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Developing a model 
to predict the early risk 
of hypertriglyceridemia based 
on inhibiting lipoprotein lipase 
(LPL): a translational study
Julia Hernandez‑Baixauli 1,2, Gertruda Chomiciute 1, Juan María Alcaide‑Hidalgo 1, 
Anna Crescenti 1, Laura Baselga‑Escudero 1, Hector Palacios‑Jordan 3, 
Elisabet Foguet‑Romero 3, Anna Pedret 4, Rosa M. Valls 4, Rosa Solà 4,5, Miquel Mulero 6* & 
Josep M. Del Bas 7*

Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease 
(ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, 
which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in 
LPL activity might result in an identifiable metabolomic signature. The aim of the present study was 
to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified 
in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal 
injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, 
which led to a predictive model developed using machine learning techniques. The predictive 
model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 
1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively 
inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, 
diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to 
generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature 
had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. 
The application of predictive metabolomic models based on mechanistic preclinical research may be 
considered as a strategy to stratify subjects with HTG of different origins. This approach may be of 
interest for precision medicine and nutritional approaches.

Recent scientific evidence has shown that elevated plasma triglyceride (TG) concentrations, also known as hyper-
triglyceridemia (HTG), are an independent risk factor for atherosclerotic cardiovascular disease (ASCVD)1–4. 
HTG is the most common form of dyslipidaemia observed in the general population. It is estimated that approxi-
mately 30% of the European and American population have HTG (≥ 150 mg/dL or 1.7 mmol/L) and 1.7% 
have severe HTG (≥ 500 mg/dL or 5.7 mmol/L)5. Triglyceridemia can be defined as normal (< 150 mg/ dL 
or 1.7 mmol/L), borderline (150 to 199 mg/dL or 1.7 to 2.3 mmol/L) and high (200 to 499 mg/dL or 2.3 to 
5.6 mmol/L) or very high/severe (≥ 500 mg/dL or 5.7 mmol/L), according to the European Society of Cardiology 
(ESC) and European Atherosclerosis Society (EAS) guidelines6. Although ASCVD risk is increased when TGs 
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are > 1.7 mmol/L (150 mg/dL), the use of drugs to lower TG levels may only be considered in high-risk patients 
when TGs are > 2.3 mmol/L (200 mg/dL) and TGs cannot be lowered by lifestyle measures7.

HTG has a multifactorial origin, since there are different mechanisms that might lead to increased basal 
plasma TG levels. A combination of genetic factors, increased production or impaired clearance of triglyc-
eride-rich lipoproteins (TRLs) are known to play a role in HTG8. Genetic causes include syndromes such as 
familial HTG (excess very low-density lipoprotein but normal cholesterol), familial combined hyperlipidaemia 
characterised by polymorphisms in apolipoprotein C-II (apoC-II) or apolipoprotein C-III (apoC-III); lipo-
protein lipase (LPL) deficiency, apolipoprotein C-II deficiency, apolipoprotein AV (apoA-V) deficiency and 
dysbetalipoproteinemia9. Together with genetic factors, common non-communicable disorders of TRLs metabo-
lism involve suboptimal lifestyle habits, including diets high in simple carbohydrates and/or saturated fat, exces-
sive alcohol consumption, obesity, and sedentary behaviour among others7.

Several studies have shown that individuals at risk of ASCVD treated with statins present HTG despite low-
ering plasma LDL-C levels, resulting in a substantial residual in the risk of ASCVD10. Fibrate-based treatments 
have not shown a substantial reduction of HTG-associated ASCVD risk. Despite some experimental drugs 
based on increasing LPL activity have reported promising outcomes for HTG amelioration, no treatments have 
been approved to date due to early stages of development or adverse side effects11. Therefore, detection of early 
alterations in blood TG metabolism might provide an invaluable tool for stratifying the population according 
to HTG risk and subsequently personalising clinical or lifestyle-based strategies12,13.

In this context, LPL has been identified as a key regulator of TRL metabolism and is a target for pharmacologi-
cal intervention against HTG11,14. In peripheral organs, LPL hydrolyses TGs packaged in lipoproteins, mainly 
chylomicrons and very-low-density lipoprotein (VLDL), to glycerol and free fatty acids for cellular internalisation 
and subsequent lipid storage and consumption. LPL activity is tightly regulated by several proteins, including 
several apolipoproteins and angiopoietin-like protein (ANGPTL)15. For example, loss-of-function mutations in 
APOC2 and APOCV inhibit LPL, resulting in severe HTG16,17. In contrast, ANGPTL3, ANGPTL4, ANGPTL8, 
and APOC3 inhibit LPL activity, thereby increasing TG levels18. Mice completely lacking LPL died within 18 h 
after birth and exhibited massive plasma HTG, with severe reductions in lipid droplets in many organs19. To date, 
more than 100 mutations in the LPL gene have been reported in patients with HTG20. Moreover, the expression 
of LPL in muscle cells and adipocytes is regulated by hormones (particularly insulin), nutritional status, and 
inflammation21.

Despite the relevance of early indicators of LPL dysfunction in the onset of HTG, tools to detect such dys-
regulation are lacking. In this context, preclinical models allow the characterisation and understanding of LPL-
mediated HTG. Beyond the different approaches to generate preclinical models of HTG such as genetic variants, 
i.e. Zucker rats22, high-fat diets23,24, only the administration of the chemical compound poloxamer 407 (P407) 
can be considered as a non-genetic model of LPL-specific induction of HTG25. P407 is a non-ionic copolymer 
with different technological applications. Several studies have demonstrated that P407, when administered to 
experimental animals, inhibits the LPL activity and other lipases involved in blood TG clearance25,26. Thus, the 
P407-induced HTG model has been characterised in different rodent species (i.e. hamster, mouse or rat)25,27–30, 
concentrations (i.e. between 300 mg/kg29 and 1500 mg/kg bw31) and dosing (single32 or multiple doses28). Overall, 
it could be concluded that P407 administration is a well characterised model of LPL-specific HTG. In contrast 
to other approaches such as transgenic mice19, the chemical inhibition of LPL by P407 allows a fine control of 
the inhibition and a precise follow-up of the initial metabolic dysregulations caused by LPL underperformance.

