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Breaking barriers in Candida spp. 
detection with Electronic Noses 
and artificial intelligence
Michael L. Bastos 1*, Clayton A. Benevides 2,6, Cleber Zanchettin 1,6, Frederico D. Menezes 3,6, 
Cícero P. Inácio 4,6, Reginaldo G. de Lima Neto 4,6, José Gilson A. T. Filho 5,6, 
Rejane P. Neves 4,6 & Leandro M. Almeida 1*

The timely and accurate diagnosis of candidemia, a severe bloodstream infection caused by Candida 
spp., remains challenging in clinical practice. Blood culture, the current gold standard technique, 
suffers from lengthy turnaround times and limited sensitivity. To address these limitations, we 
propose a novel approach utilizing an Electronic Nose (E-nose) combined with Time Series-based 
classification techniques to analyze and identify Candida spp. rapidly, using culture species of C. 
albicans, C.kodamaea ohmeri, C. glabrara, C. haemulonii, C. parapsilosis and C. krusei as control 
samples. This innovative method not only enhances diagnostic accuracy and reduces decision time 
for healthcare professionals in selecting appropriate treatments but also offers the potential for 
expanded usage and cost reduction due to the E-nose’s low production costs. Our proof-of-concept 
experimental results, carried out with culture samples, demonstrate promising outcomes, with the 
Inception Time classifier achieving an impressive average accuracy of 97.46% during the test phase. 
This paper presents a groundbreaking advancement in the field, empowering medical practitioners 
with an efficient and reliable tool for early and precise identification of candidemia, ultimately leading 
to improved patient outcomes.

Infections caused by fungi are a significant issue in the scenario of Intensive Care Units (ICUs), increasing 
morbidity and the number of deaths in patients who are in a critical state of  health1,2. The main reason for the 
occurrence of this type of infection, also described as invasive fungal infections (IFI), is candidiasis, with Candida 
albicans as the primary causative agent, followed by Candida parapsilosis, Candida glabrata, Candida krusei and 
Candida tropicalis3. According to reports  by4, approximately 15 species of Candida can cause human diseases, 
and the most common, presented in more than 90% of cases. Furthermore, there have been notable changes in 
this field, with the emergence of species considered rare or uncommon, such as occurrences with C. pelliculosa, 
C. haemulonii, C. guilliermondii, C. lusitaniae, C. famata and C. auris4,5.

Data reported  by5 show that, despite considerable advances in antifungal therapy in recent years, mortality 
related to Invasive fungal infections (IFIs) in ICUs has been 40 to 60%. One of the factors contributing to this 
mortality rate is the challenge in recognizing and diagnosing IFIs in the early stages of  treatment5,6. According 
 to6, only half of the tested patients were reported to be infected by Candida spp. Considering that the result may 
take 2 to 7 days to be confirmed (in the case of culture-based methods), and given the severity of this condition, 
a delay of more than 12 hours can increase the risk of mortality.

At present, blood culture is the standard method in the laboratory diagnosis of candidemia, enabling the 
isolation of the causative agent for  identification7. Alternative techniques that do not rely on cultures are also 
used, including polymerase chain reaction (PCR), detection of mannan and beta-D-1,3-glucan antigens (BDG), 
and enzyme-linked immunosorbent assay (ELISA). It is important to note that some of these approaches involve 
careful sample preparation, have long response times, entail significant costs, and require professionals with 
specific  expertise8,9.
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In addition, we can also mention T2Candida, which combines targeted PCR with T2 magnetic resonance and 
Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). T2Candida 
allows for early detection of candidemia in patients undergoing antifungal therapy; however, it is not suitable 
for low-prevalence environments, is costly, and covers only five of the main  species10. As for MALDI-TOF MS, 
it is highly successful in identifying clinical samples, but it can be a time-consuming process and heavily relies 
on the expertise of clinical mycologists handling the  samples8,12. Furthermore, according  to13, combining the 
MALDI-TOF MS technique with other methods is often advisable to achieve more accurate and satisfactory 
results. However, this approach also involves the use of equipment that can be costly and may not always be 
readily available in various microbiology laboratories, particularly in developing  countries14. However, alterna-
tive methods are based on detecting Volatile Organic Compounds (VOCs) to identify these fungal agents. These 
methods include Gas Chromatography-Mass Spectrometry (GC-MS), Solid Phase Microextraction (SPME), 
Simultaneous distillation extraction (SDE), and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS)15.

