis of congenital anomalies is important for patient care and to facilitate parents’ counselling, 
planning of delivery, and postnatal treatment1. However, prenatal detection of fetal dysmorphisms is chal-
lenging because of the wide range of morphological features involved, the limitation of prenatal imaging2, and 
because the phenotypical descriptions of abnormalities seen on 2D ultrasounds are not always linked to easily 
identifiable genetic mutations. In this context, the analysis of fetal facial morphology in 3D can provide relevant 
information and serve as a pre-screening tool, facilitating the early detection of developmental disorders and 
genetic syndromes3–7.

Ultrasound imaging is routinely performed for fetal assessment, as it is non-invasive and nowadays widely 
available in middle and higher income countries. Three-dimensional ultrasound (3D US) was introduced 
clinically in the late 1990s and studies have explored the added value of 3D US for the assessment of fetal 
abnormalities8–11. Technical improvements have increased the quality of the images and their visualisation12. 
Yet, the use of 3D images has not truly permeated diagnostic fetal medicine and the analysis of these has almost 
exclusively been confined to qualitative assessments, vulnerable to misinterpretation. Noisy images, possible 
occlusion of the face, and overall acquisition variability (contrast, fetal position, maternal body habitus, amni-
otic fluid volume and operator handling) make the analysis of the images difficult. In particular, automatic 
morphometric approaches need to address several technical challenges to be able to assist the clinical analysis 
of the fetal face from 3D US.

Segmentation algorithms developed for other image modalities may not be suitable for ultrasound imaging 
because of the specific intensity, noise and image configuration of ultrasound. Intensity models for classification 
between fetal tissue and amniotic fluid in prenatal ultrasounds have been designed13, and specific approaches 
that process the images from different view-points to correct for orientation and position changes have been 
proposed14. However, these methods are not able to fully reconstruct the fetal face when the fetus is laid on 
the mother’s tissue. Similarly, deep learning approaches have been proposed15,16 but the task difficulty and the 
limited existing ground-truth data that could be leveraged to build and validate a new model limit the quality 
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of the results, and the reconstructions are often rough or incomplete. The method proposed by Alomar et al.17 
demonstrates promising results, is based on a model developed for the faces of newborn babies and requires 
the manual placement of a large number of landmarks. The reconstructions therefore approximate more closely 
to a newborn rather than fetal fetal face shape, particularly for earlier gestational ages. Many works still rely on 
manual slice-by-slice segmentation18.

Morphable face models have shown their potential to help diagnose congenital abnormalities from 3D 
scans19,20, including in newborns21. Prenatal diagnosis has been however more challenging. Deep-learning-
based approaches have been recently developed for the recognition of facial expression associated with fetal 
brain development stages22 or for the prenatal screening of genetic conditions23 from 3D images. They are how-
ever limited by the interpretability of their features and their generalizability. In 2017, our group demonstrated 
the potential of shape modelling of the fetal face to assist pre-natal diagnosis and help characterise fetal face 
morphology from 3D ultrasound in a feasibility study24 with landmark-free morphometry25. However the study 
required time-consuming manual segmentation of the fetal face which limited the scope of the study and would 
prevent its clinical use. As such we latter developed a semi-automatic processing pipeline to segment 3D US 
fetal faces volumes26 using an atlas-based segmentation algorithm27: a set of manually labelled images, the atlas, 
is non-linearly registered on the image to segment, then, a probabilistic labelling map is obtained by merging a 
selected subset of candidate segmentations28.

This study extends and builds on the methodology proposed in our previous work in two ways. First, a more 
efficient semi-automatic segmentation workflow to allow the 3D reconstruction of a larger number of cases 
with a wider spectrum of clinical conditions is presented. Second, the statistical models have been extended to 
provide 3D description of the normal fetal face in the third trimester including the morphological change with 
advancing gestational age and the normal shape variability visible in a control population. The aim is to provide 
a reference range against which individual clinical conditions can be compared and outliers can be identified.

Results
Data and participants
235 participants (238 fetuses) were recruited to the study. Exclusion criteria were based on the absence of suit-
able 3D US volumes between the 24 and 34 week of gestation, or incomplete follow-up data. We focused on 
patients without any diagnosed facial dysmorphism with a final data set consisting of 135 fetuses, 117 appropriate 
grown (AGA) normal fetuses and 18 fetal growth restricted (FGR) normal fetuses. Participants were 18 to 52 years 
old (mean 32.9 years old), had a body mass index between 17 and 41 kg/m2 (mean 24.7 kg/m2), with fetuses of 
gestational ages (GA) from 24+0 weeks to 34+0 weeks. Mean gestational age is 28+4 weeks (standard deviation 
2+6 weeks) for normal AGA, and 29+1 weeks (standard deviation 2+6 weeks) for normal FGR.