In the present work, we hypothesised that early, even mild, alterations of LPL activity might result in an iden-
tifiable metabolic signature that can be captured using a combination of metabolomics and machine learning33–35. 
This signature may be used to identify individuals with early alterations of LPL function and therefore at risk of 
future HTG development or TRL clearance dysfunctions. The objective of the present work was to assess whether 
preclinical LPL dysregulation can be characterised by a metabolomics signature and whether this signature can 
be further identified in humans both at risk of HTG and healthy.

Results
Characterization and validation of the preclinical male Wistar rat model of P407‑induced HTG
To characterize and validate the preclinical model of P407-induced HTG, biometric measurements, plasma 
parameters and liver biochemistry were determined (Table 1). No differences in body weight were observed 
between the groups. However, food consumption was higher in the P407 group. In addition, the P407 group 
showed a trend towards increased muscle and liver weights (Table 1). In relation to dyslipidaemia, plasma levels 
of TG and TC were significantly elevated in the P407 group. In addition, increased liver TC was confirmed in the 
P407 group without other significant changes in the liver (i.e. total lipids, TC, and phospholipids). The decrease 
in LPL activity is associated with an increase in plasma TG, consistent with the results in the P407 group. Several 
parameters related to carbohydrate dysfunction were also analysed to discard other related metabolic changes; no 
significant differences were found in glucose, non-esterified fatty acids (NEFAs) and insulin resistance parameters 
[i.e. Homeostatic Model Assessment Insulin Resistance (HOMA-IR), Homeostatic Model Assessment β-cells 
(HOMA-β) and Revised—Quantitative Insulin Sensitivity Check Index (R-QUICKI)]. Additionally, inflammation 
and oxidative stress were assessed with an increase in MCP-1 in the P407 group, and no significant differences 
were found in AST, ALT and 8-isoprostane.

Plasma metabolomic profiling and predictive modelling of the preclinical model of 
P407‑induced HTG
Analysis of 126 key metabolites was included in the plasma metabolomic study of the preclinical model. An 
exploratory univariate analysis was performed to provide a preliminary list of altered metabolites prior to 
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multivariate analysis (Table S1). Univariate analysis showed that 39 out of 126 metabolites were significantly 
altered between the groups after the MW test. After the BH correction, 11 specific lipids predominated among 
the 39 metabolites, including DGs, TGs, ChoEs, PCs and LPCs, which were mainly overrepresented in the P407 
group. Unsupervised analysis (PCA) was performed to find intrinsic variation in plasma (Fig. S1). Although the 
groups were not initially separated by PCA, the OPLS-DA model was able to discriminate between the two groups 
(Fig. S2). The fitness and predictive accuracy of the OPLS-DA were determined by the values of R2X(cum) = 0.371, 
R2Y(cum) = 0.867, and Q2Y(cum) = 0.572 (Fig. S2d). Since the Q2Y value (0.572) was higher than the pQ2 value 
(0.02) and 0.5, we can conclude that the OPLS-DA model has a good predictive ability (Fig. S2b). These results 
indicate that it is possible to predict whether an animal has a hyperlipidaemic profile, based on the analysis of 
plasma lipidomics and metabolomics.

For the OPLS-DA model, the model equation is expressed as a linear combination of latent variables, 
providing a powerful framework for predictive modelling. The equation for predicting the response variable 
(Y) based on the predictor variables (X) can be formulated with the coefficients as:

Here: Y is the response variable, b1, b2, bn, …., bn are the coefficients, represented by the corresponding values 
in Table S2. Alanine, Proline, Valine, … ,TG_54:7 are the predictor variables (X), represented by the respective 
metabolite names. RMSEE (Root Mean Square Error of Estimation). This value indicates the average magnitude 
of the residual error in our model, and it is implicitly considered in the estimation of coefficients. Therefore, the 
equation implicitly accounts for the error in the model.

47 features were significantly altered with a VIP threshold of 1 (Table S1). PC 38:4 and DG 36:4 stand out with 
VIP > 2 and q-value < 0.01 in univariate analysis (Table S1). Finally, the metabolites presented in Table 2 are those 

Y = b1 · Alanine + b2 · Proline + b2 · Valine + . . . + bn · TG_54 : 7(+RMSEE).

Table 1.   Characteristics of the preclinical model of P407-induced HTG. Results are presented as mean ± SEM 
(n = 10). Statistical comparisons between groups were made using Student’s t test. Some biometric parameters 
are presented as a percentage of g per kg of body weight to allow for proper comparison of parameters. RWAT​ 
retroperitoneal white adipose tissue, MWAT​ mesenteric white adipose tissue, TG triglycerides, TC total 
cholesterol, NEFAs non-esterified fatty acids, HOMA-IR homeostatic model assessment insulin resistance, 
HOMA-β homeostatic model assessment β-cells, R-QUICKI revised—quantitative insulin sensitivity check 
index, au arbitrary units, LPL activity lipoprotein lipase activity (Δnmol/mL·min), MCP-1 monocyte 
chemoattractant protein-1, AST aspartate aminotransferase (one unit of AST is the amount of enzyme that 
converts 1.0 µmole of glutamate per minute at pH 8.0 at 37 °C), ALT, alanine aminotransferase (one milliunit 
of ALT is defined as the amount of enzyme that produces 1.0 nmole of pyruvate per minute at 37 °C). Groups: 
CON, control HTG; P407, Poloxamer 407 induced HTG. *Denotes p < 0.1 (trend), **p < 0.05 (significantly 
different) and ***p < 0.01 (highly significantly different) compared with control.