Another method that has received some attention and shows potential for development is the Electronic Nose, 
often called the “E-Nose.” This technology combines a variety of gas sensors and uses artificial intelligence to 
identify patterns of Volatile Organic Compounds (VOCs) and categorize the unique “smell fingerprints” associ-
ated with these compounds. This tool is generally built with metal oxide conducting chemical sensors (MOS), 
which are responsible for identifying the volatile organic compounds released by the odor-emitting components. 
Its functioning is based on the olfactory function of mammals and has been studied since the  1980s16. Like a real 
nose, the E-nose aims to identify patterns from the VOCs identified by the sensors, whose reading values are 
analyzed and classified by an artificial intelligence (AI) model. This device typically comprises three main parts: 
sensors, a signal processing unit, and a pattern recognition  system17.

The Electronic Nose is already being applied in various domains, from food safety to agricultural applica-
tions and disease diagnosis,  as18 mentioned. For a more comprehensive view of these applications, one can delve 
into studies conducted  by19,20,  and21, which focus on the identification of microorganisms, including fungi and 
bacteria. Furthermore, research carried out  by22,23,  and24 further extends the exploration of Electronic Nose 
applications in the food industry. It’s also worth highlighting the study  by25, in which a portable Electronic Nose 
device is employed to diagnose gynecological conditions in a clinical setting rapidly.

In the context of medical diagnosis, Electronic Noses have experienced remarkable advances in recent years, 
particularly in hardware development and algorithm  evolution18,26. Medical diagnosis stands out among the 
fields most benefited by the progress of this technology, as previously  mentioned18. However, some limitations 
still require refinement, such as the stability, standardization, and reliability of certain  sensors27,28. In this regard, 
efforts are being devoted to enhancing the sensitivity, selectivity, and stability of these devices, with significant 
progress when these mechanisms are integrated with artificial intelligence and Machine Learning  techniques18,29.

Given the above, it is understood that there is a significant issue regarding the rapid identification of fungi in 
hospitalized patients and those with a clinical condition that requires extra  care30,5. Considering that this iden-
tification process can be improved, this project proposes using an Electronic Nose to recognize patterns related 
to fungi of the Candida spp.  species31 utilizing control samples collected by ATCC company. This method can 
be combined with a set of machine learning techniques, enabling quicker and more efficient  identification32, 
streamlining the decision-making process of health professionals, and, consequently, improving the survival 
chances of these patients. It is essential to mention that in this initial proof-of-concept study, we are using only 
culture samples, aiming at the creation and validation of a rapid and efficient protocol that can be replicated in 
the future for samples of other materials, such as whole blood. To better understand this, the following sections 
will address the Materials and methods used for the construction of the study, the Results and discussions on its 
development, and, finally, the Conclusions of the findings of this investigation.

Results
Through the implemented models, a series of experiments were conducted and cataloged using the metrics 
Accuracy, F1-score, Recall (Sensitivity), Specificity, Precision, and Standard deviation, aiming to identify patterns 
in the VOCs released by the analyzed Candida species. The variety of models covered the different character-
istics that the data may have, highlighting the models that best fit the data standard and discarding those with 
less potential. Initially, all models were applied with the parameters defined by the documentation or in their 
respective repositories. The possibility of including a parameter validation step for the models was considered. 
However, given the satisfactory performance of most models and considering the computational cost and time 
that this step would require, it was deprioritized for the time being.

Regarding the methods used, the primary rationale for using time series models is the temporal nature of the 
signal reading, with data from each round of the aspiration process being added to the database. The majority 
of the models used were sourced from the Sktime library. However, due to its uniqueness, Inception Time was 
the only one implemented independently of the library, as there is currently no tool that simplifies access to its 
functions and properties. The model code provided by the authors on GitHub had to be modified to accom-
modate the metrics and dataset of this study.

As a result of the training stage, most of the models achieved 100% accuracy. This is justified due to the reduc-
tion of instances that the pre-processing step brought, using the cycles as training elements. Thus, models learn 
data patterns better as they have less to memorize. In this regard, to prevent overfitting, in addition to adding 
more data cycles for model training, grid search steps or optimization algorithms can be employed to find better 
 parameters33. Another commonly used strategy is the application of more robust models, as was the case with 
 InceptionTime34, achieving greater consistency at all stages of the process.

In addition to the average value referring to the metrics in the training process, the values referring to the 
averages of the validation and testing stages of the models were also recorded. There was a moderate decrease 
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in the performance of the models between the training phase and the validation and test phases, amidst 7 and 
4%. This is because, during training, the models identify Candida patterns precisely due to the distinctive nature 
between each species and the new data division. In the other phases, as they are new data, and the model has 
never seen them, it is normal and expected that it ends up making more errors, which in no way interferes with 
its final evaluation. Table  1 demonstrates the data referring to the testing steps of each of the models.

