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The role of internal variability 
and external forcing 
on southwestern Australian 
rainfall: prospects for very wet 
or dry years
Surendra P. Rauniyar  1*, Pandora Hope  1,2, Scott B. Power  2,3,4, Michael Grose  5 & 
David Jones  1

The cool-season (May to October) rainfall decline in southwestern Australia deepened during 2001–
2020 to become 20.5% less than the 1901–1960 reference period average, with a complete absence of 
very wet years (i.e., rainfall > 90th percentile). CMIP5 and CMIP6 climate model simulations suggest 
that approximately 43% of the observed multi-decadal decline was externally-forced. However, the 
observed 20-year rainfall anomaly in 2001–2020 is outside the range of both preindustrial control 
and historical simulations of almost all climate models used in this study. This, and the fact that the 
models generally appear to simulate realistic levels of decadal variability, suggests that 43% might be 
an underestimate. A large ensemble from one model exhibits drying similar to the observations in 10% 
of simulations and suggests that the external forcing contribution is indeed larger (66%). The majority 
of models project further drying over the twenty-first century, even under strong cuts to greenhouse 
gas emissions. Under the two warmest scenarios, over 70% of the late twenty-first century years are 
projected to be drier than the driest year simulated during the 1901–1960 period. Our results suggest 
that few, if any, very wet years will occur during 2023–2100, even if strong cuts to global emissions are 
made.

The strong spatial gradient in rainfall in southwest Western Australia (SWWA) is evident on the ground: from the 
tall trees in the far southwest through the wheat belt and into the dry interior, over a distance of approximately 
500 km1. Thus, any small shift in the weather patterns north or south can strongly influence rainfall totals across 
the region, with consequences for dryland farming, ecosystems, and regional water supplies2. SWWA has very 
dry summers and wet winters indicating a region highly influenced by the seasonal cycle of weather systems. 
Rainfall in the cool season (May to October) contributes about 70% of the annual total, so the May to October 
period is the main focus of this study. Cool season rainfall comes primarily from the fronts and lows that cross 
the region from the west3,4, while warm season rainfall is linked to the west coast trough, thunderstorms or the 
break-down of tropical lows and cyclones typically moving down from the tropics5.

Cool season rainfall in southwest of Australia is strongly influenced by mid-latitude weather systems, while 
climate modes including the El Niño Southern Oscillation (ENSO) have minimal impact6. Cool season rainfall 
(Fig. 1) prior to the 1960s exhibited interannual variability, with some years experiencing well above average rain-
fall, while some of the other years experienced well below average rainfall. After the 1960s, however, those very 
wet seasons disappeared, and the number of troughs and rainfall from those weather systems both declined7–11. 
A further downward step in decadal rainfall in SWWA occurred in the late 1990s12,13. This coincided with a 
downward step in other regions around the world14–16. A decline in SWWA cool season rainfall is evident in 
almost all CMIP5 climate models under all historical forcings17.

By the early 1990s, Nicholls and Lavery18 presented a discussion of a potential role for human-caused climate 
change. Since the 1990s, multiple generations of climate models and scientific assessments have supported a 
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role for human influence19–21 and ongoing drying22–24, with the IPCC Sixth Assessment Report showing that 
further future drying is very likely in SWWA​25. While previous research examined rainfall changes under the 
higher emissions scenarios, the current outlook for global emissions suggests that we may avoid the very high-
est scenarios. And while current pledges are more consistent with mid-range scenarios that tend to exhibit 2 
to 3 °C global warming26–28, there is a great deal of effort around the world now to restrict global temperature 
to "well below 2 °C above preindustrial levels" and pursue efforts "to limit the temperature increase to 1.5 °C 
above preindustrial levels" (Paris agreement29). The temperature change evident in the lowest scenarios used 
in CMIP5 and CMIP6 are more consistent with the Paris agreement. So we also examine rainfall change under 
these lower-emission pathways too.