CON P407 p-value

Biometric parameters

Initial body weight (g) 300.28 ± 4.09 300.33 ± 3.06 0.99

Final body weight (g) 302.09 ± 3.85 304.57 ± 3.28 0.63

Food intake (g) 18.49 ± 0.70 20.49 ± 0.48 0.03**

RWAT weight (%) 3.52 ± 0.34 3.59 ± 0.27 0.87

MWAT weight (%) 2.58 ± 0.21 2.54 ± 0.17 0.89

Muscle weight (%) 1.78 ± 0.03 1.86 ± 0.04 0.09*

Liver weight (%) 9.28 ± 0.54 10.38 ± 0.25 0.09*

Cecum weight (%) 4.35 ± 0.18 4.15 ± 0.19 0.44

Plasma parameters

Glucose (mM) 132.45 ± 2.22 130.21 ± 4.73 0.68

TG (mM) 92.84 ± 9.71 157.11 ± 18.26 0.01***

TC (mM) 73.02 ± 2.58 81.10 ± 2.74 0.04**

NEFAs (mM) 0.48 ± 0.04 0.50 ± 0.05 0.67

Insulin (µg/L) 1.04 ± 0.18 0.91 ± 0.11 0.54

HOMA-IR (au) 0.34 ± 0.06 0.30 ± 0.04 0.50

HOMA-β (au) 5.34 ± 0.89 4.95 ± 0.64 0.75

R-QUICKI (au) 0.59 ± 0.03 0.60 ± 0.04 0.89

LPL activity (Δ nmol/mL·min) 5.37 ± 0.24 4.65 ± 0.20 0.04**

MCP-1 (ng/mL) 9.78 ± 0.83 11.40 ± 0.44 0.10*

AST (mU/mL) 1.25 ± 0.62 1.35 ± 0.67 0.29

ALT (mU/mL) 2.57 ± 0.16 2.67 ± 0.17 0.82

Urine parameters 8-isoprostanes (ng/mL) 2.50 ± 0.78 2.66 ± 0.44 0.87

Liver biochemistry

Total lipids (mg/g) 41.48 ± 2.01 43.27 ± 3.18 0.64

TC (mg/g) 1.31 ± 0.07 1.48 ± 0.13 0.30

Phospholipids (mg/g) 11.56 ± 0.48 11.97 ± 0.78 0.66

TG (mg/g) 3.70 ± 0.18 4.77 ± 0.43 0.04**
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with the highest statistical differences and predictive power in plasma that are related to glycerophospholipid, 
glycerolipid and steroid biosynthesis.

Urine metabolomic profiling and predictive modelling of the preclinical model of P407‑induced 
HTG
Forty-three metabolites were successfully detected in the NMR spectra of the urine metabolome of the preclinical 
model. An exploratory univariate analysis was performed to obtain a preliminary list of altered metabolites 
prior to multivariate analysis (Table S3). Moreover, 4 out of 43 metabolites were significantly different between 
the groups in urine after the MW test (i.e. trimethylamine N-oxide (TMAO), phenylacetylglycine (PAG), 
2-deoxycytidine and leucine). Although, none of these metabolites remain altered after BH correction, the 
changes in magnitude were distinctive. Unsupervised analysis (PCA) was performed to find the intrinsic variation 
without observing a clear clustering (Fig. S3). Although both groups were partially separated in the OPLS-DA 
analysis (Fig. S4), the low Q2Y value (− 0.029) and the high pQ2 value in the permutation test suggest that this 
model is overfitted. Therefore, this urine metabolomic approach was discarded for further assessment in humans.

Classification of healthy humans according to the preclinical prediction model
The preclinical predictive model was subsequently applied to the metabolomic data from 140 volunteers. The 
projection resulted in 69 individuals classified as healthy and 71 individuals classified as at-risk of LPL-mediated 
HTG. The at-risk of LPL-mediated HTG group had statistically significantly higher levels of TG, TC, LDL and 
APOB and a tendency to decrease of HDL, while no differences were observed in age, BMI, BP, glucose levels 
and LPL (Fig. 1a and Table S4). Next, volunteers were divided in healthy and at-risk groups according to ESC/
EAS guidelines. When the TG threshold of 1.7 mmol/L was used, statistically significant differences between 
healthy and at-risk individuals were detected for HDL and APOB (Fig. 1a and Table S5). Furthermore, the pre-
dictive model explains part of the variance in the data as two different clusters are observed in the PCA (Fig. 1b).

Next, a confusion matrix-based approach was used to compare the classifications obtained with the model 
with those obtained by applying the guideline thresholds. Thus, the confusion matrix comparing the model 
prediction with TG threshold classification presented good values (accuracy = 0.64; sensitivity = 0.79; and speci-
ficity = 0.58) (Fig. 1c). Our interest was focused on individuals classified as healthy by the guidelines but at-risk 
of LPL-mediated HTG by the model. In this line, we obtained 62 individuals who were predicted to be healthy 
by both the guidelines and the model, but 44 individuals who were classified as healthy by guidelines but at-risk 
of LPL-mediated HTG by the model. This last group is characterised by statistically higher levels of TG, TC, 
LDL and APOB than the first one (Table S6). Regarding the plasma metabolome, 67 metabolites related to lipid 
metabolism were significantly altered after the MW test and 46 of them remained altered after the BH correc-
tion (Table S7). Additionally, the volcano plot (Fig. 2a) showed 50 metabolites with FC threshold greater than 
or equal to 2 and FDR less than 0.1. Interestingly, only one metabolite was downregulated (3-hydroxybutyric 
acid) and the remaining metabolites were up-regulated at-risk of LPL-mediated HTG. This pattern is confirmed 
by the heatmap shown in the Fig. 2b.

To evaluate the metabolome of individuals classified as healthy by the guidelines but at-risk of LPL-mediated 
HTG by the model, multivariate analysis was performed to determine which metabolites were more important. 
Multivariate analysis showed a clustering tendency in PCA (Fig. S5) and clear differences in OPLS-DA (Fig. S6). 
As the Q2Y value (0.485) was higher than the pQ2 value (0.01), we can conclude that the OPLS-DA has a 
good predictive capacity (Fig. S6). According to the feature importance analysis, 54 features were significantly 
altered with a VIP threshold of 1 (Table S7). Finally, 39 metabolites stand out with VIP > 1 and q-value < 0.05 in 

Table 2.   Summary of the potentially predictive metabolites in the plasma of the preclinical model. Results 
are presented as the mean ± SEM (n = 10, group). Summary of univariant analysis includes p-value, q-value 
(pFDR) and FC (P407/CON); summary of the multivariate analysis is represented by VIP values of OPLS-DA; 
and metabolism pathway (KEGG). Using the criteria of pFDR < 0.05 and VIP > 1, 11 metabolites were 
selected as potential predictive metabolites. TG triglyceride, PC phosphatidylcholine, LPC lysophospholipid, 
DG diacylglycerol, ChoE cholesterol ester. *Denotes p < 0.1 (trend), **p < 0.05 (significantly different) and 
***p < 0.01 (highly significantly different). Groups: CON, control HTG; P407, Poloxamer 407 induced HTG.

