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Semisupervised hyperspectral 
image classification based 
on generative adversarial networks 
and spectral angle distance
Ying Zhan 1*, Yufeng Wang 1 & Xianchuan Yu 2

Collecting ground truth labels for hyperspectral image classification is difficult and time-consuming. 
Without an adequate number of training samples, hyperspectral image (HSI) classification is a 
challenging problem. Using generative adversarial networks (GANs) is a promising technique for 
solving this problem because GANs can learn features from both labeled and unlabeled samples. The 
cost functions widely used in current GAN methods are suitable for 2D nature images. Compared with 
natural images, HSIs have a simpler one-dimensional structure that facilitates image generation. 
Motivated by the one-dimensional spectral features of HSIs, we propose a novel semisupervised 
algorithm for HSI classification by introducing spectral angle distance (SAD) as a loss function and 
employing multilayer feature fusion. Since the differences between spectra can be quickly calculated 
using the spectral angle distance, the convergence speed of the GAN can be improved, and the 
samples generated by the generator model in the GAN are closer to the real spectrum. Once the 
entire GAN model has been trained, the discriminator can extract multiscale features of labeled and 
unlabeled samples. The classifier is then trained for HSI classification using the multilayer features 
extracted from a few labeled samples by the discriminator. The proposed method was validated on 
four hyperspectral datasets: Pavia University, Indiana Pines, Salinas, and Tianshan. The experimental 
results show that the proposed model provides very promising results compared with other related 
state-of-the-art methods.

The hyperspectral images (HSIs) acquired by hyperspectral sensors can simultaneously contain hundreds of con-
tinuous narrow spectral bands and spatial information. With such rich information, HSIs can be widely applied 
in many areas, such as land cover/use classification and recognition1,2, water pollution detection, and mineral 
exploration. In these applications, the classification of each pixel in the HSI plays a vital role. To improve the 
accuracy of HSI classification, many classification methods have been developed for remote sensing applications.

The current classification methods can be divided into three categories: unsupervised, supervised, and semi-
supervised learning3. Unsupervised learning methods, such as graph-based methods4, artificial DNA computing5, 
and fuzzy-based methods6, do not require labeled samples and can quickly cluster samples. However, the clas-
sification accuracy of unsupervised methods is usually lower than that of supervised methods, and it is difficult 
to judge the number of classes and guarantee a relationship between the clusters and classes.

By utilizing a priori information of the class labels, supervised classifiers can show improved performance and 
are thus widely applied in remote sensing image processing. A characteristic of supervised classifiers is that they 
can be used to distinguish between several classes. Typical supervised classifiers include the maximum likeli-
hood classifier (MLC)7,8, support vector machines (SVMs)9,10, and convolutional neural networks (CNNs)11,12.

However, due to the large number of spectral bands in HSIs, a highly accurate supervised classification model 
requires many training samples. On the one hand, collecting labeled samples is difficult and expensive; on the 
other hand, the overall features of HSIs are difficult to obtain from small sets of labeled samples, which will lead 
to the problem of model underfitting.

Semisupervised learning (SSL) can alleviate the above problems because this approach can obtain features 
from both unlabeled samples and labeled samples13. Existing SSL methods can be divided into generative model 
methods and discriminative model methods. Generative model methods, such as the Markov random field14 and 
soft sparse multinomial logistic regression15, attempt to model the real data distribution directly. Discriminative 
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model methods directly group the data into well-separated categories using certain classification methods, such 
as graph-based methods16–18 and wrapper-based methods19,20.

Moreover, most of the methods can classify HSIs in only a “shallow” manner. Compared with “shallow” 
methods, deep methods can obtain more features from the training samples and therefore have more advantages 
when handling high-dimensional data. To date, many deep learning methods, especially deep convolutional 
neural networks (CNNs), have been successfully utilized for image processing21 and rapidly applied for the 
classification of HSIs22.

At present, a series of deep learning methods based on generative adversarial networks (GANs) have been 
successfully applied in image classification and recognition23,24. GANs were first introduced by Goodfellow25. 
These networks combine a generative model with a discriminative model. The generative model G tries to gener-
ate a distribution that is as similar as possible to that of the real data, and the discriminative model D determines 
whether the samples are from the real data or G . From the perspective of the generator, this is a data augmentation 
method; from the perspective of the discriminator, the data features can be learned while training the GAN using 
the unlabeled data. Therefore, GANs are suitable for semisupervised learning (SSL). Currently, a series of SSL and 
unsupervised learning methods based on the GAN are rapidly being developed26. For example, the categorical 
GAN27 can handle image classification tasks as well as generate data, making it a method that can learn a discrimi-
native classifier from unlabeled or partially labeled data. GANs can also perform semisupervised classification 
by forcing the discriminator network to output class labels28. GANs have also been applied in the field of remote 
sensing image classification29. Spectral spatial features were extracted by 3DBF using a semisupervised method 
based on a GAN30. Later, a novel GAN-based method31 was proposed as a HSIs classifier, which achieved a good 
level of performance with a limited number of labeled samples. Previously, HSGANs (hyperspectral generative 
adversarial networks)23 proposed a 1D GAN to classify HSIs. However, this HSGAN uses features from only one 
layer in the GAN and does not mine enough information from HSIs.

In this paper, we propose an improved GAN method with multilayer convolutional features based on spectral 
angle distance (SAD) referred to as SADGAN. Considering the characteristics of the spectrum, our method uses 
an improved loss function in the GAN for hyperspectral image classification optimization. In addition, we use 
a multilayer convolutional neural network to classify the features from the GAN.

SAD is a spectral matching method that can be used to compare image spectra directly32. It is widely used 
in hyperspectral imagery unmixing33, hyperspectral image analysis34, and computer vision applications35. Since 
the SAD method can quickly calculate differences between the generated spectrum and real spectrum, we use 
SAD as the objective function to improve the convergence speed of the GAN. The generator model of the GAN 
can also generate samples closer to real data.

In the SADGAN, we designed a GAN with a 1D structure to extract spectral features. Then, the 1D GAN, with 
spectral angle distance as the loss function of G , is trained using the unlabeled samples. Once the entire model 
has been trained, the discriminative model D will contain some multiscale filters to extract features28. Next, by 
inputting labeled samples into D , the G model can obtain the features of the samples through convolution layers 
(filters). These features are flattened, concatenated and sent to a small CNN for training. Finally, we obtain a 
semisupervised learning model for HSI classification. The experimental results show that compared with state-
of-the-art methods, the proposed semisupervised framework achieves competitive results.