Patient population and image acquisition
3D US volumes were obtained in the highest resolution acquisition mode on the ultrasound machine. The vol-
umes were collected by fetal medicine staff experienced in performing ultrasound and no additional training was 
required. We estimate that an additional 10-15 minutes was required for each clinical appointment to collect the 
3D volumes. It was possible to collect 3D facial volumes for 84% of recruited participants (n=204), for the remain-
ing 16% fetal position precluded 3D volume acquisition. 3D US volume was collected during the first clinical visit 
in 92% of cases, the remaining 8% required between 2-4 clinical appointments in total to obtain a 3D volume.

Semi‑automatic segmentation results
At visual inspection, we estimated that 57% would require no or minimal manual refinements, 35% required 
significant corrections of part of the segmentation, and 8% would need major changes or were judged difficult 
due to poor visibility. This assessment translated into the time spent on the manual edits that we estimate to be 
between 0 and 10 min for the first group, less than 45 min for the second and up to 2 hours for the more challeng-
ing cases. A median time of around 9 min was measured; the mean time spent by segmentation is significantly 
higher due to the most difficult cases and was around 20 to 30 min. In addition to this time, 5 to 10 min were 
spent per case placing the landmarks and setting up the automatic segmentation. The degree of overlap between 
the automatic and edited segmentations was associated with an average Dice score of 97%. The average symmetric 
surface distance (ASSD) between pre- and post-manual refinement was 0.14mm (for a 0.6mm image resolution) 
with 44% of the cohort having an ASSD inferior to one tenth of the voxel size (<0.06mm).

The need for manual refinement was directly related to the quality of the 3D US volume, when the image 
captured an unencumbered view of all borders of the fetal face, no manual refinement was required. Most of the 
required manual refinements were associated with missing regions of the face. The regions with low contrast 
in the images are poorly segmented and the peripheral areas of the face more often required manual editing.

Growth curve model
The estimated growth model of the fetal face allows correction for age-related differences prior to the statistical 
shape analysis. The scale of the segmentation meshes was measured using an approximation of the face area 
based on the first two modes of the principal component analysis (PCA) on the points of the reconstructed facial 
mesh. We compared the resulting growth curve estimation from our dataset to published growth curve for head 
circumference29(Fig. 1a).

The two curves are almost proportional, describing a similar growth rate, and would lead to a similar rescal-
ing. The difference between both scale factor would be on average less than 1% and always inferior to 3% (maxi-
mum at 34 weeks gestation). The variability is higher for our measurement, probably due to the noise associated 
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to the segmentation and automatic metric. We chose to rescale the meshes using the growth curve estimated 
from our dataset because it describes the face size directly rather than head size.

After size correction, using the growth curve, the average face size did not show any visible correlation with 
age (Fig. 1b). When comparing the FGR cases (orange line) to the AGA cases (blue line) a consistent difference 
is visible between the two groups.

Statistical shape model of the fetal face
The estimated morphological reference and shape variability in the population are both shown in Fig. 2. The 
reference shape, also called template, represents the anatomical mean shape of the population (Fig. 2a,b). As a 
results of averaging, the template morphology is symmetrical in appearance with smooth facial features and a 
loss of definition of fine detail.

The reconstruction error is relatively small with an average distance between the model mesh nodes and 
the original segmented surface of 0.29mm (highest = 0.79mm at a single point). Only 5 cases have an average 
distance superior to 0.4mm, these cases are associated with extreme phenotypes with overly large or small faces. 
The reconstruction error is partially associated with the smoothing of small noisy defects from the segmentations 
but is more pronounced in the areas with more fine details such as the lips and the nose (Fig. 2c).

The shape variability captured by the model (Fig. 2d) is one order of magnitude higher (2.10mm in average) 
than the reconstruction error, showing evidence that the shape model is able to capture most of the variation 
between subjects. The highest variability of the model is at the edge of the mesh while the forehead is the most 
stable part .

Figure 1.   Size measurements of the fetal face. (a) face and head sizes with respect to age before rescaling: our 
regression model (black), reference model for head circumference from Kiserud et al.29 (red). The quadratic 
growth curves are estimated using quantile regression (medians are represented by dashed lines, 5th and 95th 
percentiles by dotted lines). (b) face size measurements after rescaling. Regression models are shown for AGA 
cases (blue), FGR cases (orange) and both combined (black).

Figure 2.   (a, b) Mean template of the fetal face, the template is warped by subject-specific deformations to 
match each individual morphology. (c) Average reconstruction error at each point, measured as the distance 
between the reconstructions and the original models. Small errors are yellow/orange and larger errors 
purple. d) Shape variability measured using the standard deviation of the mesh node positions over all of the 
reconstruction. Purple denotes the areas with the highest variability and yellow/orange the most stable areas.
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Some of the variations could be related to the pre-processing steps: the segmentation and mesh cutting may 
increase the variance near the edges while the iterative closest point (ICP) rigid registration may artificially 
reduce the variability in the central areas. In addition, any size differences would be more apparent near the 
edges than closer to the centre. To a lesser extent, some variability is noted around the nose, the nasal arch and 
the eyes. This effect could be associated with small differences in eyes and nose position, size or with more local 
differences in their shape. Less variability is measured on the forehead, other than the upper-edge, and around 
the mouth despite the mouth being a potentially well-defined anatomical features.