In this study, we analysed observations and output from CMIP5 and CMIP6 models using new approaches30 
to: (i) estimate the relative roles of external forcing and internal variability in 2001–2020 cool-season rainfall 
decline, (ii) explore the time of emergence of the climate change signal in SWWA rainfall, and (iii) estimate 
multi-decadal rainfall change over coming decades with and without emission mitigation efforts. In addition, we 
examined a 40 member large-ensemble of the ACCESS-ESM1.5 climate model31 under different forcing condi-
tions (i.e., preindustrial, historical and future—under different emissions pathways) to estimate the likely change 
in the frequency of very wet (and dry) years in coming years and decades, including the influence from natural 
variability. We define a year as very wet (dry) when rainfall in that year exceeds (remains below) the 90th (10th) 
percentile value of the 1901–1960 period. ACCESS-ESM1.5 was chosen for special attention since it represents 
one of the driest projections in CMIP5 or CMIP632.

The rest of the paper is organized as follows. “Results” section provides the findings based on the analysis 
of observations and climate models. “Discussion” section summarizes the key findings of this study, discusses 
possible explanations for the observed decline and suggests future work. “Methods” section includes a brief 
description of data, climate models and methods used in this study, including the model evaluation results.

Results
How unusual was the 2001–2020 low rainfall period compared to the full record?
This section examines the observed characteristics of the SWWA rainfall (Fig. 2). The spatial pattern of the 
climatological May to October rainfall shows that the greatest totals occur along the coastal margins (Fig. 2a). 
The relative difference in rainfall between 2001–2020 and 1901–1960 is large in absolute terms (Fig. 2b: greater 
than 90 mm in the west) and as a percentage (Fig. 2c: with many areas seeing a reduction of around 20%). 
For regions that have experienced the largest declines, according to our analysis (see “Methods” section), it is 
exceptionally unlikely (likelihood < 0.001) that a decline of the magnitude experienced could occur from natural 
internal variability only (Fig. 2d). The severity of the situation can be seen more clearly in Fig. 3a which shows the 
observed percentage change of area-averaged cool season rainfall for the 2001–2020 period from the 1901–1960 
period average (marked by the heavy dashed vertical coloured line) is outside the range of all possible differ-
ences between the last 20-year period and the first 60-year period from the observed record resampled 10,000 
times. Examining the temporal variability, each month from the cool season (May to October) in the most recent 
20 years (2001–2020) was likely to have lower rainfall than months from any other 20-year period of the twentieth 
century (Fig. 3b). All other 20-year periods had some months with more than 120 mm of rainfall, but none were 
evident in the 2001–2020 period. Viewed in the context of past published work and analyses here, the extremely 
low rainfall totals in recent decades are part of an ongoing long-term downward trend in rainfall in SWWA.

Contribution of external forcing to the observed SWWA rainfall decline during 2001–2020 
relative to 1901–1960
As evident from analysing the observations, the 2001–2020 decline in rainfall was exceptional and cannot be 
replicated through resampling of interannual variability demonstrated in the first half of last century. Climate 

Figure 1.   Time-series of area-averaged observed May to October rainfall 1900–2020 averaged over the South 
West Coast drainage division (see map in Fig. 2) using 1.5° × 1.5° regridded Australian Gridded Climate Data 
(AGCD) monthly rainfall data. Blue and brown bars represent rainfall above and below the average of the 
1901–1960 reference period (horizontal black dotted line), respectively. The black solid line represents 20-year 
running average rainfall. Blue and red horizontal dashed lines represent the 1971–2000 and 2001–2020 averages, 
respectively. The average values for these periods are shown in the top-right corner, with the corresponding 
periods’ standard deviation shown inside the parentheses.
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models provide a tool to explore the possible range of internal variability and compare that with the anthropo-
genic forced signal. In this section, we estimate the relative contributions of external forcing and internal vari-
ability to the observed decline by using the first ensemble member of CMIP5 (r1i1p1) and CMIP6 (r1i1p1f1) 
model simulations (Supplementary Tables S1 and S2) and also using large ensembles from two CMIP6 climate 
models and the results are described below.