Metabolite CON P407 p-value q-value FC VIP Pathway

PC 38:4 14.02 ± 0.61 20.4 ± 0.88  < 0.01***  < 0.01*** 1.46 2.21

Glycerophospholipid metabolismLPC 18:0 50.40 ± 1.83 58.86 ± 1.39  < 0.01*** 0.03** 1.17 1.85

PC 36:4 13.76 ± 0.61 17.73 ± 0.7  < 0.01*** 0.01** 1.29 1.83

DG 36:4 1.53 ± 0.05 2.02 ± 0.03  < 0.01***  < 0.01*** 1.33 2.03

Glycerolipid metabolism
DG 34:3 0.20 ± 0.01 0.31 ± 0.02  < 0.01***  < 0.01*** 1.50 1.86

DG 34:2 0.85 ± 0.04 1.05 ± 0.05  < 0.01*** 0.04** 1.24 1.70

TG 46:0 0.84 ± 0.05 1.16 ± 0.07  < 0.01*** 0.04** 1.37 1.17

ChoE (17:0) 0.13 ± 0.00 0.16 ± 0.01  < 0.01*** 0.01** 1.28 1.75

Steroid biosynthesis
ChoE (18:0) 0.12 ± 0.01 0.18 ± 0.01  < 0.01*** 0.03** 1.51 1.72

ChoE (16:0) 2.02 ± 0.09 2.39 ± 0.07  < 0.01*** 0.04** 1.18 1.61

ChoE (18:1) 2.52 ± 0.11 3.54 ± 0.25  < 0.01*** 0.04** 1.41 1.59
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univariate and multivariate analysis (Table S7), including several ChoEs, DGs, LPCs, PCs, SMs and TGs. These 
metabolites stand out as being distinctive among healthy individuals (according to the guidelines) but with early 
LPL-mediated HTG.

Discussion
In this study, we report a slightly different preclinical male Wistar rat model of P407-induced HTG. The novelty 
relies in the dose of 150 mg of P407/kg, which is the lowest to date25,27–29,31,32,37–39. Thus, this dose was able to 
induce low levels of HTG and subsequent changes in the metabolic signature. The mechanism of action of 
P407 was confirmed by the effective inhibition of plasma LPL activity in the P407 group and parallel increases 
of plasma TG and TC levels25. These TG levels were the lowest reported in the literature for HTG models. In 
fact, TG levels were tenfold lower than in other studies with doses between 300 mg/kg and 1500 mg/kg29,31 and 
single or multiple injections40–42. Interestingly, these clinical values did not reach the characteristically high levels 
associated with pathological conditions requiring pharmacological treatment7. In addition, other risk factors 
associated with HTG such as carbohydrate dysfunction, inflammation and oxidative stress were assessed, and no 
differences were observed. This suggests that metabolomic changes result from early onset of LPL-mediated HTG.

The metabolomic changes result from the male Wistar rat preclinical model of P407-induced HTG consisted 
of increases of specific plasma lipids (e.g. DGs, PCs, ChoEs, LPCs and TGs). These findings were consistent with 
other studies43–45. For example, long-chain DGs and TGs were increased in our preclinical model as well as in 
other related studies43,44. In several studies, HTG is associated with increased ChoEs, since these metabolites 
are major players in fatty acid metabolism43,45. In particular, ChoE 17:0 and specific PCs (PC 36:4 and PC 38:4) 
have been reported as potential biomarkers in early HTG43–49, consistent with our findings. Overall, DGs, PCs, 
ChoEs, LPCs and TGs metabolites were key features of the predictive model based on the LPL dysregulation.

The metabolomic predictive model was further tested in healthy human volunteers with normal and at-risk 
TG levels (following guidelines). Using our predictive model, we identified a group of subjects with plasma 
TG levels of < 1.7 mmol/L (150 mg/dL), considered normal by guidelines7, but with the metabolomic profile 

Figure 1.   Evaluation of the classification of healthy individuals according to the preclinical predictive model. 
(a) Raincloud plot of TG, TC, HDL, LDL and APOB in healthy humans classified by the prediction model, 
TG and TC. *Denotes p < 0.1 (trend), **p < 0.05 (significantly different) and ***p < 0.01 (highly significantly 
different). Legend: red, healthy; blue, at-risk of LPL-mediated HTG. (b) Score plot (PCA) of human 
metabolomic data classified by the preclinical predictive model (healthy and at-risk of LPL-mediated HTG). 
(c) Confusion matrix for the classification by the reference condition TG. The confusion matrix is a table with 
4 different combinations of predicted (preclinical model prediction) and reference values (TG). The positive 
condition is at-risk of LPL-mediated HTG. Legend: green colour, the prediction matches with the reference 
condition (true positive and true negative); red colour, the prediction does not match the reference condition 
(false positive and false negative). TG triglycerides, TC total cholesterol, ApoB apolipoprotein B-100.
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indicator of early LPL dysfunction. Consistently, subjects predicted as at-risk of LPL-mediated HTG by our model 
presented higher levels of relevant clinical biomarkers, such as ApoB, TG, LDL-C or TC. Moreover, the differences 
in blood TC and LDL-C between healthy and at-risk of LPL-mediated HTG subjects were statistically significant 
when the classification was conducted with the predictive model but not according to TG guidelines. Overall, our 
results suggest that machine learning approaches can be used to better define indicators of early LPL dysfunction, 
complementing current guidelines that rely on thresholds that do not consider the mechanistic origin of disease.

Among the changes in subjects that presented the signature of early LPL dysfunction, certain metabolites 
have been highlighted such as DGs, PCs, ChoEs, LPCs and TGs. Additionally, a group of amino acids were 
up-regulated (aspartic acid, glutamic acid, leucine, lysine, tyrosine and valine). These results are consistent 
with emerging evidence suggesting that amino acids can have a role as modulators of lipid metabolism50. Thus, 
elevated levels of leucine, valine and lysine were significantly associated with an increased risk of developing 
HTG after 7 years (KORA S4 baseline study)51. Finally, only 3-hydroxybutyric acid, an intermediate metabolite 
of fatty acids, was found among the under-regulated metabolites52. Further mechanistical investigation would 
reveal whether a causal link between levels of these metabolites and LPL dysfunction exists.