The main contributions of this paper are as follows:

(1)We used spectral angle distance as the objective function of the generator in the GAN. Compared with the 
common cross-entropy loss function, the spectral angle distance loss function can accelerate convergence of 
the GAN, make model training faster and generate data more similar to real data.
(2)We create a new semisupervised classifier using the multilayer features in the discriminator of the GAN 
that can effectively classify HSIs by using a few labeled samples.

The rest of this paper is organized as follows. The “Proposed method” section presents the proposed semi-
supervised HSI classification method in detail. The “|Experiment” section reports the experimental results, the 
visualization of the intermediate results and the structural details of the GAN model on four benchmark HSI 
datasets. Conclusions and discussions are presented in the “Conclusion” section.

Proposed method
Generative adversarial networks
Since its proposal by Goodfellow et al.25, the GAN has become a popular deep learning method and has achieved 
great success with many visual generation tasks. Because of its ability to acquire features from both labeled and 
unlabeled samples, the GAN also represents a great breakthrough in semisupervised learning.

The GAN is composed of two adversarial players, as shown in Fig. 1: a generative model G that generates 
samples with the same distribution as that of the real samples, and a discriminative model D that determines 
whether the samples generated by G are real or fake. From a data point of view, the input of G is the noise pz , 
the output is the generated samples, and the distribution pg tries to imitate the distribution of the real data pr . 
Moreover the input of D is the fake samples generated by G or the real sample, and the output of D is the judg-
ment of whether the data are real or fake36.

G builds a mapping function from pz to a data space as G(z; θg ) , which is a differentiable function with param-
eters θg that will learn the distribution pr over real data. A second function D(x; θd) with parameters θd outputs 
a single scalar that discriminates whether a sample originated from the training data or G . D(x) represents the 
probability that x came from the real data rather than pg . The training procedure involves solving the following 
minmax problem25:
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where it is if D and G are playing the min–max game with value function V(D,G) , pz is a uniform distribution 
pz = µ(−1, 1) , and E indicates expectation.

In practice, models D and G are trained alternatively in each training iteration. First, D will be updated by 
ascending its stochastic gradient:

After D is trained several times, we can fix the parameters of the D model and then update the parameters of 
the G model by descending its stochastic gradient:

After several steps of training, D is trained to discriminate samples from data, converging to

D and G will reach a point at which both cannot be improved because pg = pr and D is unable to differentiate 
between the two distributions.

Both D and G can be nonlinear mapping functions, such as multiplyer perceptrons25.

Framework of the SADGAN
The framework of the proposed SADGAN method is shown in Fig. 2 and consists of two parts: (1) a 1D GAN 
for spectral feature extraction and (2) a CNN for spectral classification. First, we use a custom 1D GAN for all 
the labeled and unlabeled data to obtain spectral features. Then, a small CNN will be trained by the features 
from a small number of labeled samples. The input of the CNN is the fusion of the multilayer features of the D 
model in the GAN, and the output is the label of the sample. The individual steps in the method are outlined in 
the next discussions.

The HSGAN23 was proposed for the 1D hyperspectral GAN, which does not use all available features, and 
fine-tuning takes too much time because it does not take into account the characteristics of the spectra. To 
improve semisupervised classification, we proposed a semisupervised classification method based on a 1D GAN 
by adding multilayer features and spatial features.

As shown in Fig. 2, we designed a 1D GAN for hyperspectral semisupervised classification based on the 
structure of DCGAN26. The 1D generator G takes the uniform noise distribution pz as the input to the fully con-
nected (Ful. Con.) layer, whose output is reshaped into a 2D tensor. The upsampling layer is used to represent 
the inverse max pooling layer to reamplify the front layer to the needed size. The Conv. layer is a convolutional 
layer in the CNN that is used to extract the features. The batch normalization (BN) layer follows the convolution 
layer and stabilizes learning by normalizing the input of each unit37. The output of the last layer is the generated 
sample, which is provided as a “false” input to the D model.

When the model is trained on all samples, D can extract the features of all unlabeled and labeled samples. 
As shown in the lower left corner of Fig. 2, the 1D discriminator is also a CNN model that typically consists of 
several stacks with three parts: a convolution layer, a max pooling layer and a nonlinear mapping layer. The input 
of the D model consists of two parts: one is a batch of real samples, and the other is a batch of “fake” samples 
generated by the G model. The role of the D model is to determine whether the input sample is real or fake. The 
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Figure 1.   Architecture of the GAN.
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convolutional (Conv. in Fig. 2) layer is a 1D convolution with a size of 5 × 1 or 3 × 1. All of the real and fake 
samples are 1D hyperspectral bands, which can be computed by the Conv. layer and output into the feature maps. 
The nonlinear mapping layer consists of a nonlinear activation function for each feature map to output the result 
that can activate the function. This layer is usually integrated with convolutional and max pooling layers, so we 
cannot draw it in Fig. 2. The max pooling layer can reduce the dimension of the feature map. In the D model, 
the 1D input data are processed using a 1D max pooling of size 2 × 1 or 3 × 1.

When the model is trained on all the samples, D will extract the features of all of the samples, and we can use 
these extracted features for spectral classification.

Spectral angle distance loss function
The traditional GAN uses the binary loss function as the last layer of the D model to train the GAN. For brevity, 
let a = output and b = target where n is the dimension. The binary cross entropy loss is then

In the training process, through the loss obtained by this objective function, the parameters of the entire 
GAN can be continuously updated, and the G model outputs the “real” data.

Equation (1) is the objective function of the traditional GAN, which Arjovsky et al.38 believe has the following 
two problems: (1) a well-trained discriminator model will lead to vanishing gradients and (2) the loss function is 
equivalent to an unreasonable distance metric. These are the root causes of why the traditional GAN is unstable 
during training and undergoes model collapse.

Considering the characteristics of the spectral curve, we introduce the spectral angle distance (SAD) as the 
loss function to train the G model to improve the training efficiency of the 1D GAN. Correspondingly, the objec-
tive function25 of the GAN with SAD loss is:

SAD is a method by which the similarity of a spectrum to a reference spectrum is determined by calculating 
the spectral angle. Each pixel in a hyperspectral image is treated as an n-dimensional vector, where n is equal 
to the number of spectral bands39. In general, a smaller angle means that the spectrum is a closer match to the 
reference spectrum.

Given two spectra with n bands, the angle θ between a target spectrum a and a reference spectrum b can be 
calculated by
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Figure 2.   Framework of the proposed SADGAN.
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where || is a norm function. According to Eq. (7), the SAD can be expressed by:

where ai and bi are the mean values of the spectra at the i th band.