As observed in the result set, the most notable model was Inception  Time34, executed with the standard set 
of parameters, followed by ROCKET  Classifier35, Time Series Forest  Classifier36 and Random Interval Spectral 
Ensemble (RISE)37, respectively. All metrics calculated in Inception Time were near 100%, demonstrating high 
consistency between the results.

In addition to collecting the metrics, statistical tests were conducted to verify the difference between the 
results of the different models. Specifically, a normality test was performed with the accuracy results obtained in 
the 10 repetitions for each model of the validation stage. This was followed by a significance test and a post-hoc 
test to compare the selected algorithms pairwise.

It can be interpreted that only the Inception Time model does not follow a normal data distribution. It would 
already suggest using a non-parametric test to evaluate the results. However, to obtain increased sensitivity of 
the analyses, a numerical test of statistical normality was also applied, where the most suitable test for the prob-
lem in question was the Shapiro-Wilk test. According  to38, this method is more suitable for small sample sets 
smaller than 50, although it can also be used for larger sets. In contrast, methods such as Kolmogorov-Smirnov 
are ideal for samples larger than or equal to 50. Both tests use as a null hypothesis the statement that the data 
are all derived from a normal distribution set, accepting this hypothesis when p>0.05, confirming the data as 
normally distributed.

As a result of applying the normality test, the HIVE COTE1, Shaplet Transform Classifier, and TimeSeries 
Forest Classifier classifiers did not present a normal distribution according to the Shapiro-Wilk test, with p-values 
equal to 0.01227, 0.03521, and 0.00021, respectively. All these values are less than 0.05.

Indeed, with this result, we confirm the need to apply a non-parametric test, given that only some groups 
follow a normal distribution. As  per39, the most appropriate non-parametric test for this case is the Kruskal-
Wallis test, considering the number of examples in the groups is small and equal. For the execution of the test, 
the following hypotheses were considered:

• H0: All models have relatively equal means in terms of classification accuracy;
• H1: At least one of the models differs from the others in terms of mean classification accuracy.

Where H0 is the null hypothesis, which assumes that all models have equal performance, H1 is the alternative 
hypothesis, which is the difference in performance of at least one of the models about the others. For this test, 
a p-value less than 0.05 indicates the rejection of the null hypothesis, suggesting the existence of a significant 
difference between the evaluated samples. Thus, applying Kruskal-Wallis to the set of results acquired, a p-value 
of 2.49E-02 was obtained, which is less than 0.05. This demonstrates that with 95% confidence, there is evidence 
to reject H0 and accept the hypothesis that at least one of the models differs from the others in mean validation 
accuracy.

Given this model difference, the next step was applying a post-hoc test to identify which models are statisti-
cally different. The non-parametric test only indicates the existence of this difference, not the relationship between 
the sets. For this step, the Nemenyi test was used, which, according  to40, is one of the most commonly used post-
hoc tests after applying Kruskal-Wallis. As briefly explained, this method performs a pairwise investigation of 
each analyzed set, returning the p-values for each relationship between the evaluated groups. The values vary 
between -1 and 1, with p<0.05 indicating a significant statistical difference between the samples according to the 
test and values closer to 1 demonstrating similarity. Figure 1 depicts a correlation matrix that crosses the results 
obtained by the Nemenyi method.

As observed, there is a high similarity between most models with a lower accuracy average, not showing a 
significant statistical discrepancy between them. However, it can be stated that there is no significant difference 

Table 1.  Result of the model testing stage—test values for the metrics Accuracy, F1-score, Recall (sensitivity), 
Precision, Specificity, and Test time measured for each model after the training and validation phase. 
Significant values are in bold.

Classifiers Accuracy F1-score Recall (Sensitivity) Precision Specificity Test time (s)

Inception Time 0,97468 0,97605 0,97817 0,97540 0,99513 1,21489

Random Interval Spectral Ensemble (RISE) 0,65000 0,55758 0,57007 0,56251 0,94223 4,58585

Time Series Forest Classifier 0,67500 0,61261 0,58960 0,61261 0,91312 1,18719

ROCKET Classifier 0,78750 0,78105 0,85764 0,79171 0,93804 4,91326

Shapelet Transform Classifier 0,63750 0,58207 0,60258 0,59832 0,93028 0,61583

K-Neighbors Time Series Classifier 0,75000 0,73245 0,72192 0,81357 0,95635 52,86100