Using CMIP5 and CMIP6 multi‑model ensemble
To further examine the unusualness of the observed and model-simulated 2001–2020 drying, we compare the 
observed anomaly against the possible range of multi-decadal rainfall changes that can arise due to internal vari-
ability in the global climate models as seen in their preindustrial control simulations (Fig. 4). The distribution 
shown in the bottom panel of Fig. 4 represents the range of possible 20-year percentage change relative to any 
60-year average due to internal variability alone (see “Methods”). The observed percentage change in 2001–2020 
compared to 1901–1960, marked in Fig. 4 at less than -20%, is much lower than, and outside the modelled range, 
of all possible 20-year rainfall anomalies due to internal variability across the models.

According to the models, a modelled decline of the same magnitude as observed is exceptionally unlikely 
without external forcing and is consistent with our earlier results based on random resampling of observations 
(Fig. 2a). Although, even including all historical forcing runs, only a few models in CMIP5 (ACCESS1.3, GFDL-
ESM2G and MPI-ESM-LR) and none in the CMIP6 ensemble simulate a rainfall decline as large or larger than the 
observed 20-year decline. To estimate the externally-forced change, we computed the average of the multi-model 
median (MMM) change across each scenario—which will average out and remove internal variability. This gives 
a decline of 9.3% in CMIP5 and 8.8% in CMIP6 (9.1% mean). Comparing the all-forcing change (average of 

Figure 2.   Spatial distribution of observed cool season (May–October) rainfall and associated statistics. (a) 
rainfall climatology for the 1901–1960 period, (b) relative anomaly and (c) percentage change in rainfall for the 
2001–2020 period relative to climatology shown in (a), and (d) the likelihood of the 2001–2020 period observed 
change arising from random variability computed using the bootstrapping method described in “Methods”. The 
region considered in this paper is the South West Coast drainage division shown inside the black polygon. The 
city of Perth is marked with a red open circle. Stippling indicates the regions where the rainfall change is not 
statistically significant at the 5% level.
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CMIP5 and CMIP6) to the observed (−20.5%), we might simply conclude that 44% of the observed decline is due 
to external forcing (see Supplementary Tables S3 and S4 for more details). Including more models to heighten the 
confidence in the signal reveals a similar value of 43% (i.e., including those models with a shorter preindustrial 
period—200 years—now 40 models in CMIP5 + RCP8.5 and 33 in CMIP6 + SSP5.85).

The observed rainfall decline is well beyond the range of internal variability simulated by most CMIP5 and 
CMIP6 climate model runs analysed (Fig. 4). However, the observed rainfall for the 2001–2020 period will reflect 
a combination of natural variability and the forced (anthropogenic) response approximated by the CMIP ensem-
ble. Statistical theory indicates that for normally distributed variables, 95% of values lie within ± two standard 
deviations of the mean. In our case, the standard deviation of the internal variability is equivalent to 4.5% of 
mean, so the range is equal to ± 9.0% of the mean. Adding this 9.0% to the 9.1% externally-forced decline (from 
above) gives a total of 18.1%, which is still smaller than the observed reduction for 2001–2020 of 20.5%. However, 
the observed change is now encompassed within the modelled range in present climate (i.e., black bell curve in 
Fig. 4), but the likelihood is still low (i.e., 0.4% and 0.55% according to CMIP5 and CMIP6 models, respectively). 
There may also be processes that the models are missing or misrepresenting30,33,34.