The loss function of G in the SADGAN will be replaced by Eq. (9), which is the opposite of Eq. (8). The smaller 
the value obtained by Eq. (9) is, the more similar the two spectra are. This equation will be used in the last layer 
of the G model to calculate the loss of the spectrum generated by G and the real spectrum.

We also need to calculate the derivative or gradient of Eq. (9) and pass it back to the previous layer during 
backpropagation40. The derivative of SADLoss with respect to ai and bi can be calculated by Eq. (10) or (11):

Equation (10) or (11) can be briefly written as Eq. (12) or (13):

From Eqs. (6) and (9), a new GAN loss function based on the SAD can be obtained:

where x(i) and z(i) are the real sample and noise sample during training, respectively, and m is the training batch 
size. The loss function of the discriminator D is:

The loss function of the generator G is:

The discriminator can be updated by ascending its stochastic gradient25:

The generator can be updated by descending its stochastic gradient:

Using the SAD loss function, the whole process of training the GAN can be guided by the real samples in the 
generator process, the whole training process can converge faster, and the training is more stable.

A small CNN for spectral classification with multilayer features
To classify HSIs in a semisupervised manner, HSGAN23 transformed the well-trained D model into a classifica-
tion network by replacing the top layer of D with a softmax layer. However, this method uses only one-layer 
features. For better classification, we designed a small CNN that contains one convolutional layer with a size of 
3× 1 or 5× 1 , one max pooling layer with a size of 2× 1 , and a softmax layer to output the labels. The input of 
the CNN is a fusion of the multilayer features extracted from the D model, and the output is the class of samples.

As shown in the center of Fig. 2, we trained the model on all HSI samples and then used the discriminator’s 
convolutional features from the output of the convolutional layers. During the CNN training phase, a small 
number of labeled samples are fed into the discriminator, and then the convolutional features created by the D 
model are flattened and concatenated to form a vector. This vector is input into the CNN with a softmax classi-
fier on the top to output the labels.

The input of the CNN is the 1D hyperspectral feature vector of each pixel, which can be expressed as x . x can 
be convoluted by k 1D convolutional kernels (n× 1) , and then we will obtain k feature maps y:
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where y is the output feature map, W is the weight in the k th convolution, ∗ is a convolution operator, and b is 
the bias.

Training the CNN requires two steps: forward propagation and back propagation. Each forward operation is 
followed by a backward operation. In the forward propagation phase, a batch of sample feature vectors are input 
to the CNN. The softmax layer outputs the probability of a sample belonging to a certain class41.

The difference between the label and the results of the forward process is calculated in the backpropagation 
process. Then, the weights and biases of the entire network are updated by using the gradient descent algorithm 
to minimize the loss function. In this paper, we use the least-squares loss function42:

where Y  denotes the result of the CNN, and γ denotes the target label.
After training with a small amount of labeled data, the CNN can be used to perform HSI classification.

Algorithm overview: the training and classifying phase of the SADGAN
The SADGAN algorithm consists of three steps: 1D-GAN training, CNN classifier training, and classification. 
As shown in Algorithm 1, G and D are trained simultaneously using all of the unlabeled spectral curves. During 
training, G generates fake spectral samples, and D determines whether these samples are real. At the end of the 
training, we will obtain a trained G that can generate data similar to the real data as well as a well-trained D that 
can extract the features of all unlabeled samples. In the CNN training phase, the features are extracted from the 
outputs of some convolutional layers in the discriminator and then sent into the CNN. Later, the CNN is trained 
on a few labeled samples and is then used to classify the HSIs.

Experiment
The proposed method (SADGAN) was tested and compared with four hyperspectral datasets: the University 
of Pavia dataset, the Indian Pines dataset, the Salinas dataset related to agriculture, and the Tianshan dataset 
related to geological bodies.
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Algorithm 1.    Training and classifying of the SADGAN.
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The first hyperspectral dataset is Indian Pines, which was acquired by the airborne visible/infrared imaging 
spectrometer (AVIRIS) sensor over the Indian Pines region in northwestern Indiana in 1992. The image has 
a size of 145× 145 pixels with 220 spectral bands covering the range from 400 to 2200 nm with fine spectral 
resolution. The spatial resolution is approximately 20 m. The water absorption and noisy bands were removed 
before the experiments, leaving 200 bands. A total of 10249 pixels from sixteen classes were used for our experi-
ments. Figure 3 shows the color composite of the Indian Pines image and the corresponding ground truth data.

The second hyperspectral image was acquired by the airborne reflective optics system imaging spectrometer 
(ROSIS) sensor over the urban area of the University of Pavia, northern Italy, in 2002. The image size in pixels 
is 610 × 340. The image set has a high spatial resolution of 1.3 m and spectral coverage of 0.43 to 0.86 m. The 
number of bands in the acquired image is 103. There are a total of 42,776 samples in 9 categories. Figure 4 shows 
the color composite of the Pavia University image and the corresponding ground truth data.

The third set of hyperspectral data was collected by the AVIRIS sensor over the Salinas Valley in southern 
California, USA, in 1998. The image size is 512 × 217 pixels, the coverage is 400 to 2500 nm, and the spatial 
resolution is 3.7 m. After removing the noisy and water absorption bands, the number of bands in the acquired 
image is 204. There are a total of 54,129 samples in 16 classes. Figure 5 shows the color composite of the Salinas 
image and the corresponding ground truth data.

The fourth dataset is the airborne HyMap data acquired over Tianshan, China, in 2013. The spectral range 
of the HyMap imaging spectrometer is 0.40–2.48 µm, and the spectral bandwidth of the data is not fixed and 
generally between 15 and 18 nm, with an average bandwidth of approximately 16 nm and a spatial resolution of 
9 m. The spectral response values of the features range from 1 to 10,000, and the experimental data have been 
atmospherically and geometrically corrected. A pixel area of 1090 × 1090 was selected as the study area, and after 
removing the water absorption and noise bands, 123 bands remained, of which 50 bands were selected as the 
final dataset using the BSCNN band selection method. Figure 6a shows the color composite map of the data in 
the study area. Figure 6b is the ground truth data map of the study area based on the existing local geological 
map, which is divided into 13 classes, and the number of samples in each class and the color legend are shown 
in Fig. 6c.