HIVE COTE 1 0,52500 0,40245 0,42669 0,39475 0,94009 11,93961

HIVE COTE 2 0,66250 0,58503 0,60360 0,62833 0,94342 2,57620

BOSS Ensemble 0,63750 0,50525 0,53555 0,49929 0,90165 0,48432
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between the Inception  Time34 and Time Series Forest  Classifier36 models, both of which have p-values much less 
than 0.05. Each one has a notable difference between the models with more distinct accuracy. However, there is 
a high similarity between some with closer accuracy (which was expected), dividing the models into different 
groups of relevance. This way, it is possible to identify the difference between the models, with Inception Time 
and TSFC not showing a significant difference. Although there is no significant statistical difference, Inception 
Time stands out with average values for Accuracy, Precision, Recall (sensitivity), Specificity, and F1 above 95% 
in all analysis sets. Additionally, it boasts an execution time of just over 1 second, making it the most promising 
choice for the final classification model of volatile compounds emitted by Candida species. The entire process of 
identifying microorganisms, encompassing sample reading and model classification, is completed in approxi-
mately 15 minutes.

Discussion
With the results of this study, it is possible to see the effectiveness of using Electronic Noses in the face of such 
complex problems, including identifying fungi through VOCs emitted by species in culture. In contrast to other 
solutions, using this technology, in addition to making the process of helping identify fungi cheaper, can speed 
it up, achieving a satisfactory result within a few hours. Traditional methods use expensive, large machines 
(challenging to transport), which require a longer time to indicate an accurate result. With the E-nose built with 
low-cost parts in a compact suitcase, it will be possible to transport it more easily and quickly. The identification 
speed is up to the AI models being trained because the more accurately they use data with less culture time, the 
faster their classification returns.

From the first stages of the study, in the visual analysis of the data, it is possible to identify a distinct separation 
between some species (highlighted in the PCA of the Fig. 4a). This helps to understand which Candida species 
can be better identified by the models and demonstrate a linear separation between some. For example, it’s pos-
sible to observe in the left part of the projection a cluster of five species (C. albicans, C. glabrata, C. haemulonii, 
C. kodamaea ohmeri, and C. krusei), which could be separated by some lines, as well as in the lower right corner, 
where C. parapsilosis and C. krusei are located, and in the upper right corner, where C. albicans and C. glabrata 
can be found. It’s worth noting that some other species within these groups might account for some of the errors 
recorded by the models during the learning process.

Another critical point is the choice of Time Series for training and data classification. This decision was 
taken given the temporal characteristic of the data, both for the time of culture of the fungi and for the reading 
of the volatile emitted by them and captured by the Electronic Nose, based on the process in evidence in Fig. 3c.

All this flow culminated in obtaining outstanding results for the validation and classification phase of the 
samples, where most of the models achieved an assertiveness above 90%, with emphasis on the Inception Time, 
with an average of 97.70%, 95.87%, and 97.46% of accuracy in the training, validation, and testing phases, 
respectively, with very similar values for the other metrics. In the training step, most models reached 100% in all 
metrics. However, this can be seen as a bias in the data, harming the test step. All this difference was confirmed 
by the analysis of statistical significance, where through the Shapiro-Wilk normality tests, the Kruskal-Wallis 
non-parametric test, and the Nemynyi post-hoc test, the difference between the algorithms used was identified.

Although there are still no comparative studies between the E-nose and artificial intelligence in relation to 
more traditional yeast identification techniques, we can observe a great similarity between the efficiency of the 
method presented in this work and methods such as MALDI-TOF MS, CHROMagar and Corn meal tween-80 
agar, as demonstrated in  study41. The authors’ approach indicates that, even though these techniques are not 
considered gold standard for yeast identification, they can lead to very promising results for some species, with 
a performance very similar to that of our study (indicated in Table 1), when compared to the percentage of cor-
rect answers. This highlights the importance of using new methods that can fill the gaps left by more traditional 
methods.

Figure 1.  Correlation graph of the results of applying the Nemenyi post-hoc test on the set of results for 
each model. In this type of graph, when it is farther from 1, the elements are more divergent; that is, they are 
statistically different.
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Thus, as seen in the study, it is possible to perceive how powerful Electronic Nose, combined with new Time 
Series techniques, can yield satisfactory and promising results. Because it is a portable tool with a moderate 
construction cost compared to current mechanisms - it can reach a wide range of environments in places with 
fewer resources and difficult to access. These facilitators should broaden the identification process’s scope of use, 
benefiting many people. For the next steps, samples of new species of Candida, even rarer, such as C. tropicalis, 
C. auris, C. famata, C. pelliculosa, C. guilliermondii, C. lusitaniae, and other fungal segments should be added to 
the dataset, seeking to create more generic and accurate models in the identification of this fungus. Additionally, 
these new samples will allow for a broader development of specificity tests among fungi, aiming to ensure the 
absence of false positives in our results. Furthermore, new analyses will be conducted with shorter culture times 
to determine if further reducing the identification time is possible.