In this regard, several authors have suggested that new biomarkers are needed to detect early deviations of 
relevant metabolic pathways. Thus, predictive biomarkers may allow the implementation of preventive strategies 
and personalised interventions12,13,53,54. For example, polygenetic risk /IBM55 or coronary artery calcium56 have 
been targeted to stratify early HTG without clinical ASCVD. Actually, one of the strategies for personalising 
treatments is based on stratifying the population according to metabotypes. This concept of grouping individuals 
into smaller, relatively homogeneous subgroups or clusters based on their metabolic phenotype has great potential 
for precision treatments57. Current approaches range from metabotypes obtained under fasting conditions to 
groups defined after meal challenges or dietary interventions58. For example, Van Bochove et al. described three 
distinct population subgroups according to the degree of dyslipidemia and different lipoprotein characteristics59. 
Interestingly, the different subgroups responded differently to fenofibrate treatment. Furthermore, they proposed 
that differences in lipoprotein profiles between subgroups may be due to different mechanisms leading to 
dyslipidaemia, i.e. impaired hepatic uptake in low and moderate dyslipidaemia and impaired systemic metabolism 
in the group with high dyslipidemia. In another study, Fiamoncini et al. described different metabolic responses 
to weight loss depending on the metabotype of the individual58. In this case, metabotypes were defined according 
to plasma fatty acid catabolites derived from lipolysis, fatty acid oxidation and ketogenesis. The authors suggested 
that lipid catabolites may allow early detection of the metabolic syndrome, as their blood concentrations vary 
depending on the interaction between insulin sensitivity and lipid metabolism. In both cases, differences in 
metabolic responses and metabolomic profiles have a mechanistic basis. Nevertheless, mechanistic evidence is 

Figure 2.   Differential metabolites of the plasma metabolome of healthy human population (according to ESC/
EAS guidelines) classified as healthy and at-risk of LPL-mediated HTG (predictive model). (a) Volcano plot. 
The volcano plot combines the results of the fold change (FC) analysis on the x-axis and the false discovery 
rate (FDR) on the y-axis in a single graph, intuitively selecting significant features based on either biological 
significance, statistical significance, or both. The threshold values considered for the FC are values greater than 
or equal to 2 and for the FDR are values less than 0.1. (b) Heatmap of the top 50 metabolites in terms of FDR. A 
heatmap provides an intuitive visualization of a data table. Each column in the figure represents a group average; 
each row represents a differential metabolite expression value; blue indicates downregulation and brown 
indicates upregulation. These plots were generated by the online analysis software MetaboAnalyst 5.036.
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usually lacking in metabotyping-based studies. In our approach, metabotypes were defined according to evidence 
generated in a preclinical study where a specific mechanism was targeted and used to define metabolomic profiles. 
Despite being a proof of concept, the approach presented here can be further extended to other causes of HTG 
or other metabolic alterations tightly related to human diseases.

This study has several limitations. It was designed as a proof of concept based on a secondary analysis, and 
no information on the long-term outcome of blood TG in these subjects is available. Therefore, more research 
is still needed to assess the clinical significance of our approach. Another important limitation is the use of the 
rat as the organism to generate the predictive model to be used with human data. Lipid metabolism is complex, 
and differences in LPL levels between rats and humans have been widely described60. Moreover, inter-individual 
variability in diet is not as controlled in humans as it is in laboratory animals. Despite the lipidome has been 
described as a reliable source of biomarkers in humans61, changes in fatty acid species resulting from different 
dietary habits might affect the interpretation of results. In our case, the use of a composite fingerprint rather than 
a single molecule as a biomarker allows to minimise the influence of single specific metabolites62. Nevertheless, 
the current design does not allow us to assess the impact of confounding factors such as diet, physical activity or 
metabolic conditions, which may affect a wider application of our model. Further research is needed to clarify 
the true clinical relevance of our prediction models and the limitations of their application.

To conclude, we have developed a pipeline that enables the development of predictive models of plasma TG 
levels by applying machine learning to metabolomics data obtained in preclinical research. In the current proof of 
concept, the pipeline was used to characterise a metabolomic fingerprint of early LPL dysregulation, characterised 
by elevated levels of DGs, PCs, ChoEs, LPCs and TGs. Subsequently, the model was used to identify healthy 
human volunteers that might be at risk of LPL-mediated HTG. Further research is needed to fully understand the 
clinical implications and significance of applying predictive machine learning models obtained from preclinical 
research to human data.

Methods
Preclinical model of P407‑induced HTG
Experimental model
Twenty 8-week-old male Wistar rats (Harlan Laboratories, Barcelona, Spain) were used to establish a model of 
P407-induced HTG. Our model consists of the administration of P407 as an inducer of HTG (Fig. 3). After an 
acclimatisation period, rodents were randomly divided into two experimental groups (n = 10): control group 
(CON) and P407-induced HTG group (P407). The treated group received P407 (Sigma-Aldrich, Madrid, Spain) 
by a single intraperitoneal (IP) injection of 80 mg/kg of body weight dissolved in cold saline solution (0.9% NaCl). 
Body weight was recorded on the day of IP injection and at the end of the study. Food consumption was estimated 
once. Food weight was recorded before the IP injection and 24 h later. Animals were housed individually under 
fully controlled conditions, including temperature (22 ± 2 °C), humidity (55 ± 5%) and light (12 h light–dark cycle 
and lights on at 9:00 a.m.). They were fed ad libitum with a standard rat diet (Teklad Global 18% Protein Rodent 
Diet 2014, Harlan, Barcelona, Spain). The Animal Ethics Committee of the University Rovira i Virgili (URV, Tar-
ragona, Spain) approved all the procedures for the HTG model (code 10025). The experimental protocol followed 
the “Principles of Laboratory Care” and was performed in accordance with the Council Directive of the European 
Communities (86/609/EEC) and the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.

Sample collection
At the end of the study, urine samples were collected using the hydrophobic sand method for metabolomics. This 
method is less stressful for the animals63. For each rat, 300 g of hydrophobic sand (LabSand, Coastline Global, 
Palo Alto, CA) was spread on the bottom of a plastic mouse cage. Urine was collected every half hour for 6 h. 
Urine was mixed with sodium azide (Sigma, St Louis, MO, USA) as a preservative at the end of the session. 