Based on the first three datasets, the performance of the proposed SADGAN method is compared with 
the performance of some state-of-the-art methods published recently. These methods include SVM9, BagRF43, 
RNN-LSTM44, 1DCNN45, DRNN46, GANs30, and HSGAN23. The SVM classifier used in the experiment comes 
from the Scikit-learn package. The kernel, C and γ of the SVM are the default values in the package. BagRF is a 
classification technique for hyperspectral images based on random forest (RF) with the bagging method. LSTM 

Figure 3.   (a) Three-band color composite of the Indian Pines image. (b,c) Ground truth data.
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(long short-term memory) has a RNN (recurrent neural network) architecture and was designed to better store 
and access information than the standard RNN. DRNN is a new RNN method based on deep learning that 
can effectively analyze hyperspectral pixels as sequential data and then determine the information categories 
via network reasoning. The structure of the 1DCNN method is the same as that of D in the SADGAN, and its 
top layer will be replaced with the softmax layer with n output classes. The GAN method was proposed for HSI 
classification30. HSGAN is a HSI classification method based on the GAN proposed in Ref.30, and the structures 
of the D and G models in HSGAN are consistent with the SADGAN method on the corresponding dataset.

The experiments were performed on an Intel Core i5-4590 3.3-GHz CPU, 20-GB random access memory, 
and a Titan X GPU. The proposed SADGAN method is conducted by the TensorFlow framework and the Keras 
library, and each result is the average of the classifier after ten runs. To quantitatively evaluate the experimental 
results, we compared these methods with three standard indicators, i.e., overall accuracy (OA), average accuracy 
(AA) and kappa coefficient ( κ ). We used only unlabeled samples to train our GAN model. For comparison with 
more current state-of-the-art methods, each dataset uses a different number of training and testing datasets. In 
the experiments, a portion of the training samples are selected randomly as labeled samples, and the rest are 
used as unlabeled samples. The details and comparison methods are described in detail in the following sections.

Experiments with the Indian Pines dataset
Table 1 shows the architecture of the SADGAN designed for the Indian Pines dataset. G refers to the generator, D 
refers to the discriminator and C indicates the CNN. FC refers to the fully connected layer. BN denotes whether 
batch normalization47 was used. G consists of layers 1 through 9, and D consists of layers 10 through 18. Models 
D and G are trained simultaneously. The number of training epochs of the GAN is 100, and the batch size is 128. 
The optimizer is Adam, a first-order gradient-based optimizer of stochastic objective functions with a learning 
ratio of 0.001. All weights were initialized from a zero-centered normal distribution. Following Algorithm 1, we 
trained models G and D simultaneously. In the CNN training phase, we send m labeled samples to the D model, 
and we extract the output features of layers 11, 12, 14 and 15, whose shapes are (m, 32, 1, 198), (m, 32, 1, 197), (m, 
32, 1, 97) and (m, 32, 1, 95), respectively. These features are concatenated into a new array with shape (m, 32, 1, 
568) and used to train the CNN classifier. The CNN model with the highest classification accuracy will be saved. 
When the training of the CNN is complete, we will obtain a well-trained classifier for the Indian Pines dataset.

In the CNN training and classification phase, we choose 10% of the labeled samples from each class. The 
experimental results shown in Table 2 demonstrate the superior performance of the proposed method (SAD-
GAN). Compared to other methods, deep learning-based methods (1DCNN, DRNN, HSGAN, GANs and 
SADGAN) achieve higher classification accuracy. It is worth noting that the OAs of the 7th and 9th classes in 
the table based on the traditional methods SVM, BagRF, and RNN-LSTM have very low values, while other 

Figure 4.   (a) Three-band color composite of the Pavia University image. (b) and (c) Ground truth data.
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methods based on deep learning show a greatly improved distinction between these two classes. In these deep 
learning-based methods, the semisupervised methods (i.e., GANs, HSGAN and SADGAN) that consider the 
unlabeled training samples can generate samples closer to the actual spectral curve and perform better on clas-
sification tasks than other methods (1DCNN and DRNN) that use only the limited number of labeled training 
samples. The SADGAN method can use more convolution features extracted from the D model, and it can achieve 
higher classification accuracy than the HSGAN method that uses only one layer of features. Figure 7 shows the 
classification results obtained by different methods for the Indian Pines scene.

Experiments with the Pavia university dataset
Table 3 shows the architecture of our method for the Pavia University dataset. The number of training epochs of 
the GAN is 200, and the rest of the setup and workflow are the same as those for the Indian Pines dataset. After 
G and D are trained, we send m labeled samples to the D model to extract the output features of layers 11, 12, 
14 and 15, whose shapes are (m, 32, 1, 101), (m, 32, 1, 99), (m, 32, 1, 48) and (m, 32, 1, 46), respectively. These 
features are concatenated into a new array with shape ( m , 32, 1, 294) and used to train the CNN classifier C. The 
number of CNN training epochs of C is 5000, and the optimizer is stochastic gradient descent (SGD) with a 
learning rate of 0.0001. The CNN model with the highest accuracy is saved as the final classifier.

In the CNN training and classification phase, we choose 1% of the labeled samples from each class to train 
the CNN. Table 4 reports the overall accuracy (OA), average accuracy (AA), and κ statistic with their standard 
deviations after ten Monte Carlo runs. The experimental results demonstrate the superior performance of the 
proposed method (SADGAN). From the abovementioned results, the methods based on deep learning (i.e. 
1DCNN, DRNN, HSGAN, GANs and SADGAN) achieve higher classification accuracy than the other methods. 
In the deep learning-based methods, the semisupervised methods (i.e. HSGAN, GAN and SADGAN) that con-
sider the unlabeled training samples can perform better on classification tasks than 1DCNN, which uses only a 
limited number of labeled training samples. By using more features extracted from GAN, the proposed method 
SADGAN can achieve higher classification accuracy than HSGAN, which utilizes only one feature layer of the 
GAN. Figure 8 shows the classification results obtained by different methods for the Pavia University scene.

Figure 5.   (a) Three-band color composite of the Salinas image. (b,c) Ground truth data.
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Experiments with the Salinas dataset
Table 5 shows the architecture of the SADGAN designed for the Salinas datasets. We trained the model G and 
D simultaneously following Algorithm 1. The number of training epochs of the GAN is 100, and the remaining 
architecture is the same as that for the Pavia University and Indian Pines datasets. In the CNN training phase, we 
send m labeled samples to the D model and extract the output features of layers 11, 12, 14 and 15, whose shapes 
are (m, 32, 1, 202), (m, 32, 1, 200), (m, 32, 1, 99) and (m, 32, 1, 97), respectively. These features are concatenated 
into a new array with shape (m, 32, 1, 598) and used to train the CNN classifier. The CNN model with the highest 
classification accuracy will be saved.