The fact that the observed rainfall decline is qualitatively similar to the model projections (significant and 
ongoing) but about twice as large raises some significant science and policy questions. One interpretation is that 
SWWA has, by chance, sampled extreme natural variability that strongly reduces rainfall when the anthropogenic 
signal is also at its largest. Another interpretation is that climate models are underestimating the rainfall response 
to anthropogenic forcing, and perhaps the future will see even larger declines again. We know from the results 
presented above that natural variability acting together with the external forcing can cause drying as large as 
observed, but this only occurred in 0.4–0.55% of cases. This very low likelihood suggests that externally-forced 
drying in the models is too weak and/or there was an extraordinarily large internally generated drying event in 
the real world.

Using large ensembles from single models
An alternative estimate of the contribution of external forcing to the observed decline can be obtained from 
large ensembles of individual models. The signal and effect of variability across a large ensemble from a single 
model can reveal other facets as compared to a multi-model ensemble as uncertainty in the internal variability 
due to inter-model variability caused by differing physics, dynamical cores, and resolutions can be eliminated. 
A 40-member ensemble from ACCESS-ESM1.5 has an ensemble mean reduction of 13.5% rainfall in 2001–2020 
relative to 1901–1960, suggesting 66% of the observed decline was externally forced. We also see that 10% of 160 
simulations in ACCESS-ESM1.5 (i.e., 40-member for each SSP) match the observed rainfall decline between 

Figure 3.   (a) Relative frequency density (RFD) of % change in rainfall between the recent 20-year period 
average and the first 60-year period average, calculated by random re-sampling of individual years (with 
replacement) from the full historical period (120 years; 1901–2020) 10,000 times and computing the % 
difference each time. Black (thin) dashed vertical lines in (a) from left to right represent the 1st percentile and 
median of the observed resampled distribution. The observed % change for the 2001–2020 period relative to 
the mean of 1901–1960 is indicated with the heavy dashed vertical line in orange. This line (at -20.5%) indicates 
that the observed change is outside the bootstrapped distribution. (b) RFDs of area-averaged monthly rainfall 
through the cool season (May to October) for six different 20-year blocks from 1900–1919 through to 2001–
2020 period shown as coloured lines (see legend in (b)). The RFD for the full early period (1900–2000) is also 
shown for comparison (solid black line). The vertical lines represent the median values of the distributions. The 
median values (mm month−1) are shown in the parentheses in the legends. The horizontal segments indicate the 
5th and 95th percentile confidence interval of the medians for each period, estimated using bootstrapping of 
monthly average rainfall for the period shown.
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1901–1960 and 2001–2020. The ACCESS-EMS1.5 ensemble was generated from different initial conditions by 
using different branching points from the preindustrial control simulations at 20-year intervals31. Similarly, 
analysis of a 50-member ensemble from CanESM535 suggests that external forcing contributed about 54% of the 
observed decline. However, all the CanESM5 ensemble members (170 in total; 50-member for each SSP except for 
SSP126 which has 20 ensemble members) underestimated the magnitude of the observed decline (not shown).

ACCESS-ESM1.5 has a strong historical and projected drying signal relative to other CMIP6 models, so if 
we assume this model has a reliable forced response, this suggests that human influence played a major role in 
the rainfall decline, and if internal variability is accounted for, there was a heightened chance of experiencing a 
decline as large as observed.

Emergence of the externally‑forced signal and what does that mean for the future?
In this section, we estimate the date at which the externally-forced signal in modelled 20-year SWWA cool 
season rainfall emerges from its preindustrial variability and what that means for the future given that external 
forcing played a large role in the 2001–2020 decline over SWWA as we showed above. We define that the signal 
emerges from the noise when these three conditions are met, following Rauniyar and Power30: (i) the MMM 
value of 20-year block goes beyond one standard deviation of preindustrial (internal) multidecadal variability, 
(ii) the MMM stays away from that envelop for the rest of the simulations out to 2100 and (iii) at least 75% of 
the models show the same sign of change as the MMM.