Figure 3.   Schematic representation of the preclinical model of HTG induced by P407. The experimental model 
consisted of two groups of male Wistar rats (n = 10 animals per group). Each group received a single IP injection 
of 150 mg/kg of P407 and cold saline solution (NaCl 0.9%). Blood samples were collected at the end of the study. 
Groups: CON, control HTG; P407, Poloxamer 407 induced HTG. IP intraperitoneal, P407 poloxamer 407.
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At the end of the study, the animals were euthanized by guillotine under anaesthesia (pentobarbital sodium, 
50 mg/kg per body weight) after 7 h of fasting. Blood was collected using heparin as an anticoaguland and 
subsequently centrifuged at 3000 g for 15 min at 4 °C to recover plasma for metabolomics and other measures. 
Tissues (i.e. retroperitoneal white adipose tissue (RWAT), mesenteric white adipose tissue (MWAT), muscle, 
liver, and cecum) were quickly removed, weighted and snap frozen in liquid nitrogen. Samples were stored at 
− 80 °C until further analysis.

Plasma measurements
Enzymatic colorimetric kits were used for the determination of plasma total cholesterol (TC), TG, glucose (QCA, 
Barcelona, Spain) and non-esterified free fatty acids (NEFAs) (WAKO, Neuss, Germany). Circulating insulin 
levels were measured using a rat ELISA kit (Merck, Madrid, Spain). Monocyte chemoattractant protein-1 (MCP-
1), as an inflammatory biomarker, was measured using the Rat MCP-1 Instant ELISA Kit (Invitrogen, Vienna, 
Austria). Oxidative stress was assessed by determination of plasma aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT) activity (Sigma-Aldrich, St. Louis, USA) and urinary 8-isoprostane (Cayman chemical, 
Ann Arbor, MI, USA).

LPL activity
LPL enzymatic activity was assessed on plasma samples using a fluorescence method (LPL activity kit, Roar 
Biomedical, New York, USA). Aliquotes of 100 μL of plasma (1:4000 dilution) were incubated with 100 μL of pre-
diluted substrate emulsion at 37 °C for 60 min according to the manufacturer’s recommendations. Determinations 
were performed in a 96-plate reader fluorimeter at 15-min intervals. The hydrolyzed triglycerides formed were 
measured at 370 nm excitation and 450 nm emission. The fluorescence intensity values of the samples were 
compared with the fluorescence intensity values of the standard curve applied to the same plate together with 
samples in each run. The increment between 60 and 15 min activity per mL and min (Δ nmol/mL·min) was 
used to calculate LPL activity. All measurements were made in duplicate and intra-and inter-assays coefficients 
of variation (CV) were less than 5%.

Liver lipids determinations
Liver lipids were extracted and quantified from an approximately 100 mg piece of frozen liver tissue using a 
method previously described in the literature64. Briefly, lipids were extracted with 1 ml hexane/isopropanol (3:2), 
degassed with gaseous nitrogen and allowed to stand overnight at room temperature under orbital agitation 
and protection from light. After extraction with 0.3 ml Na2SO4 (0.47 M), the lipid phase was dried with gaseous 
nitrogen. Total lipids were quantified gravimetrically before emulsification as described previously65. TG, TC 
and phospholipids were analysed using commercial enzymatic kits (QCA, Barcelona, Spain).

Healthy volunteers
Samples and characteristics of human participants
A cross-sectional study was conducted with baseline data and plasma samples of 140 volunteers participating 
in previous studies registered under clinicaltrials.gov with references NCT02063477, NCT00511420, and 
NCT00502047. All protocols had been approved by the Clinical Research Ethical Committee of Hospital 
Universitari Sant Joan-Institut d’Investigació sanitaria Pere Virgili (Rf.13.05.30/5assN1, Rf.05.04.28/1al.leproj1 
and Rf.03.09.2007), Reus, Catalonia, Spain. The protocols and trials had been conducted in accordance with the 
Helsinki Declaration and Good Clinical Practice Guidelines of the International Conference of Harmonization 
(GCP ICH). Volunteers had provided written consent.

Subjects were males and females between the ages of 43 and 65 years. At the time of sampling, all subjects were 
defined as healthy with no diagnosis of significant disease. To assess the risk of HTG, subjects were categorised 
according to their TG levels following the ESC/EAS guidelines for the management of dyslipidaemia7: (1) normal, 
less than 150 mg/dL or less than 1.7 mmol/L; (2) risk of HTG, above 150 mg/dL or above 1.7 mmol/L.

Sample analyses
All measurements have been described previously66. Body weight and body composition were obtained by a 
calibrated scale (Tanita SC 330-S; Tanita Corp., Barcelona, Spain). Height was measured using a wall-mounted 
stadiometer (Tanita Leicester Portable; Tanita Corp., Barcelona, Spain). Body mass index (BMI) was calculated as 
the ratio between measured weight (kg)/and the square of height (m). Blood pressure (BP) was measured twice 
by a physician using an automatic sphygmomanometer (OMRON HEM-907; Peroxfarma, Barcelona, Spain) after 
the subjects rested for 2–5 min in a seated position, with a 1-min interval measurements. Screening chemistries 
and hemograms were performed in the Hospital Universitari Sant Joan with appropriate clinical chemistry 
quality controls. Samples were stored at – 80 °C in the central laboratory’s Biobanc of Hospital Universitari 
Sant Joan—Eurecat (biobanc.reus@iispv.cat) until required for batch analyses. Plasma samples were profiled 
using classical determinations and plasma metabolomics as described below. Total cholesterol, HDL, LDL, TG, 
Apolipoprotein B-100 (ApoB) and fasting plasma glucose (FPG) were measured in plasma by standardized 
enzymatic automated methods in a PENTRA-400 autoanalyzer (ABX-Horiba Diagnostics, Montpellier, France). 
An enzymatic colorimetric kit was used for the determination of plasma lipoprotein lipase (LPL) enzymatic 
activity (Roar Biomedical, New York, USA).
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Preclinical and healthy population metabolomic approaches
Plasma metabolomics in male Wistar rats and healthy population
Plasma metabolites were analysed by gas Chromatography coupled with Quadrupole Time-of-Flight (GC-qTOF) 
in a preclinical model in male Wistar rats and healthy humans. For extraction, a protein precipitation extraction 
was performed by adding eight volumes of methanol:water (8:2) containing a mixture of internal standards 
(succinic acid-d4, myristic acid-d27, glycerol-13C3 and D-glucose-13C6) to the plasma samples. Then, the samples 
were mixed and incubated at 4 °C for 10 min, centrifuged at 21.420 g and the supernatant was evaporated 
to dryness before compound derivatization (metoximation and silylation). The derivatized compounds were 
analysed by GC-qTOF (model 7200 of Agilent, USA). Chromatographic separation was based on the Fiehn 
Method, using a J&W Scientific HP5-MS (30 m × 0.25 mm i.d.), 0.25 µm film capillary column and helium as 
carrier gas using an oven program from 60 °C to 325 °C. Ionization was done by electronic impact (EI), with 
electron energy of 70 eV and operated in full Scan mode. Metabolite identification was performed by matching 
their EI mass spectrum and retention time with the Fiehn metabolomics library (Agilent, Santa Clara, CA, 
USA) containing more than 1.400 metabolites. After putative identification of the metabolites, they were semi-
quantified in terms of the internal standard response ratio.