In the CNN training and classification phase, we choose 1% of the labeled samples from each class. Table 6 
shows that the proposed method (SADGAN) performs much better than the other methods. Figure 9 shows the 
classification results obtained by different methods for the Salinas Valley scene.

Experiments with the Tianshan dataset
The Tianshan dataset differs from the above three hyperspectral dataset related to agriculture and reflects the 
classification characteristics of hyperspectral remote sensing in geological bodies. To show the performance of 
the algorithms proposed in this paper in real hyperspectral image geological body classification applications, 

Figure 6.   (a) Three-band color composite of the Tianshan image. (b,c) Ground truth and number of samples.
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we select a variety of algorithms to classify geological bodies in hyperspectral images. These algorithms include 
SVM9, CNN45, HSGAN23, and SADGAN for spectral classification only, as well as SVM-EMP48, GIF-CNN49, 
SSGAT​50, and GIF-SADGAN for spectral-spatial classification. The GIFs in GIF-SADGAN and GIF-CNN are 
consistent with each other, from paper49, denoting multiscale bootstrap map filtering.

Table 1.   Architecture of the SADGAN for the Indian Pines dataset.

No Layer Kernel Feature map BN Activation function

G

1 G-input 1 × 100 0 No No

2 FC 1 × 1024 1 No tanh

3 FC 1 × 50 × 128 1 Yes tanh

4 Reshape 1 × 50 128 No No

5 Upsampling 1 × 2 0 Yes No

6 Conv 1 × 5 64 No tanh

7 Upsampling 1 × 2 0 No No

8 Conv 1 × 5 32 No tanh

9 G-output 1 × 200 0 No No

D

10 D-input 1 × 200 0 No No

11 Conv 1 × 3 32 No Relu

12 Conv 1 × 3 32 No Relu

13 Max pooling 1 × 2 1 No No

14 Conv 1 × 3 32 No Relu

15 Conv 1 × 3 32 No Relu

16 Max pooling 1 × 2 1 No No

17 FC 1 × 1024 1 No No

18 D-output 1 × 1 0 No Sigmoid

C

19 C-input 32 × 586 0 No Relu

20 Conv 1 × 3 32 No Relu

21 Max pooling 1 × 2 1 No No

22 FC 1 × 1024 1 No Relu

23 C-output 1 × 16 0 No Softmax

Table 2.   Comparison of the classification accuracies (%)of various methods for the Indian Pines dataset using 
10% labeled training samples per class. Bold values indicate the best results.

Class SVM BagRF RNN-LSTM 1DCNN DRNN HSGAN GANs SADGAN

1 12.09 ± 10.54 17.62 ± 5.85 6.34 ± 2.72 77.32 ± 12.44 49.27 ± 15.84 52.44 ± 4.91 68.05 ± 7.59 77.07 ± 5.69

2 55.66 ± 4.58 63.60 ± 4.51 69.29 ± 6.33 66.99 ± 8.61 83.73 ± 0.78 82.02 ± 0.38 79.26 ± 0.69 86.58 ± 1.61

3 42.22 ± 5.39 51.49 ± 4.14 50.32 ± 2.24 60.88 ± 2.05 67.62 ± 7.51 75.93 ± 5.41 74.19 ± 1.14 78.62 ± 0.45

4 18.40 ± 7.68 28.35 ± 4.55 22.49 ± 3.26 63.05 ± 10.90 52.77 ± 2.87 66.90 ± 5.16 60.47 ± 13.15 84.32 ± 1.72

5 77.12 ± 2.98 77.43 ± 4.05 60.85 ± 9.03 89.22 ± 2.31 82.14 ± 1.07 83.78 ± 0.84 82.47 ± 0.88 89.54 ± 2.02

6 95.93 ± 2.24 94.49 ± 3.57 94.82 ± 1.74 97.75 ± 0.68 97.95 ± 0.37 95.04 ± 0.44 96.04 ± 1.11 97.56 ± 0.32

7 3.08 ± 8.03 14.80 ± 12.53 0.00 ± 0.00 87.20 ± 2.40 76.00 ± 5.93 88.80 ± 3.49 74.00 ± 2.00 90.00 ± 2.00

8 98.24 ± 1.92 96.51 ± 3.01 97.84 ± 0.21 98.79 ± 0.34 97.40 ± 0.89 96.60 ± 0.19 96.67 ± 0.83 99.12 ± 0.20

9 0.000.00 10.56 ± 8.03 0.00 ± 0.00 24.44 ± 5.09 25.56 ± 7.54 50.00 ± 8.24 41.11 ± 9.36 52.22 ± 6.19

10 54.59 ± 7.28 64.69 ± 4.56 69.55 ± 7.09 73.42 ± 11.25 79.78 ± 0.85 70.88 ± 1.03 79.63 ± 3.52 82.55 ± 0.82

11 85.95 ± 2.04 85.25 ± 1.87 87.94 ± 1.15 78.98 ± 6.90 82.58 ± 1.11 87.79 ± 2.58 89.84 ± 0.76 89.46 ± 0.78

12 26.38 ± 3.07 43.49 ± 2.69 61.16 ± 1.65 68.22 ± 4.09 86.47 ± 3.86 79.96 ± 7.41 83.66 ± 3.26 87.90 ± 0.47

13 95.46 ± 1.54 92.71 ± 2.48 92.72 ± 2.22 96.63 ± 0.80 97.83 ± 0.81 99.24 ± 0.27 99.02 ± 0.47 98.80 ± 0.33

14 96.82 ± 1.13 95.04 ± 1.39 94.45 ± 2.05 97.21 ± 0.17 95.73 ± 0.18 94.94 ± 0.76 97.16 ± 1.34 95.49 ± 1.20

15 24.67 ± 3.82 35.75 ± 3.67 9.16 ± 2.67 56.02 ± 2.99 40.75 ± 2.87 55.65 ± 7.56 58.56 ± 1.99 73.98 ± 2.16

16 82.39 ± 3.91 78.94 ± 3.18 81.57 ± 1.53 96.27 ± 0.84 77.95 ± 3.45 81.81 ± 3.02 83.86 ± 1.54 90.36 ± 1.52

OA 69.55 ± 1.02 73.43 ± 0.68 74.27 ± 0.34 78.87 ± 0.76 82.60 ± 0.66 83.84 ± 0.91 85.13 ± 0.59 88.58 ± 0.12

AA 54.31 ± 1.28 59.42 ± 1.18 56.16 ± 0.69 77.02 ± 1.54 74.59 ± 0.46 78.86 ± 1.38 79.00 ± 1.13 85.85 ± 0.77

κ 64.49 ± 1.23 69.29 ± 0.77 70.22 ± 0.41 75.80 ± 1.02 80.07 ± 0.73 81.46 ± 1.02 82.93 ± 0.69 86.95 ± 0.14
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Figure 7.   Classification results obtained by different methods for the Indian Pines scene.