The main axes of variations computed using a PCA decomposition of the momenta are shown in Fig. 3. The 
first two modes capture 41.5% and 7.6% of the total variance respectively. 26 modes are needed to describe 90% 
of the total variance. The first mode (represented horizontally) shows the size of the face, specifically facial width 
to be the most important contributor to shape variability. The overall shape of the face varies between an oval to 
a more ‘squared’ facial shape. In this mode, while the whole face gets larger the centre of the face gets relatively 
smaller; with eyes getting closer and the nose getting a bit flatter.

The second mode (represented vertically) illustrates a strong emphasis on the width of the cheeks and fore-
head length with negative values showing a trend towards a longer thinner face. The second mode is positively 
correlated with age (Pearson’s correlation coefficient test: r = 0.28 , p < 0.001 ). A similar correlation with age is 
also noted with the 3rd, 5th and 6th modes. We can note that the first mode is not correlated with age ( r = 0.009 ), 
reflecting the correction for age-related size changes.

Gestational age‑related changes in the control population and growth restriction
Changes associated with GA were estimated using linear regression on the momenta. These changes complement 
the size change that was modelled in the previous section using the scalar growth curve. Figure 4a and b shows 
the model of the average face at 24 and 34 weeks. Advanced GA is associated with wider fuller cheeks, flatter 
foreheads, deeper eyes and slightly bigger noses compared to earlier GA.

Figure 4c is the projection on the face of the test statistic (z-value) used in the permutation-based likelihood 
test to assess where the age-related changes can be considered significant. The z-values are computed at each 
of the deformation control points and then represented on the template surface. Here the z-values is higher on 
the cheeks and in the centre of the face, especially around the nasal arch. This age effect was associated with a 
p-value p<0.001 for 10000 random permutations.

The divergence of the deformation (momenta) vector fields on the surface (Fig. 4d) can help visualize the 
changes by focusing on the local volume changes. We see here an expansion of the cheekbones, the posterior 
aspect of the jaw, and around the nose, and a contraction of the chin, the left side of the face and near the eyes.

Describing fetal growth restriction with a shape model
Cases of fetal growth restriction (FGR) without any underlying genetic condition (n=18) were compared to 
the normal controls (n=117). The main difference is a difference of size with smaller average for the FGR cases 
(Fig. 5b) than for the control cases (Fig. 5a). The facial features do not show any other clinically meaningful 
difference between the two groups.

Figure 3.   PCA projection of the first two modes of the SSM model. The first mode is represented horizontally, 
the second vertically. Each grey dot represents one subject. The faces illustrate the model at −/+ 2 standard 
deviations.
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The statistical significance of these differences is assessed using two-sample Hotelling’s t2-test on the deforma-
tion parameters at each control point (Fig. 5c), highlighting differences over the mid-face with larger differences 
asymmetrical differences seen on the right side at the level of the eye. The p-value estimated using 1000 random 
permutations was equal to p=0.008.

The visualization of the divergence field (Fig. 5d) confirms these observations. A strong contraction in a ring 
all around the face, the effect is stronger on the right side. The centre of the face is on the contrary quite preserved, 
with an hint of a small expansion near the top of the nasal arch.

Variability within a normal face
Descriptive statistics, such as mean, variance or PCA modes, are useful to describe the population variability and 
the differences associated with clinical variables such as gestational age or diagnosis. In this section, we propose 
to use the shape model to inform us about a specific subject, and its deviation from the control cohort. Compared 
to the statistical tests of the previous sections, we do not focus here on the evaluation of a specific hypothesis but 
on a qualitative description of the differences. Our approach is a generalization, to morphological differences, of 
the reporting of z-scores (also called standard scores). The standard shape scores are computed at each point on 
the face based on the momenta values. The shape distribution parameters (mean and covariance) are estimated 
using the control AGA samples only. We propose two scores.

The first one, the deformation score, is based on the Hotelling distribution previously used, and takes into 
account the full 3D deformation vectors. The second one, the orthogonal score, only considers the projection 
of the deformation orthogonally to the surface. The second score is more directly interpretable as it describes 
changes in and out of the surface, the first one however can capture tangential morphological differences.

We show in Fig. 6 the results for two normal fetal faces. Case A, selected randomly, is a 24+3 gestational week 
fetus. Case B is the normal case with the highest average deformation score (32+3 weeks of gestation). In case 
A, the deformation score (Fig. 6c) shows small differences on the right upper lateral aspect of the forehead but 
overall no meaningful difference throughout the face. The orthogonal score is more variable over the face with 
high and low areas, the negative values on the upper-left demonstrate that the this fetal face is characterized by 
receding forehead in this area (Fig. 6d). The deformation score for case B (Fig. 6g) demonstrates large differences 
at upper middle of the forehead, across the eyes and on the left aspect of the mouth and lateral border of the 

Figure 4.   The effect of age on fetal facial morphology. (a, b) Model of the average morphology at (a) 24 weeks 
and (b) 34 weeks of gestational age. (c) Illustration of the local z-values assessing the effect of gestational age on 
morphology. The colour bar is normalised to show levels corresponding to p=0.5 (purple), p=0.1 (orange) and 
p=0.05 (yellow). (d) divergence of the deformation vector field (momenta).