Figure 5 shows the modelled unforced 20-year variability (compared to 500-year-long preindustrial mean) in 
SWWA rainfall ranges from − 18 to + 22% in CMIP5 and with a slightly wider range from − 19 to 24% in CMIP6. 
Assuming a gaussian distribution, the one standard deviation is equivalent to 3.78% in CMIP5 and 3.84% in 
CMIP6, and we might expect that the magnitude of a 20-year change could be up to ± two standard deviations 
(~ 8%) beyond any externally-forced signal (MMM) 95% of the time.

Figure 4.   Statistics relating to the observed changes in CMIP5 (left) and CMIP6 (right) models. The boxplots 
represent the spread of percentage change from the first ensemble member of CMIP5 (a) and CMIP6 (c) under 
the scenarios shown. Multi-model median (MMM; line in box), inter-quartile range (IQR; box), whiskers 
(5th and 95th percentiles) and circles (outliers) shown. The number of models under each scenario and the 
percentage of models with the same sign as the MMM is shown inside the square brackets for (a) CMIP5 and (c) 
CMIP6. Lower panels: density functions of percentage changes from CMIP5 (b) and CMIP6 (d) preindustrial 
control simulations. Pink shading represents the full range, and the dashed lines in purple and black colours 
mark the two and one standard deviations, respectively. The black bell curves in (b) and (d) represent the 
internal variability in the present climate and were obtained by shifting the shaded grey curves in (b) and (d) to 
their left by the magnitude of externally-forced response (i.e., MMM). Observed decline of 20.5% is also marked 
as a red dashed vertical line.
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Figure 5 also shows that prior to 1980 the climate change signal is not that clear—the 20-year MMM value is 
well within the bounds of the unforced interdecadal variability of the models and there is variability from decade 
to decade. But after 1981–2020 the MMM sits outside one standard deviation of the multi-model preindustrial 
decadal variability, more than 75% of the models agree on a drying signal and after this time there is a consist-
ent decrease in decadally-averaged rainfall. This suggests that externally-forced drying became dominant in the 
1981–2020 period, and this period can be defined as the time of emergence for cool-season rainfall in the SWWA 
region. In the more recent period (2001–2020), the signal of global warming is very clear, as the MMM 20-year 
averages are more than two standard deviations drier than the multi-model preindustrial decadal variability, 
and only one model is wetter than the preindustrial mean.

In the near term (2021–2040) all scenarios show a similar change. The projected rainfall decrease grows to 
more than four model-estimated standard deviations, but it is only with further declines into the next 20-year 
period that the MMM matches the observed 2001–2020 decline. The strong modelled rainfall reductions in the 
near future suggest that a dry near-future compared to preindustrial climate is extremely likely, and conditions 
could sit well outside preindustrial variability, but there is some possibility that it won’t be as dry as 2001–2020 if 
internal variability pushes towards wet conditions. After the mid-century, differences between responses evident 
under various emissions are much clearer. This can be clearly seen from 2041 to 2060 as the impact of greenhouse 

Figure 5.   Assessing 20-year average percentage changes in southwestern Australian cool season rainfall in 
the CMIP5 (left) and CMIP6 (right) climate models against the distribution of internal variability. Changes 
are relative to each model’s long preindustrial control average and the spread among the models are shown as 
boxplots for different 20-year blocks from 1901–1920 through to 2081–2100. The density functions shown in 
the lower panel represent the range of percentage change in 20-year period due to the internal variability alone 
(see “Methods”). Purple and black vertical dashed lines indicate two and one standard deviation, respectively 
and the pink shading represent the full range of the internal variability. Number of models used in each scenario 
is shown in the parenthesis in the legends. Percentage of models with the same sign as in multi-model median 
(MMM) are shown in square brackets on the right side of the top panel in the order of high (left most) to low 
emission (right) scenarios.
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gas reductions starts to become apparent under lower emissions scenarios, so strong mitigation of emissions 
act to limit the decline.