Table 3.   Architecture of the SADGAN for the Pavia university dataset.

No Layer Kernel Feature map BN? Activation function

G

1 G-input 1 × 100 0 No No

2 FC 1 × 1024 1 No tanh

3 FC 1 × 26 × 64 1 Yes tanh

4 Reshape 1 × 26 64 No No

5 Upsampling 1 × 2 0 Yes No

6 Conv 1 × 5 32 No tanh

7 Upsampling 1 × 2 0 No No

8 Conv 1 × 5 32 No tanh

9 G-output 1 × 103 0 No No

D

10 D-input 1 × 103 0 No No

11 Conv 1 × 3 32 No Relu

12 Conv 1 × 3 32 No Relu

13 Max pooling 1 × 2 1 No No

14 Conv 1 × 3 32 No Relu

15 Conv 1 × 3 32 No Relu

16 Max pooling 1 × 2 1 No No

17 FC 1 × 1024 1 No No

18 D-output 1 × 1 0 No Sigmoid

C

19 C-input 32 × 294 0 No Relu

20 Conv 1 × 3 32 No Relu

21 Max pooling 1 × 2 1 No No

22 FC 1 × 1024 1 No Relu

23 C-output 1 × 9 0 No Softmax

Table 4.   Comparison of the classification accuracies (%) of various methods for the Pavia University dataset 
using 1% of the labeled training samples per class. Bold values indicate the best results.

Class SVM BagRF RNN-LSTM 1DCNN DRNN HSGAN GANs SADGAN

1 84.23 ± 5.85 83.91 ± 3.95 82.98 ± 1.03 80.67 ± 0.64 81.58 ± 1.26 83.40 ± 1.55 76.51 ± 0.60 81.95 ± 2.20

2 95.54 ± 2.08 95.93 ± 1.69 97.56 ± 1.18 97.29 ± 1.70 97.73 ± 0.44 98.12 ± 0.98 99.43 ± 0.09 99.13 ± 0.12

3 28.25 ± 10.99 34.32 ± 7.83 53.07 ± 10.69 49.60 ± 3.57 71.91 ± 13.79 67.07 ± 4.97 51.53 ± 15.23 70.77 ± 1.18

4 75.71 ± 8.02 76.76 ± 6.58 71.47 ± 1.75 70.79 ± 8.89 72.47 ± 2.81 73.50 ± 4.47 62.21 ± 7.81 79.56 ± 0.30

5 96.35 ± 4.59 94.32 ± 7.62 97.16 ± 0.08 96.82 ± 0.79 97.75 ± 0.74 97.57 ± 0.05 97.82 ± 0.23 98.12 ± 0.08

6 27.00 ± 5.95 37.50 ± 3.74 50.07 ± 5.02 56.34 ± 1.19 71.34 ± 0.64 71.46 ± 0.30 79.82 ± 1.14 83.43 ± 1.23

7 25.11 ± 26.65 62.20 ± 11.33 7.26 ± 6.81 51.92 ± 8.38 49.32 ± 13.43 53.19 ± 13.12 91.10 ± 0.05 90.65 ± 0.28

8 80.99 ± 9.07 82.59 ± 4.77 80.12 ± 2.69 84.95 ± 1.55 79.48 ± 7.08 87.63 ± 1.31 95.24 ± 2.65 94.52 ± 0.43

9 99.69 ± 0.15 99.20 ± 0.27 97.78 ± 0.22 98.57 ± 1.43 96.93 ± 1.39 97.25 ± 0.75 98.79 ± 0.27 99.06 ± 0.11

OA 77.68 ± 1.09 80.63 ± 1.05 81.35 ± 0.88 83.20 ± 0.20 85.96 ± 0.37 87.08 ± 0.39 87.87 ± 0.04 91.13 ± 0.39

AA 68.10 ± 3.26 74.08 ± 2.51 70.83 ± 0.68 76.33 ± 1.03 79.84 ± 2.36 81.02 ± 1.66 83.60 ± 0.59 88.58 ± 0.24

κ 69.24 ± 1.54 73.47 ± 1.48 74.40 ± 1.20 77.10 ± 0.11 80.98 ± 0.57 82.50 ± 0.60 83.61 ± 0.07 88.11 ± 0.52
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Table 7 shows the comparison results of the classification performances of various methods with 10% of the 
training data. For the first four spectral classification methods, from the classification results, we can see that 
the SADGAN method proposed in this paper can achieve an overall classification accuracy of 86.58% in the 
hyperspectral images of geological bodies in the Tianshan dataset, which is 9.99 percentage points higher than 
the traditional SVM method, and the SADGAN method has a good classification performance. Among the deep 
learning methods CNN, HSGAN, and SADGAN, the semisupervised learning methods HSGAN and SADGAN, 
which can effectively utilize both labeled and unlabeled samples, perform better than the CNN. SADGAN utilizes 
multilayer convolutional features and performs slightly better than HSGAN. For spatial-spectral joint classifica-
tion, although the nondeep learning traditional classification method SVM-EMP can utilize spatial features, its 
overall accuracy still lags behind that of other deep learning-based spectral-spatial classification methods and is 
even slightly lower than that of the spectral-only classification method SADGAN. GIF-SADGAN can perform 
better than GIF-CNN and SSGAT due to the excellent spectral classification performance of SADGAN.

Figure 10 shows maps of the comparison of the classification results from these experiments on the 50-band 
Tianshan dataset. Benefiting from the GAN’s generator-generated (augmented) samples and multilayer convo-
lutional features, SADGAN’s classification result maps are more detailed. However, many cluttered spots exist 
in homogeneous regions because the spatial features are not utilized. From the classification results of the GIF-
CNN, SSGAT, and GIF-SADGAN methods, it can be seen that because of the spatial feature extraction method, 
compared with the SADGAN, most of the clutter in the homogeneous region has been correctly categorized, 
which also demonstrates that the spectral-based method proposed in this paper can be combined with a spatial 

Figure 8.   Classification results obtained by different methods for the Pavia University scene.

Table 5.   Architecture of SADGAN for the salinas dataset.