Figure 5.   Differences associated with FGR: (a) average control face, (b) average FGR face (normal diagnosis 
only), (c) group comparison z-value assessing for the effect of FGR on the morphology, the colour-bar ticks are 
normalized to show values corresponding to p=0.5 (purple), p=0.1 (orange), and p=0.05 (light yellow) for the t2 
statistic. d) divergence of the deformation vector field (momenta).
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chin. The orthogonal score (Fig. 6h) shows that these differences in the forehead and mouth/lateral aspect of the 
chin represent values above the mean and the differences across the eyes and mid-face represent values below 
the mean. When inspecting this face visually, the lower half of the face appears to be slightly distorted as though 
the lower right aspect of the chin is pressed against something, distorting both that side of the mouth as well as 
the contralateral side which may have caused the differences identified and further highlights the importance of 
high-quality US volumes with clear borders.

Discussion
The aims of this study are to propose a shape model of the normal population and its variability, and to showcase 
a morphometric approach that objectively describe fetal face features and could assist the diagnosis of complex 
fetal phenotypic variants.

Segmentation algorithm
 The analysis of a fetal face from a 3D volume generally require several manual processing steps, from the image 
acquisition, to the landmark annotation, or the image segmentation and creation of the 3D model. These steps 
are time consuming and challenging to automate due to imaging noise, fetal movements, low soft-tissue contrast, 
and occlusions. Fast and reproducible processing methods are required to conduct large studies and to develop 
clinical tools.

The introduction of two additional steps to our segmentation algorithm (4 manual landmarks and mono-
genic signal map) improved the performance compared to our previous work26 reducing the need for manual 
refinement. This improvement enabled the processing of a large number of 3D US and the reconstruction of 
a population of 3D surface models of the fetal face. In order to allow the inclusion of the maximum number 
of subjects within this work we included cases requiring some manual refinement. It is however unrealistic in 
clinical practice to expect clinicians to undertake manual refinement of the segmentations prior to analysis.

Recent algorithmic contributions in fetal ultrasound image processing especially using deep learning16,30,31 
are promising, but the development of a reliable segmentation of the 3D fetal face remains a challenge and pub-
licly available data-sets very limited32,33. The validation of our algorithm and the comparison to other existing 
approaches14,16 would benefit from experiments on an independent set of images, in particular if we want to 
extend the study to more diverse settings. For example, at earlier gestational ages,the signal to noise ratio would 
be weaker and smaller fetuses would mean lower resolution. The effect of segmentation variability induced by 
the use of different segmentation algorithms, imaging methods, and manual edits would also need to be assessed.

Growth model
The analysis of the morphological variability of the fetal face cannot ignore the growth associated with gesta-
tional age. The use of growth-curves and age-specific morphological references is an established standard in 
many clinical applications but shape modelling approaches generally consider these changes in a latter stage of 
the statistical analysis20.

We proposed in the work to include an initial model to approximate these changes using an isotropic size 
increase. This original approach allows the 3D shape model to describe the inter-subject size variability and to 

Figure 6.   Two cases with normal diagnosis: case A top row and B (the most “abnormal normal”) bottom row. 
From left to right: original mesh, model reconstruction, deformation z-score, orthogonal z-score.
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fully characterize subtle age-related changes without being dominated by the large differences between less and 
more advanced gestational age cases that could hinder the estimation of the statistical model and the analysis of 
the results. This approach is directly generalizable to other settings where size is an important factor and inter-
subject size differences should be accounted for.

In our case, we showed that the reference growth rate could be directly estimated on the included sample or 
based on established measurements. In particular, we found similar results with a model based on facial surface 
area or on tabulated fetal head circumference. The highlighted size differences between AGA and FGR cases were 
an additional motivation to look, using computerized morphometry, for more extensive information about the 
associated morphological features or development delay that could be associated with this diagnosis.

Shape reference
In the last decades, statistical shape modelling has seen many potent development to describe population of 3D 
objects. In particular, morphable face models have been used to describe facial dysmorphisms19,20 with potential 
applications such as the early detection of genetic syndromes21. The quantitative analysis of the fetal face has 
however been limited by the difficult reconstruction of the 3D surface17.

We previously demonstrated the feasibility of using landmark-free diffeomorphic morphometry to model 
fetal faces24. We show here that this approach is scalable to a large number of cases, and that the model is able 
to reconstruct every face with high accuracy at a relatively fine scale. In particular, the reconstruction error is 
small in comparison to the shape variability captured.