Another critical step for the future will be to expose the Electronic Nose to patient blood and in situ sam-
ples to identify its efficiency in a scenario closer to its final operation. In this sense, the equipment requires an 
environment free from high levels of odors to prevent the risk of incorrect readings due to external interfer-
ence. However, it can be used in a clinic if there is assurance of an environment free from other contaminating 
odors (e.g., alcohol, perfumes, air fresheners, etc.). This condition may be possible by using a room containing 
an extractor fan. From there, health professionals will also perform a qualitative assessment to obtain feedback 
related to the results indicated by the tool.

Methods
This work is an evolution of the project developed  by19, which introduced research on using Electronic Nose and 
AI to identify Candida spp. In the current project, more robust, automated equipment is used that makes it pos-
sible to analyze a greater volume of samples. In addition, it also allows the construction of a database of volatile 
signature patterns and employs advanced AI methods based on Time Series classification. The entire study was 
developed based on an iterative process of activities, where their execution led to the construction of the final 
solution. All the code can be found on GitHub (link: https://github.com/michaellopes16/CandidaTimeSeries-
Classification.git). It was developed using the Python language on the Jupyter Notebook (in a Core i7 PC, with 
16GB of RAM and the GTX 1060 video card) and Google Colab platforms (in your free version). In the initial 
phases of the research, the primary purpose was to conduct exploratory studies using literary reviews about the 
main issues related to the work to understand better the state of the art and the best practices for developing the 
project. In this sense, the course of this section is divided into four stages: Structure and operation of E-nose, 
Process of sample identification, Analysis and processing of data, and Process of classification of samples.

All these steps seek to select the most promising algorithm for classifying volatiles. In this sense, after the 
model has been defined, in-place tests must be carried out to ensure its effectiveness in an operational environ-
ment. From this, it will be necessary to perform a descriptive study on the use of the solution, aiming to thor-
oughly analyze its use and better understand its absolute power of contribution, also inserted in this context, a 
quali-quantitative approach regarding the evaluations.

In this scenario, the project is being developed in partnership with the Mycology department at [Anonimous]. 
In addition, international alliances are already being prospected, so the collection of samples with different vari-
ations can also compose the database under development. The qualitative study should be accomplished through 
interviews with health professionals to understand the proposal’s feasibility better and identify improvement 
points. Fig. 2 illustrates part of the process related to the sample identification flow, starting from the Acquisition 
of control samples to the Species identification report.

Structure and functioning of E-Nose
In parallel with constructing the theoretical basis and structuring the problem, the first steps for making the 
solution were carried out. The database was built from control samples created by ATCC (https://www.atcc.org/
about-us), an American company offering quality products and services to the scientific and academic com-
munity involving biological materials. These samples were utilized by the Laboratory of Medical Mycology/
[Anonimous] for the mycological diagnosis. Then, they were labeled and cultivated in Petri dishes for analysis 
by the Electronic Nose, developed in partnership with the [Anonimous]. The E-Nose identifies the “smell fin-
gerprints” released by the fungi through the Volatile Organic Compounds. In this process, the E-Nose uses ten 
different categories of sensors, seven of them from the manufacturer Figaro Engineering Inc. (TGS826 (Ohm), 
TGS2611 (Ohm), TGS2603 (Ohm), TGS813 (Ohm), TGS822 (Ohm), TGS2602 (Ohm), TGS823 (Ohm)). The 
other three are the temperature sensors (Co), pressure (kPa), and humidity (%), used to analyze possible interfer-
ence of these parameters in the behavior of the samples. A summary of the main functions of the sensors used 
in the device is in Table 2