No Layer Kernel Feature map BN? Activation function

G

1 G-input 1 × 100 0 No No

2 FC 1 × 1024 1 No tanh

3 FC 1 × 51 × 128 1 Yes tanh

4 Reshape 1 × 51 128 No No

5 Upsampling 1 × 2 0 Yes No

6 Conv 1 × 5 64 No tanh

7 Upsampling 1 × 2 0 No No

8 Conv 1 × 5 32 No tanh

9 G-output 1 × 204 0 No No

D

10 D-input 1 × 204 0 No No

11 Conv 1 × 3 32 No relu

12 Conv 1 × 3 32 No relu

13 Max pooling 1 × 2 1 No No

14 Conv 1 × 3 32 No Relu

15 Conv 1 × 3 32 No Relu

16 Max pooling 1 × 2 1 No No

17 FC 1 × 1024 1 No No

18 D-output 1 × 1 0 No Sigmoid

C

19 C-input 32 × 598 0 No Relu

20 Conv 1 × 3 32 No Relu

21 Max pooling 1 × 2 1 No No

22 FC 1 × 1024 1 No Relu

23 C-output 1 × 16 0 No Softmax
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feature extraction method to achieve a better classification result. However, it should also be noted that the hand-
made real ground data will also have errors; although the accuracy of spectral classification, such as that of the 
SADGAN, is usually lower than that of spatial-spectral joint classification, it will also reflect the features of the 
ground features in a more detailed way. In contrast, the spatial-spectral joint classification algorithm erases some 
features by smoothing the homogeneous region, which may neglect some information, so for the hyperspectral 
image data in the same region, simultaneous spectral-based classification and spatial-spectral joint classification 
for the same region and the classification results are compared and analyzed with certain significance.

The final experimental results show that the semisupervised classification method SADGAN combined with 
the spectral feature extraction method can achieve excellent classification performance, effectively differentiate 
geological bodies, and provide an efficient auxiliary means for regional geological mapping.

Visualization of the results generated by the G Model of the SADGAN
In the training step of the SADGAN, the G model will generate spectral samples in each epoch. The results 
generated by G are visualized in Figs. 11 and 12 for the Indian Pines image. In Fig. 11, every subplot is an image 
consisting of 128 lines that represents spectral samples with 200 bands. Figure 11a–i displays the images com-
prising the “fake” spectra generated by G , and the subtitle indicates the numerical order of the training epochs 
in Algorithm 1. Figure 11 (j) shows real spectra. A set of spectral curves generated by G are shown in Fig. 12a–i, 
which show to the “fake” spectral curves generated by G , and the subtitle indicates the numerical order of the 
training epochs. Figure 12 (j) is a real spectral curve sample. Figures 11 and 12 show that as the number of epochs 
increases, the curve generated by the generator gradually becomes more similar to the real curve.

Table 6.   Comparison of the classification accuracies (%) of various methods for the Salinas dataset using 1% 
of the labeled training samples per class. Bold values indicate the best results.

Class SVM BagRF RNN-LSTM 1DCNN DRNN HSGAN GANs SADGAN

1 97.75 ± 1.02 97.18 ± 1.23 8.17 ± 7.38 90.81 ± 6.30 80.90 ± 14.32 99.15 ± 0.05 96.02 ± 2.35 99.12 ± 0.72

2 97.67 ± 1.79 99.76 ± 0.14 98.81 ± 0.48 99.39 ± 0.39 99.62 ± 0.22 99.87 ± 0.03 99.67 ± 0.05 99.99 ± 0.01

3 59.28 ± 14.03 81.56 ± 10.15 88.63 ± 9.08 88.05 ± 7.83 96.21 ± 1.64 91.59 ± 4.63 94.53 ± 2.11 99.80 ± 0.00

4 98.30 ± 1.06 94.16 ± 2.58 93.21 ± 1.66 96.42 ± 1.64 98.46 ± 0.05 99.25 ± 0.10 98.53 ± 0.40 99.67 ± 0.04

5 96.20 ± 2.96 94.29 ± 3.86 97.89 ± 0.25 94.29 ± 2.54 92.69 ± 0.71 93.52 ± 1.16 97.90 ± 0.06 97.86 ± 0.47

6 98.59 ± 0.85 96.58 ± 1.43 95.38 ± 0.26 97.61 ± 2.13 99.67 ± 0.05 99.57 ± 0.05 99.46 ± 0.10 99.95 ± 0.03

7 99.28 ± 0.45 98.28 ± 0.79 99.30 ± 0.05 99.08 ± 0.15 98.95 ± 0.14 99.60 ± 0.10 99.79 ± 0.02 99.92 ± 0.00

8 85.82 ± 10.39 80.44 ± 4.10 75.28 ± 3.47 81.66 ± 5.68 90.61 ± 0.14 85.82 ± 1.29 85.74 ± 0.68 86.22 ± 3.64

9 98.65 ± 0.84 97.93 ± 0.90 97.97 ± 0.52 98.81 ± 0.14 98.79 ± 0.10 99.95 ± 0.03 99.81 ± 0.14 99.96 ± 0.01

10 71.13 ± 9.58 75.88 ± 5.47 63.61 ± 4.04 77.52 ± 3.88 88.35 ± 0.37 88.08 ± 1.89 88.31 ± 0.73 95.50 ± 1.10

11 78.77 ± 6.93 76.74 ± 6.86 88.53 ± 0.93 80.84 ± 8.64 86.78 ± 0.12 93.23 ± 0.29 86.89 ± 0.63 96.58 ± 1.19

12 92.21 ± 7.93 92.31 ± 8.21 78.45 ± 11.26 98.27 ± 0.29 99.42 ± 0.13 99.84 ± 0.05 99.43 ± 0.11 99.90 ± 0.05

13 98.18 ± 1.30 96.85 ± 2.31 93.06 ± 0.92 93.13 ± 1.44 95.55 ± 0.13 96.98 ± 1.15 94.87 ± 3.48 97.69 ± 0.65

14 86.62 ± 4.52 89.97 ± 3.59 89.62 ± 3.37 94.36 ± 0.16 95.21 ± 0.25 93.00 ± 1.31 93.14 ± 1.08 97.65 ± 0.07

15 27.50 ± 19.95 47.21 ± 6.57 62.12 ± 0.54 52.42 ± 7.91 42.13 ± 0.72 56.76 ± 1.61 63.10 ± 3.01 73.40 ± 6.52

16 72.48 ± 12.25 85.30 ± 9.35 61.11 ± 3.70 73.32 ± 3.43 75.53 ± 3.68 93.74 ± 0.22 88.71 ± 2.46 98.89 ± 0.33