The model is also generative and the shape space can be used to sample synthetic cases that are realistic, 
as shown by the visualization of the 2 first PCA modes. The unsupervised statistical model is able to describe 
some localized shape features (shape and size of the nose, position of the eyes, etc.) and more global change of 
the overall shape of the face (oval, square, etc.) that are difficult to quantify otherwise. The correlation of PCA 
mode 2 with age illustrates some potential application of the these descriptions to analyse clinical correlates. As 
such, the model, using the mean template and the distribution of shape vectors, appears to be a valid reference 
point for comparison.

Age‑related changes and fetal growth restriction
Using multivariate statistical analysis of the shape model parameters, we highlighted morphological changes 
associated with age that were complementary to the uniform size increase. We described wider cheeks and 
more delineated face features of the fetus, not to our knowledge previously described in detail. These changes 
were assessed to be significant in our statistical model. To the best of our knowledge, these gestational age-
related changes have not been previously described in details in the literature, however analysis of fetal facial 
bone growth using post-mortem CT scans34 demonstrated that an increase in the anteroposterior mandibular 
diameter, maxillary width and bimandibular distance is strongly correlated with an increase in gestational age. 
A weaker correlation to zygomatic bone growth was also identified. These findings are consistent with the age-
related differences found in our analysis.

Similarly, we also showed significant differences associated between AGA and FGR cases. FGR diagnosis was 
associated with a smaller face but with no other facial feature was apparent in our analysis, aside from an slight 
asymmetrical difference at the level of the right eye.

It is difficult to compare the effect of gestational age and the differences AGA/FGR. First, age-related size dif-
ferences have been partially accounted for by the growth curve model while no uniform scaling have been applied 
depending on the FGR diagnosis. And, overall, even if some similarities with the age-related changes could be 
suggested (on the cheek width or jaw line for example), no clear face features significantly differ between AGA 
and FGR cases and the global differences do not match changes that would be associated with any gestational 
age gap. We should however keep in mind that it is difficult to guarantee that the model is able to represent as 
accurately FGR cases than AGA cases due to the size difference.

Another hypothesis is that the suggested differences in the fetal cheeks may represent a degree of fetal mal-
nutrition with the loss of buccal fat and sharply defined jaw and chin that can be seen in FGR and is a key part 
of the clinical assessment of nutritional status (CAN) score to assess newborns35.

Our sample size is also relatively small and the localization of the difference is not the main outcome of the 
statistical analysis. For example, the asymmetrical difference may be explained by the capturing of the original 
3D ultrasound volume; 8 of the 18 cases were captured with the fetal face deviated to the right resulting in slightly 
less clarity in the right side of the fetal face, 2 cases were slightly deviated to the left and the remaining cases were 
positioned centrally. This may have contributed to the asymmetrical difference noted in the analysis. Validation 
of these explanatory results on an independent dataset would be valuable.

This analysis also higlights the difficulty in visualising, identifying and characterising the morphological 
differences at the very edge of the facial mesh.

Shape z‑scores
The analysis of individual cases provide one illustration of potential use of the models to extract, from the three-
dimensional ultrasound, more detailed information about the facial morphology than the conventional 2D US 
analysis. Were this technique to be used in clinical practice in the future, we envisage that it would be used by 
clinicians to describe analyse and describe cases in which an underlying syndrome is suspected but in which 
the diagnosis remains elusive despite invasive tests, rather than being used as an unrestricted diagnostic tool.

The high scores of case B (above) demonstrated the limits of this approach. From its high scores, this subject 
seems to be abnormal or even an outlier. It is normal for some subjects to be on the extreme of the distribution. 
The surface mesh do not reflect the uncertainty of the segmentation in regions were the contrast is low and the 



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4411  | https://doi.org/10.1038/s41598-023-50386-9

www.nature.com/scientificreports/

face border poorly visible. In this case, it is possible to precisely locate the face limits in an area near the mouth. 
Moreover, the bump on the forehead is arguably a segmentation error. The head is very near the edge of the US 
field of view, and this sharp edge tends to deform the image and pull the segmentation at the expense of the 
correct head border.

General limitations
The methodology that is described is not yet applicable to clinical practice, chiefly because of the amount of time 
required for segmentation and analysis (1 to 1.5 hour for one case with, in average, around 30 min of manual 
work). Also the study only includes two imaging centres and the segmentation process has been centrally and 
uniformly conducted. A more scattered clinical deployment would lead to more heterogeneous results.

A single surface mesh is a very simple representation of the morphological information available in a 3D 
ultrasound. It is only a summary of the interactive and dynamic signal visible during the examination. The 
selection of one volume to describe the entire face is already a limitation. In addition, meshing and smoothing 
loose fine, and less visible features.

A related limitation comes from the fact that we are trying to model the shape of soft tissues in a complex 
environment. In particular, the face is deformed by contact with fetal limbs, or maternal tissues, and these con-
tacts are not only not modelled but also hidden to the final analysis based on the surface reconstruction only.