To provide greater flexibility in transporting the device, it was built and adapted inside a compact case, with 
the appropriate seal and structure to withstand all the elements necessary for the Electronic Nose to work. In 
this case, in addition to the sensors attached to an air chamber on the inside and the on/off button, there is a 
pump responsible for the suction/injection of gases or air into the chamber, a control valve, and an air filter with 
activated carbon and, finally, a simple chamber for inserting the Petri dish and collecting the volatile emitted 
by the microorganisms’ reactions. All connections between components and chamber surfaces are made with 
polytetrafluoroethylene (PTFE) due to its non-stick properties and low coefficient of friction, facilitating cleaning 
and avoiding the permanence of volatiles between the suction and purge cycles. Fig. 3a presents the Electronic 
Nose Device used in the experiments.
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Sample identification process
As briefly mentioned, the first stage of the sample identification process is accomplished by the Medical Mycology 
Laboratory/[Anonimous], which manipulates samples. After that, the material is labeled with their respective 
species, cultivated in Petri dishes containing the culture medium Sabouraud Dextrose Agar (see Fig. 3b with an 
example of samples of Candida albicans (URM8368)) and taken for reading by the Electronic Nose, resulting 
in the generation of the database. The VOCs of species are aspirated with different culture times to increase the 
heterogeneity of the data and allow better generalization by models in the future. This aspiration at other times 
also aims to identify whether it is possible to obtain accurate results faster, which is of great importance to help 
health professionals make decisions.

For each sample collected, the E-Nose performs a collection protocol based on three categories of actions, aspi-
ration, stabilization, and purge (cleaning step) (as seen in Fig. 3c), where the completion of all three characterizes 
the completion of a cycle. For each sample, a volume of three readings per second is collected for 20 seconds in 
the aspiration phase, for 60s in the stabilization stage, and another 60s in the cleaning phase, totaling an aver-
age of 420 readings per cycle in each sensor (for each sample, it is a predefined number of cycles is performed). 
Considering that numerous samples of the same species are needed to obtain diversity in the data (so that the AI 

Figure 2.  Flow for sample identification and classification. First, control samples derived from the ATCC 
company are used to analyze and define the mycological diagnosis by the Laboratory of Medical Mycology. With 
this, the already cultivated species are identified and separated in Petri dishes. These cultures are then placed in 
the E-nose to identify the VOCs. With the collected data, pre-processing routines are executed to use the data 
already treated by the AI models. At the end, a species identification report is generated.

Table 2.  Sensors used in the Electronic Nose to identify volatiles emitted by gases generated by the Candida 
species and their functions.

Sensor Main Function

TGS826 Ammonia detection

TGS2611-E00 Methane detection

TGS2603 Detection of odors and air contaminants (High sensitivity to series of amines and gases with sulfurous odor and high 
sensitivity to food odors)

TGS813 Detection of combustible gases (High sensitivity to methane, propane, and butane)

TGS822 Detection of Solvent Vapors (High sensitivity to alcohol and organic solvent)

TGS2602 Detection of air contaminants (High sensitivity to gaseous air contaminants)

TGS823 Detection of Vapors from Organic Solvents (High sensitivity to vapors from organic solvents such as ethanol)



7

Vol.:(0123456789)

Scientific Reports |          (2024) 14:956  | https://doi.org/10.1038/s41598-023-50332-9

www.nature.com/scientificreports/

models can satisfactorily learn the patterns of each species), a relevant amount of data was collected in this first 
step, with 20,189 instances of C. albicans (3 isolates - ATCC 14053, URM8368, URM8369), 19,068 of C. glabrata 
(1 isolate - URM6393), 6,989 of C. haemulonii (1 isolate - URM6555), 7,067of C. kodamaea ohmeri (1 isolate - 
URM6935), 17,255 of C. krusei (3 isolates - ATCC 6258, URM8371, URM6391) and 20,234 of C. parapsilosis (3 
isolates - ATCC 22019, URM7049, URM7048), totaling 90,802 samples collected in approximately 514 cycles 
with cultures on different days. There are cycles with different sizes due to inconsistent reading in the E-nose. To 
solve this, it was necessary to match the cycle sizes, explained in more detail in the Sample classification process 
section ([Anonymous]-URM is a culture collection affiliated with the Word Federation for Culture Collections).

After the construction of the first version of the database, the need to carry out an analysis of the data was 
identified, seeking to observe the existence of behaviors or indications of patterns for the different sensors 
related to each of the species. In addition, this initial check was essential to identify strategies for cleaning and 
restructuring the base to make its use viable by the learning models.

Data analysis and processing
After generating the data, a descriptive analysis was performed to understand better its behavior and which AI 
models may be more suitable for identifying the patterns generated by the samples. For this, it was first neces-
sary to analyze and preview the data to get an idea of how they would be about each sensor for each collection of 
Candida spp. After that point, a new database was constructed with the data set of all species collected, with only 
the sensors considered significant, and with the addition of new columns for labeling the samples about their 
species and culture time. Another critical point in this information visualization step was using UMAP (Uniform 
Manifold Approximation and Projection) and PCA (Principal Component Analysis). These two-dimensionality 
reducers helped to understand the grouping of data better. In this sense, as initial steps for the pre-processing 
and visualization of information, four relevant points were verified about the data:

• If all sensor data for the same species have similar behavior;
• If there are differences in information between the same species at different collection times;
• If there is a predominance of sensors by species;
• Whether there is a clear division between the data and how it is grouped.