Plasma lipids were analysed by Ultra High-Performance Liquid Chromatography coupled with Quadrupole 
Time-of-Flight (UHPLC-qTOF). For the extraction of hydrophobic lipids, a liquid–liquid extraction based on 
the Folch procedure was performed by adding four volumes of chloroform:methanol (2:1) containing an internal 
standard mixture (Lipidomic SPLASH®, Avanti Polar Lipids, Inc., Alabaster, AL, USA) to the plasma. Then, the 
samples were mixed and incubated at − 20 °C for 30 min. Afterwards, water with NaCl (0.8%) was added and 
the mixture was centrifuged at 21.420 g. The lower phase was recovered, evaporated to dryness and reconstituted 
with methanol:methyl-tert-butyl ether (9:1) and analysed by UHPLC-qTOF (model 6550 of Agilent, USA) in 
positive electrospray ionization mode. Chromatography consisted of an elution with a quaternary mobile phase 
containing water (A), methanol (B), and 2-propanol (C) and water with 200 mM ammonium formate and 2% 
formic acid (D). The gradient was as follows: 0–0.5 min, 40% A, 10% B, 45%C; 0.5–1.5 min, 37.8% A, 9.5% B, 
47.7% C; 1.5–1.6 min, 28.7% A, 7.5% B, 58.8% C; 1.6–5 min, 26.8% A, 7% B, 61.2% C; 5–5.1 min, 13.6% A, 4% 
B, 77.4% C; 5.1–7.5 min, 11.4% A, 3.5% B, 80.1% C; 7.5–9 min, 11.4% A, 3.5% B, 80.1% C; 9–9.5 min, 95% C; 
9.5–11.5 min, 95% C; 11.5–11.6 min, 40% A, 10% B, 45%C. The separation was carried out in a C18 column 
(Kinetex EVO C18 Column, 2.6 µm, 2.1 mm X 100 mm) at 60 °C that allows the sequential elution of the most 
hydrophobic lipids such as TG, diacylglycerols (DGs), phosphatidylcholines (PCs), cholesterol esters (ChoEs), 
lysophospholipids (LPCs) and sphingomyelins (SMs), among others. Identification of lipid species was performed 
by matching their accurate mass and tandem mass spectrum, when available, to Metlin-PCDL from Agilent 
containing more than 40,000 metabolites and lipids. In addition, the chromatographic behaviour of the pure 
standards of each family and literature information was used to ensure their putative identification: 1-Stearoyl-
rac-glycerol (Sigma-Aldrich, Madrid, Spain), 1-Steraroyl-2-Hydroxy-sn-Glycero-3-Phosphocholine (Avanti 
Polar Lipids, Inc., Alabaster, AL, USA), 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids, Inc., 
Alabaster, AL, USA), Sphingomyelin (Avanti Polar Lipids, Inc., Alabaster, AL, USA), 1,2-Dipalmitoyl-sn-glycero-
3-phosphoethanolamine (Avanti Polar Lipids, Inc., Alabaster, AL, USA), 1,2-dioctadecanoyl-sn-glycerol (Avanti 
Polar Lipids, Inc., Alabaster, AL, USA), 1-Palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol (Sigma-Aldrich, Madrid, 
Spain) and Cholesteryl Palmitate (Sigma-Aldrich, Madrid, Spain). After putative lipid identification, lipids were 
semi-quantified in terms of internal standard response ratio using an internal standard for each lipid family.

A pooled matrix of samples was generated by taking a small volume of each experimental sample to serve 
as a technical replicate across the entire data set. As the study lasted several days, a data normalization step was 
performed to correct for variation resulting from inter-day instrument differences. Essentially, each compound 
was corrected in blocks of run days by quality controls, normalizing each data point proportionately.

Urine metabolomics in male Wistar rats
Urine metabolites were analysed by proton Nuclear Magnetic Resonance (1H-NMR) in a preclinical model in male 
Wistar rats. The urine sample was mixed (1:1) with phosphate buffered saline containing with 3-(Trimethylsilyl)
propionic-2,2,3,3-d4 acid sodium salt (TSP) (Sigma Aldrich) and placed in a 5 mm NMR tube for direct analysis 
by 1H-NMR. The 1H-NMR spectra were recorded at 300 K on an Avance III 600 spectrometer (Bruker®, Bremen, 
Germaney) operating at a proton frequency of 600.20 MHz using a 5 mm Broad Band Observe Probe (PBBO). 
Diluted urine aqueous samples were measured, and spectra information was recorded in procno 11 using a One-
dimensional 1H pulse experiments which was carried out using nuclear Overhauser effect spectroscopy (NOESY). 
The NOESY presaturation sequence (RD–90°–t1–90°–tm–90° ACQ) was used to suppress the residual water 
peak, and the mixing time was set to 100 ms. A solvent presaturation with an irradiation power of 150 μW was 
applied during the recycling delay (RD = 5 s) and the mixing time. (noesypr1d pulse program in Bruker®, Bremen, 
Germany) to remove the residual water. The 90° pulse length was calibrated for each sample around 11 microsec. 
The spectral width was 9.6 kHz (16 ppm), and a total of 128 transients were collected into 64 k data points for 
each 1H spectrum. The exponential line broadening applied before the Fourier transformation was 0.3 Hz. The 
spectra in the frequency domain were manually phased and baseline corrected using TopSpin software (version 
3.2, Bruker, Bremen, Germany). The data were normalized in two different ways, by probabilistic to avoid 
differences between samples due to different urine concentration, and by ERETIC. The acquired 1H-NMR was 
compared with pure compounds references from the AMIX spectra database of metabolic profiling (Bruker®, 
Bremen, Germany), HMDB, and Chenomx databases for metabolite identification. In addition, we assigned 
metabolites by 1H-1H homonuclear correlation (COSY and TOCSY) and 1H-13C heteronuclear (HSQC) 2D NMR 
experiments and by correlation with pure compounds run in-house. After pre-processing, specific 1H-NMR 
regions identified in the spectra were integrated using MATLAB scripts run in-house. The regions identified in 
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the spectra were exported to an Excel spreadsheet to evaluate the robustness of the different 1H-NMR signals 
and to obtain the relative concentrations.