Perspectives
In this work, we describe a semi-automatic algorithm to build a shape model of the third trimester fetal face 
from 3D ultrasound and demonstrate how it can objectively describe morphological features and gestational-age 
related changes of normal fetal faces. This study represents an important step for objective assessment and char-
acterisation of normal fetal face development and variability in the third trimester. Using these templates, future 
work will allow the model to be assessed for its discriminatory ability in the diagnosis of congenital anomalies 
and dysmorphic or syndromic facial features.

Methods
Patient population and image acquisition
A prospective cohort study of women attending for a fetal medicine scan between 24-34 weeks gestation was 
performed. Recruitment took place at 2 tertiary fetal medicine centres between January 2019 and May 2021. The 
study was approved at both units (REC approval 18/WM/0370 by the National Research Ethics Service Com-
mittee West Midlands – Edgbaston Research Ethics Committee and 579/2019/OSS/AOUPR by Comitato Etico 
dell’Area Vasta Emilia Nord and written informed consent from study participants was obtained.

Diagnosis information was extracted from clinical reports, and confirmed after 12 months follow-up. FGR 
diagnosis is based on the Delphi criteria36.

Participants for whom it was not possible to collect a facial volume between the 24 and 34 week of gestation 
were excluded. Volumes that did not show the complete face or in which the fetal position did not allow for 
good-quality segmentation were also excluded from analysis. When several volumes were available for the same 
patient, the best one was subjectively selected based on image contrast, clarity and clearness of the facial borders 
and facial field (see Fig. 7).

Participants with incomplete follow up data or those with an uncertain diagnosis were also excluded from 
analysis. Finally in this study, we focus on patients without any diagnosed facial dysmorphism. The inclusion 
process is described in Fig. 8.

The ultrasound images included in this study are 3D static acquisitions obtained in the midsagittal plane 
of the fetal face, using the highest resolution acquisition mode with a low frequency probe (4-8 MHz) using a 
Voluson E8 or E10 (GE Healthcare) or a Hera W10 (Samsung) ultrasound machine. The volumes were aligned 
in the multiplanar view along the x, y and z axes and subsequently exported as 3D images.

Figure 7.   Two 3D US volumes collected from the same participant during the same appointment. The volume 
on the right was selected as the facial border were clearer and there was no fetal limb in contact with the fetal 
face as seen in the left image.
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Acquisition and processing of the patient data were carried out in accordance with clinical guidelines and 
data protection regulations.

Figure 8.   Flowchart of recruitment, 3D US volume acquisition, segmentation quality and final numbers for 
analysis.
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Semi‑automatic segmentation workflow
Several steps are required to create a 3D reconstruction mesh representing the face shape from the ultrasound 
volume (Fig. 9a,b). We previously adapted the atlas-based segmentation algorithm developed by Zuluaga et al. 
(2013)27 to the fetal faces with good result26 however it still required significant manual refinement.

We introduced two further improvements to the algorithm in this work. Firstly, the images are initially 
rigidly aligned using four manual landmarks (eyes, noise, midpoint of the lips, see Fig. 9c) to correct for head 
position. Secondly, the image registration similarity, key element of the segmentation algorithm, includes an 
additional term designed to guide the segmentation with US-specific signal properties. This term is defined by 
the normalized cross-correlation between monogenic phase asymmetry map computed for each image (Fig. 9d). 
The asymmetry map is defined by:

where fe is the radial part of the image signal, fo is the odd part, A is the local amplitude, and T a user-defined 
threshold between 0 and 1 (that we set to 0.5). We refer to Bridge’s introduction to monogenic signals37 for more 
details.

Monogenic signals have proven to be useful to capture edge features in clinical ultrasound images38. A similar 
idea has been used by Qiu et al. (2017)39 who computes the phase congruency maps of ultrasound volumes to 
drive the registration of an atlas-based segmentation of neonatal cerebral ventricles.

Every resulting segmentation was visually checked and manually edited in ITK-snap (itksnap.org) to correct 
for mis-segmentation and small missing parts (Fig. 9e). If the boundary could not be reasonably estimated, the 
volume was excluded. This step is crucial to correct for errors in the automatic segmentation caused by image 
artefacts or obstruction of the face and to select the best image for each subject. A closed surface mesh was then 
exported (Fig. 9f).

Mesh processing and size normalisation
To assess meaningful features in the shape analysis, the 3D meshes have to be relatively regular and all orientated 
in the same position. This is done in two steps. Firstly, remeshing is performed using pygalmesh software40 to 
optimise the cell shapes and provide a more uniform cell density. This step can also be used to control for the aver-
age number of mesh elements, an important factor in the trade-off between computational cost and resolution. 
We set the target triangle radius to 2mm and the facet distance to 0.1mm, leading to approximately 6700 cells 
per mesh. Secondly, meshes are rigidly aligned using the 4 previously defined manual landmarks and automatic 
iterative closest point registration (ICP). Meshes are then automatically cut based upon a predefined plane and 
the orientation of cell normals.