Some graphs with data from all sensors related to the collections of each Candida species were generated to 
analyze the first point. In these, the wave patterns of each collection were observed, following the chronological 
order of reading, visualized in Fig. 3d for C. albicans data.

As can be seen, each of the sensors has a specific wave pattern, varying in well-defined intervals. Some 
reading peaks in some regions can signal detection errors by the sensors, indicating the presence of possible 
outliers. Pressure and humidity sensors have an almost constant reading cycle, not interfering at any time with 
the reading pattern of other gas sensors. The temperature sensor, despite fluctuating a little at some points, also 
does not interfere with the reading of the other devices, which may be an indication that the alteration of these 

Figure 3.  (a): Electronic Nose device used in experiments: (1) The Electronic Nose is packaged in a compact 
box; (2) The on-off switch activates it; (3) All connections are made of PTFE; (4) It has activated carbon filter 
and (5) PTFE filter; (6) Sample chamber also made of PTFE. (b): Example of samples of Candida albicans 
(URM8368) used to create the database. All were cultivated in Petri dishes using Sabouraud Dextrose agar 
culture medium. (c):E-Nose collection cycle. (1) Camera suction step (2) Sensor stabilization step (3) Camera 
cleaning (purge). (d): Data from the readings of each sensor over time for the samples of C. albicans. (e): Data 
readings from C. krusei after one day of culture. (f): Data readings from C. krusei after two days of culture.
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parameters does not cause, in this case, any interference in the captures of the others sensors, can be removed 
from the analysis.

Another important point for this initial analysis is identifying differences between data from the same species 
but for different collection times. This point helps visually determine if there are significant differences between 
the readings performed with cultures from different days because the earlier the reading patterns are identified, 
the better the decision-making process. Fig. 3e and f shows data from one-day and two-day readings for the 
species C. krusei.

As can be seen in Figs. 3e and f, there is a slight distinction between the amplitudes of the waves concerning 
some sensors from one day to the next. This demonstrates that these devices have a difference in resistance of 
the volatiles between day 1 and day 2. One hypothesis is that the concentration of gases released by this species 
changes over time, decreasing in some cases and increasing in others, contributing to the differences in pat-
terns between distinct days. Through this analysis, it is possible to focus on the early cycles of culture analysis, 
streamlining the decision-making process.

The third point is the possibility of a predominance of a particular sensor per species. This can indicate which 
sensor can differentiate itself more about each Candida species, contributing to the distinction of patterns and 
selection of the features used in the database consumed by the classification models.

Some experiments show that the behavior of sensors is based on the resistance caused by the gases emitted 
by each species at the time of reading by the Electronic Nose. Seeking to identify a predominance of a sensor 
over the species, it was noted that the TGS2602 and TGS822 sensors have a greater amount of readings spread 
over different resistance (Ohm) levels for C. parapsilosis, with the values of the other Candida in regions very 
similar but quite different from C. parapsilosis. The opposite occurred with the TGS2611 and TGS823 sensors, 
where the other samples had more distributed resistances and C. parapsilosis more focused on a region. This all 
shows that some sensors have predominance about some species; however, to identify different levels of resist-
ance about the other, all reading values end up being relevant, as together they become important characteristics 
for identifying patterns by models.

After analyzing the data for each species and sensor separately, the need to understand how the entire dataset 
was grouped was identified. For this, two techniques for dimensionality reduction were applied: PCA (Principal 
Component Analysis) and UMAP (Uniform Manifold Approximation and Projection). In the case of PCA, 
according  to42, its main objective is to extract relevant information from a set of tabulated data and convert it 
into a new set of orthogonal variables called Principal Components. In this sense, it is possible to display simi-
larity patterns in the instances and variables as components in a graphical map. On the other hand, the UMAP, 
according  to43, is an innovative technique of dimensionality reduction that is based on a theoretical structure 
of Riemannian geometry and algebraic topology, which makes the results derived from its reduction scalable 
and easily used on accurate data. Unlike PCA, it performs dimension reduction non-linearly, trying to keep 
similar cases close together and different cases separate. This study applied a two-dimensional decrease for both 
techniques, which can be analyzed in Fig. 4.