OA 81.39 ± 1.35 84.08 ± 0.98 80.15 ± 1.65 85.31 ± 0.51 86.79 ± 0.38 89.23 ± 0.16 89.90 ± 0.19 92.92 ± 0.29

AA 84.90 ± 1.93 87.78 ± 1.09 80.70 ± 1.74 88.50 ± 1.38 89.93 ± 0.76 93.12 ± 0.34 92.87 ± 0.09 96.38 ± 0.47

κ 79.11 ± 1.57 82.21 ± 1.09 77.80 ± 1.86 83.56 ± 0.61 85.21 ± 0.43 87.97 ± 0.19 88.73 ± 0.21 92.12 ± 0.33

Figure 9.   Classification results obtained by different methods for the salinas scene.
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Effect of different size of unlabeled data
The number of unlabeled samples is an important parameter in the SADGAN and can affect the training time 
of the SADGAN and the accuracy of the final classification. We conducted an experiment to show the effect of 
the SADGAN on a different number of unlabeled samples. In the CNN training phase, the training data are 10% 
of the Indian Pines dataset. In Table 8, the first row shows the unlabeled-to-total sample ratio, and the second 
shows that the SADGAN training time is directly related to the number of samples. With a reduction in unlabeled 
data, the training time is reduced. From the third row, we can see that as the number of samples decreases, the 

Table 7.   Comparison of the classification accuracies (%) of various methods for the Tianshan dataset using 
10% labeled training samples per class. Bold values indicate the best results.

Class SVM CNN HSGAN SADGAN EMP-SVM GIF-CNN SSGAT​ GIF-SADGAN

1 16.98 71.23 70.58 59.31 41.72 75.16 82.92 89.44

2 0.39 39.13 26.21 27.49 44.07 79.26 83.47 83.36

3 93.29 93.67 92.28 90.13 93.2 96.35 96.68 94.13

4 57.95 85.16 77.62 89.1 80.94 91.93 93.44 93.53

5 75.38 84.04 79.73 81.23 85.35 89.94 90.33 92.40

6 0.24 52.11 45.07 57.4 48.79 88.90 86.59 81.71

7 7.56 62.93 44.77 50.8 48.76 75.07 82.18 84.66

8 69.33 82.6 82.5 67.68 80.09 85.84 86.77 93.70

9 6.17 68.83 59.33 61.5 62.55 84.11 87.18 82.28

10 60.23 72.33 71.72 67.78 69.54 81.55 75.78 82.28

11 39.67 74.96 73.53 72.83 78.3 87.05 89.16 95.06

12 92.03 93.11 92.71 88.27 94.75 94.42 94.79 96.43

13 15.68 61.56 39.28 42.84 55.47 71.26 87.73 76.07

OA 76.59 82.31 85.04 86.58 85.88 91.74 92.80 93.49

AA 41.15 65.87 65.8 70.91 67.97 84.68 87.46 88.08

κ 67.46 77.53 80.06 82.08 81.04 89.06 90.49 91.47

(a) SVM (b) CNN (c) HSGAN (d) SADGAN

(e) EMP-SVM (f) GIF-CNN (g) SSGAT (h) GIF-SADGAN

Figure 10.   Classification results obtained by different methods for the Tianshan dataset.
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accuracy decreases. When we use 10% of the total data (unlabeled) to train the SADGAN, the accuracy of the 
D model after CNN training approaches that of the 1DCNN (in Table 2).

Experiment with the spectral angle distance loss function
We performed an experiment to compare the results produced by generator G using spectral angle distance loss 
functions with binary loss functions during the training phase. Traditional GANs use the binary loss function 
to train themselves. In our experiment, the spectral angle distance is used as the loss function of the G model 
to accelerate GAN training. Figure 13 shows the results generated by G with the binary loss function. Figure 14 
shows the resultant spectral angle distance loss function, where the subtitle indicates the numerical order of the 
training epochs. From the number of epochs, we can see that the generator G with a spectral angle loss function 
can produce a more realistic spectrum and perform better.

Figure 15 shows the values of the SAD between the real spectral curve and those generated by the SADGAN 
and HSGAN using binary loss functions. The training data used in the two methods are from the sixth class 
(grass-trees, 730 samples) in the Indian Pines dataset. According to Eq. (7), we set the average of the samples 
generated by the G model in the HSGAN and SADGAN as a and the average of the real sixth class as b . The 
experiment is performed to find the SAD value between a and b in each iteration. It can be seen from Fig. 13 
that as the iteration proceeds, the SAD value of the SADGAN method with the SAD loss function can quickly 
and stably generate a spectral curve close to the real data (a SAD value close to 1 indicates that the curves are 
similar). Because of the instability in the training phase of the GAN23, the curve of the HSGAN’s SAD suddenly 
drops between 60 and 90. In comparison, the curve of the SAD of the SADGAN is very smooth, which indicates 
that our method is more stable during training.

Conclusion
We proposed a novel semisupervised HSI classification algorithm (SADGAN) by introducing spectral angle 
distance as a loss function and multilayer feature fusion in the GAN. Traditional GANs are designed to generate 
2D natural images without considering the characteristics of the spectrum itself. The spectral angle mapper is 
an important spectral matching method. Using the spectral angle distance as the loss function of the GAN, the 
convergence of G is accelerated, and the GAN can generate samples closer to the real spectrum. When the GAN 
model is trained using all unlabeled samples, the discriminator will acquire the ability to extract the features 
of all samples. Using the multilayer features of the discriminator and a few labeled samples, we can train a HIS 
classifier. The proposed method was validated on four hyperspectral datasets and was proven to outperform state-
of-the-art methods. To show the effect of the SADGAN more intuitively, the results of a generative model for HSI 
are visualized and analyzed. By comparing the SAD values between the samples generated by the generator and 
the real samples, the proposed method can significantly make GAN training more efficient and stable. Detailed 
experimental analysis also demonstrates that both the spectral angle distance and multilayer feature fusion play 
important roles in improving the classification performance.

Table 8.   Effect of different amounts of unlabeled data for the Indian pines dataset.

Unlabeled-to-total sample ratio 100% 50% 25% 10%

Time (s) of training of SADGAN 898 492 260 158

Overall accuracy (OA) 88.6 83.3 78.9 78.6
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Data availability
The data in this paper are available from the Grupo de Inteligencia Computacional (GIC) website (http://​www.​
ehu.​eus/​ccwin​tco/​index.​php/​Hyper​spect​ral_​Remote_​Sensi​ng_​Scenes).
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