R(x) =
max(0, |fo(x)| − |fe(x)| − T)

A(x)+ ε

Figure 9.   Overview of the atlas-based segmentation algorithm steps: (a, b) 3D US volume (c) 4 manual 
landmarks (eyes, nose, midpoint of the lips) (e) monogenic signal map (e) segmentation mask f) 3D surface 
mesh.
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An important question to address is the size normalization. The dominant change between 24 and 34 weeks 
is associated with the fetal growth and, if unaccounted for, this size variability can hide more subtle, interesting, 
and potentially clinically significant differences, in the estimation of the statistical shape model. The growth can 
be, in a first step, approximated by an isotropic size increase. Morphometric measurements are often normalized 
for organ or body size (see41,42 for example), however we are here interested in modelling the change with age 
and size differences are not only caused by the fetal growth but also by inter-subject variability. Rescaling the 
geometries through similarity registration or using measurements of the fetal face (such as head circumference) 
would erase this information despite it being clinically relevant (for the study of fetal growth restriction (FGR) 
for example). We chose an intermediate approach where the faces are rescaled according to a growth model giv-
ing the average size at every gestational age. Younger cases are enlarged, and older cases are shrunk towards an 
average size corresponding to the median age in our population (29 weeks).

In absence of ground-truth size measurements (such as a manual head circumference measurement), we 
chose to use the square root of the area of the face estimated using the variance along the two principal directions 
of the point cloud. This point cloud-variance metric has been chosen rather than a more direct measurement 
of the mesh surface area because of the strong, albeit consistent, bias introduced by the mesh processing steps 
on the direct measurement (the mesh exported from the segmentation is a close surface with a noisy back side 
while the pre-process mesh only preserves the open surface corresponding to the face, this process reduces the 
total mesh surface by around 30 percent). The selected measure is also fully automatic, fast and easily adaptable 
to various settings.

The growth model is defined by a quadratic curve fitted by quantile regression to this surrogate size in our 
complete population (cases with and without pathologies). This model will be compared to tabulated growth 
curves for head circumference29.

Statistical shape modelling
The shape analysis approach used in this work relies on the Deformetrica framework25. In this framework, 
geometrical objects are compared though the dense deformations of space that can transform one shape into 
another. The aim is to enable the comparison of morphologically distinct objects without requiring any point 
correspondence. The space of valid deformations is parametrized by infinitesimal displacements, called momenta. 
These momenta are defined in the whole 3D space and belong to a reproducing kernel Hilbert space (RKHS) built 
using a Gaussian kernel with fixed width and a set of control points. The advantage is that, by construction, the 
deformations are diffeomorphic, fully parametrized by 3D vectors defined on the set of spatial control points, 
and that linear operations, and usual Euclidean statistics, can be used in this space. The position of the control 
points is optimized to efficiently sample the ambient space occupied by the 3D surfaces.

This framework is then used to build a statistical model of the shape population. The most common approach 
is called atlas and is constituted of two main components: a reference shape called template that is representa-
tive of the anatomical mean shape in the population, and individual deformations that map this template to 
each individual shape and capture the morphological variability in the population (Fig. 10). Once the atlas (the 
template and the individual deformations) has been estimated, the statistical analysis is conducted directly on 
the deformation parameters (the momenta vectors defined on every control points).

Shape atlas estimation
The shape model is controlled by two main parameters: the resolution �W that controls the scale at which the 
objects are described, and the stiffness of the deformations �V  that controls how smooth the deformations 
between subjects will be43. It is possible to intuit reasonable values for these parameters based on the regularity 

Figure 10.   Schematic representation of the statistical shape model: template shape to individual cases/
deformations.
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of the objects under study. To inform our choice, we conducted preliminary experiments to test for a range of 
values between 3mm and 20mm (using only the subset of normal cases to speed up the process). The best �W 
value was selected using the Akaike information criteria (AIC) to balance for the increase of number of defor-
mation control points when the resolution decrease. The average reconstruction error was used to select �V.

No major difference was observed for �W ∈ 5 : 10 with a minimum at 7mm. Smaller values were unable to 
be evaluated due to RAM limitations. We then set �W = 7 . The reconstruction error was monotonically increas-
ing for �V ≥ 5 , but slowly for �V ∈ 5 : 9 and with numerical instabilities for smaller values (not converging for 
�V = 4 and poor result for �V = 3 ). As a compromise, we chose to set �V = 7mm.

The initialisation of the optimization could also play a role; mainly, the initial template shape, and the posi-
tion of the deformation control points. To address these two questions, we iterate over several model estimations 
focusing on these aspects first. Designing an approximate average face is not too difficult as there are no major 
topological differences between subjects; from a random initialisation (one average-sized subject), a first tem-
plate is estimated and then manually smoothed and remeshed. The second optimization run focuses on control 
point positions, with a fixed template. Points associated with almost no momenta variance (less than 0.01% the 
maximum) were then filtered out in order to remove the ones that were outside the space covered by the faces 
and speed up the model estimation.