Data analysis
Univariate statistical analysis
Statistical analysis was performed using R software (version 4.0.1, R Core Team 2021) and various libraries 
included in Bioconductor (version 3.11, Bioconductor project). Data were expressed as the mean ± standard 
error of the mean (SEM). Unpaired parametric t-test was used for individual statistical comparisons (p < 0.05). 
For metabolomic data, the z-score was calculated by subtracting the mean from the metabolite and then dividing 
the resulting number by the standard deviation of the dataset. This gives an indication of how far the metabolite 
is from the normal or typical value of the dataset. The Mann–Whitney (MW) test was used as the variables 
follow a non-parametric assumption. Adjustment of p-values for multiple comparisons was performed using the 
Benjamin-Hochberg (BH) correction with a false discovery rate (FDR) of 5%. The magnitude of the difference 
between populations is expressed as fold change (FC) relative to the control or healthy group67.

Multivariate modeling
Multivariate analysis, employing both an unsupervised method (Principal Component Analysis, PCA) and a 
supervised method (Orthogonal Partial Least-Squares Discriminant Analysis, OPLS-DA), was conducted to 
understand the global metabolic changes observed between the different groups. The analysis was performed 
using the ropls R package (version 1.19.16)68. The ropls package implements PCA and OPLS-DA approaches 
with the original, NIPALS-based versions of the algorithms69,70. The model equation is expressed as a linear 
combination of latent variables, providing a powerful framework for predictive modelling. The equation for 
predicting the response variable (Y) based on the predictor variables (X) can be formulated with the coefficients. 
This approach includes essential quality metrics such as R2Y and Q2Y71, permutation diagnostics72, computation 
of Variable Importance in the Projection (VIP) values73, and the evaluation of scores and orthogonal distances 
to detect outliers74. The package also provides various graphics for scores, loadings, predictions, diagnostics, 
and outlier detection.

The predictive performance of the data was assessed using the Q2Y parameter, calculated through cross-
validation. Q2Y values are interpreted as follows: Q2Y < 0 indicates a model with no predictive ability, 
0 < Q2Y < 0.5 indicates some predictive character, and Q2Y > 0.5 indicates good predictive ability75. Subsequently, 
VIP values were computed to select metabolites responsible for group differences. Metabolites meeting the criteria 
of qFDR < 0.05 and VIP > 1 were considered potential predictive metabolites, including statistical differences and 
predictive power.

The preclinical data (training set) was employed for model development, while the clinical data (test set) 
involved human samples for validation purposes. Thus, after obtaining the predictive model based on OPLS-DA 
in the preclinical model, we proceeded to assess the metabolomics of our human cohort, aiming to translate these 
findings to clinic. The prediction quality was evaluated by means of a confusion matrix along with its associated 
quality scores. Our subsequent focus centred on evaluating healthy individuals predicted to be at risk of HTG. 
These risk, not anticipated by the conventional guidelines, hold substantial interest due to their unique mecha-
nism. Finally, the data analysis pipeline was summarized in Fig. 4. 

Approval for animal experiments
The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics 
Committee of the University Rovira i Virgili (Tarragona, Spain) (protocol code 10025). The experimental protocol 
followed the “Principles of Laboratory Care” and was performed in accordance with the Council Directive of the 

Preclinical data (training set) 
n = 10 per group

Univariate analysis
• MW test, BH correc�on (qFDR)

Mul�variate analysis:
• Unsupervised: PCA
• Supervised: OPLS-DA

(predic�ve model, VIP)
Metabolic profiling: 

• qFDR < 0.05 and VIP > 1

Clinical data (test set)
n = 140 

Classifica�on acording the preclinical
model (OPLS-DA)
Evalua�on: 

• Confusion matrix

Clinical data (guidelines as healthy, 
predicted at-risk of LPL-mediated HTG) 

n = 44

Univariate analysis
• MW test, BH correc�on (qFDR)

Mul�variate analysis:
• Unsupervised: PCA
• Supervised: OPLS-DA (VIP)

Metabolic profiling: 
• qFDR < 0.05 and VIP > 1

Figure 4.   Data analysis pipeline. The experimental model consisted of two data sets: preclinical data (P407-
induced HTG) and clinical data (healthy human cohort). MW test Mann–Whitney test, BH correction 
Benjamin-Hochberg correction, PCA principal component analysis, OPLS-DA orthogonal partial least-squares 
discriminant analysis, qFDR corrected p-value with false discovery rate, VIP variable importance in the 
projection.
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European Communities (86/609/EEC) and the ARRIVE (Animal Research: Reporting of In Vivo Experiments) 
guidelines.

Approval for human experiments
The protocols and trials had been conducted in accordance with the Helsinki Declaration and Good Clinical 
Practice Guidelines of the International Conference of Harmonization (GCP ICH). Informed consent was 
provided by all the volunteers. The study was conducted with baseline data and plasma samples of 140 volunteers 
participating in previous studies registered under clinicaltrials.gov with references NCT02063477, NCT00511420, 
and NCT00502047. All protocols had been approved by the Clinical Research Ethical Committee of Hospital 
Universitari Sant Joan-Institut d’Investigació sanitaria Pere Virgili (Rf.13.05.30/5assN1, Rf.05.04.28/1al.leproj1 
and Rf.03.09.2007), Reus, Catalonia, Spain.

Data availability
The data presented in this study is available on request from the corresponding author. The data are not publicly 
available in the interest of performing more analysis for further publications together with more data.
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