Analyzing the two projections, we can see small groups built by each species. In the case of PCA, the standard 
difference from C. parapsilosis, C. albicans and C. glabara for the other Candida is evident, as their points are 
well dispersed from the additional data group, with some samples separated from the leading group. This dem-
onstrates that this species has very particular characteristics and can probably be distinguished by IA models. 
Although the other species are concentrated in a single region, they are well separated, with not much visible 
shuffling between them. One visual problem is the existence of the same group in different parts of the PCA 
image. Some models can find issues to distinguish this behavior. In the graph generated by UMAP, it is already 
possible to see a separation of the data, with groups of species being made in different regions of the graph. This is 
explained by how UMAP deals with reduction through algebraic topology and similarity measures. It is essential 
to highlight that, despite not being grouped in the same region of the graph, species with similar characteristics 
end up staying close to each other and, because they have very different reading averages within the same species 

Figure 4.  Two dimensions from Principal Component Analysis (a) and Uniform Manifold Approximation and 
Projection for Dimension Reduction (b).
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- due to the differences in sensor readings - the same species may contain data that are not very close, considering 
that this method does not seek its resizing based on the main components, but on similarity measures.

Finally, knowing how the data are arranged and grouped, the base was prepared for use by Time Series models, 
modified to 2 dimensions, one of the few ones withstand by most models in this segment. From there, experi-
ments with the models were started, which will be detailed in the following sections.

Sample classification process
With clean and structured data, the models were selected based on the results of the data visualization phase and 
the study on Inception Time34, which compares it with other state-of-the-art models, including its predecessors, 
the Hierarchical Vote Collective of Transformation-based Ensembles  144 and  245 (HIVE-COTE 1 and HIVE-
COTE 2). The information visualization showed that the data do not overlap and have a single division between 
them, so there are not many restrictions on which categories of models to use. Thus, in addition to the techniques 
already mentioned, the K-Neighbors Time Series Classifier (KNN) was also introduced in the experiments, which 
implements the K-nearest neighbors for time  series46, the Time Series Forest Classifier (TSFC), implementation 
of a Time Series Forest using  intervals36, the Shapelet Transform Classifier (STC), which uses transformed dis-
criminatory subseries as a  classifier47, the Random Interval Spectral Ensemble (RISE), built based on trees and 
different sets of partial and automatic correlation of  features37, the ROCKET Classifier (ROCKET)35 and BOSS 
Ensemble (BOSS)48, all Time Series models that will be used as a classifier, due to the temporal characteristic of 
the data, translated through the parameter culture_day from the base.

As previously mentioned, a total of 90,802 readings of the six species of Candida were collected in about 
514 cycles; however, to obtain a “smell impression” from data, it was necessary to concatenate all readings of all 
sensors of a cycle in one row of the dataset, resulting in a new set of 397 instances with 821 columns (now, each 
sample is related to a cycle). Therefore, the base was divided into training, validation, and test sets, with 60% for 
the first (238 cycles) and 20% for the other (79 and 80 cycles).

Stratified cross-validation is used to maintain a homogenized proportion of data sampling to ensure that the 
training set can represent the entire population, avoiding sample  bias33. For each subset used in training, results 
were obtained for five metrics: accuracy, recall (sensitivity), F1-Score, precision, and  specificity49. Accuracy 
measures the proportion of correct model predictions over the evaluated examples. Recall (sensitivity) is applied 
to measure the portion of patterns correctly identified by the classification model. Specificity is used to test the 
ability to determine healthy cases accurately. On the other hand, precision is applied to measure the quantity of 
correctly predicted positive patterns based on the total amount of predicted patterns in a positive class. Finally, 
the F1-Score or F1-measure portrays the harmonic mean between precision and recall  values38. All these metrics 
are calculated based on the values of true positive (TP), false positive (FP), false negative (FN), and true negative 
(TN), obtained after the crossing of predicted values with the actual values of each class.

Therefore, at the end of the experimentation process, a statistical analysis using the Shapiro-Wilk normal-
ity test, the Kruskal-Wallis non-parametric test, and the Nemenyi post-hoc test was applied to understand the 
statistical significance between the means of the results and highlight the difference between the models tested, 
which are detailed in the Results and discussions section.

Data availability
Accession codes and database: The code and datasets generated and analyzed during the current study are avail-
able in the ’CandidaIdentification’ repository: https:// github. com/ micha ellop es16/ Candi daIde ntifi cation. git. The 
research described in the article does not use human tissue, only ATCC standard samples.
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