Statistical analysis of the momenta
The atlas model and the compact parametrization of deformations by momenta facilitate the study of morpho-
logical features and of their relations to external independent variables. However, the statistical analysis is still 
challenging. One of the main challenge lies in the dimensionality of the data, even if it has been strongly reduced 
compared to the original surface meshes, it is still too large for naive statistical approaches and visualization. 
For reference, our final model involved 412 control points, by consequence the shapes are characterized by D = 
412× 3 = 1236 parameters. We summarize here the key elements of the main statistical methods that will be used 
to analyse the momenta distribution and their relation to clinical variables.

Principal component analysis (PCA) is used to describe the shape distribution using a reduced number of 
modes. Singular value decomposition is performed on the momenta matrix and the first modes are extracted. It 
is a useful tool for visualization and interpretation purposes as it gives a low-dimensional representation of the 
shape population. It can also hint towards important variability factors that could be explicitly considered in the 
model. For instance, size is, in many applications, the first or one of the first modes44.

Multivariate discriminant statistical testing is used to assess the existence and localization of a correlation 
between clinical variables and morphological features. A statistic is computed at each deformation control 
point and a permutation scheme is used to estimate an empirical distribution of the maximum of this statistic 
under H0 . This approach gives a non-parametric p-value that is both a global assessment and an indicator of the 
localization of the effect. This approach avoids the problem of multiple testing45.

A specificity of our work is that the statistics, computed at each control points, are also multivariate. Indeed, 
we need to account for the 3 directions of the momenta vectors. In this context, we use the Hotelling t2-statistic 
to assess the difference of mean value between two groups. If the independent variable is continuous (such as age 
for example) or if multiple variables are jointly considered (multiple diagnoses and age correction for example), 
we used log-likelihood testing for multivariate linear regression46. We can note that this approach is equivalent to 
the Hotelling test when there is only one binary variable . Unless specified, p-values are calculated using N=1000 
random permutations and significance level is chosen to p=0.05.

Shape‑related z‑scores and assessment of the deviation from the control population of indi-
vidual subjects
We propose to use standardized shape scores to describe and visualize the deviation of individual morphologies 
from the population distribution characterized by the statistical shape model. This approach is a generalization 
of the reporting of a z-score (also called standard score) in the case of a scalar variable. Standard scores could be 
computed directly on the momenta parameters at every control points; to get a more visual and detailed descrip-
tion we propose to compute them at each cell center of the template mesh instead. The momentum vector m for 
a subject k at any point x in space is directly computed from these momenta parameters (ai)k defined at each 
control point (ci)i (see Durrleman et al. (2014)25 for more details):

Parameters ak for a new subjects are estimated through registration to the template face.
We propose two scores: the deformation score based on the Hotelling statistic for 3D vectors, and the orthogo-

nal score for changes locally normal to the surface. We first compute the average m̄(x) and the empirical covari-
ance �̄(x) of the momenta vectors on the set of control subjects used to build the model. Then: we define at each 
point the deformation score of subject k by

The orthogonal score uses the local surface normals n(x) and can then only be computed on the template surface 
mesh. We define σ̄n2 = 1

N−1

∑
((m− m̄) · n)2 the empirical standard deviation, on the control samples, of the 

projection of the momenta along these normals. The orthogonal score writes

mk(x) =
∑

i

K(x, ci)a
k
i

zkd = (mk − m̄)T �̄−1(mk − m̄)
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A signature score, similar to the orthogonal score has been used for paediatric patient by Matthews et al. (2021)20. 
The changes associated with this second score are more directly interpretable but do not take into account the 
complete deformation vectors and can overlook more complex morphological differences.

If we assume the momenta vector m(x) follows a multivariate Gaussian distribution N (m̄, �̄) (only true in 
first approximation), the orthogonalscore follows a normalized Gaussian distribution N (0, 1) with the usual 
95% confidence interval [−2;+2] . The deformationscore would however follow a chi-squared distribution with 
3 degrees of freedom χ2

3  (confidence interval [0;+7.8]).

Data availibility
The ultrasound images analysed in the current study are not publicly available due to privacy concern. The seg-
mented 3D surface meshes are however unidentifiable and are available, with corresponding diagnoses, on the 
UCL research data repository under the DOI 10.5522/04/23717376. For review purposes, the data is available at 
https://​figsh​are.​com/s/​861ec​1626b​c36a5​62c4d and the shape model parameters at https://​figsh​are.​com/s/​4bbaf​
c08ac​95523​f5b86.

Code availability
Access to the implementation of the segmentation workflow and of the statistical analysis is available on demand 
for review at https://​gitlab.​com/​rsive​ra/​segme​nt-​faces. The repository will be made publicly available before 
publication.
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