If we follow a high emission pathway (RCP8.5 or SSP5.85), by the end of the century all but one model pro-
jects that 2081–2100 will be drier than any 20-year period in the preindustrial simulations with the magnitude 
of MMM drying being less than 35% of long-term preindustrial mean (Fig. 5). Furthermore, 98% of models 
(49 out of 50) project that 2081–2100 will be drier than the observed rainfall anomaly in 2001–2020. However, 
strong mitigation of emissions limits this decline, and some recovery of decadal rainfall is evident by the end of 
the century under low emissions scenarios. But even under the lowest emission scenarios (RCP2.6 and SSP1.26) 
the MMM of 20-year rainfall at the end of the century is 15% below the preindustrial average which is the 0.005% 
percentile of the preindustrial distribution.

Supplementary Tables S3 and S4 shows that the MMM projected rainfall changes are very similar in CMIP5 
and CMIP6 for their low, medium, and high emissions scenarios (i.e., RCP2.6 vs SSP1.26, RCP4.5 vs SSP2.45 
and RCP8.5 vs SSP5.85). Furthermore, the time evolution of models’ 20-year rainfall change relative to their 
1901–1960 mean (Supplementary Tables S3 and S4) shows that the magnitude of MMM drying will be larger 
than the observed decline in 1971–2000 even under the strong mitigation of emissions for the remainder of the 
twenty-first century. Note that future rainfall will be determined by both natural variability and external forcing. 
If the externally-forced signal is large enough, the relatively modest natural variability is simply overwhelmed 
by the human caused drying trend.

Prospects of very wet and dry years in future
An obvious signal in the observed record is the total absence of very wet May to October seasons in recent 
decades (i.e., season with rainfall > the 90th percentile of seasonal rainfall during 1901–1960). Even though the 
decadal climate is projected to remain dry, could very wet years still occur in the future? And does the answer 
depend on the degree to which net emissions are reduced? To address these questions, we use the 40-member 
ensemble of ACCESS-ESM1.5. As noted above, this model features a strong drying signal in the region, though 
it does not fully replicate the observed drying trend. Given 40 simulations, we can assess the probability of any 
decile including very wet years (top decile)—where 0/40 simulations for a given year is taken simply to indicate 
zero probability and 40/40 is taken to indicate 100% probability that the event will occur (Fig. 6).

Figure 6a shows, as expected, that the variability of individual years can be much larger than decadal vari-
ability. The ensemble range is large—in some years cool season rainfall in the ACCESS-ESM1.5 ensemble is 
more than 60% above the 1901–1960 average—higher than any year in the observed data. Very wet years (> 90%) 
still occur occasionally after 2033 (Fig. 6b), regardless of the scenarios. However, they become increasingly less 
frequent over time, dropping from 10% of ensemble member to close to zero (i.e., 0.25%) at the end of the cen-
tury under the two warmest scenarios (SSP5.85 and SSP3.70). Even under a relatively low emissions scenario 
(SSP1.26), fewer than 1.2% of simulated years after 2020 (38 out of a possible 3200 years) are very wet. For the 
same period, the likelihood is extremely low (1 in 3200) for rainfall larger than the simulated historical wettest 
year on record under SSP1.26, but slightly higher (4 out of 6400 years) under the two warmest scenarios (Sup-
plementary Fig. S1).

Even the chance of more moderate rainfall—above the median of 1901–1960—also drops dramatically from 
the late 1990s onwards, remaining below 20% through the remainder of the century (Fig. 6c). Towards the end 
of the century, the probability of rainfall above the median could reach below 1% under the two high emission 
scenarios. However, strong mitigation of emissions will reduce the impact and lead to some recovery. At the end 
of the century, there is a 15% chance that some years will experience above 1901–1960 average rainfall under 
the low emission scenarios.

ACCESS-ESM1.5 generally projects a lower average SWWA rainfall than many of the other CMIP6 models 
(Fig. 6a, top right box) and its first realisation (r1i1p1f1) has lower interannual variability than observed (Fig. 9); 
thus, any estimate of extreme years from the ACCESS-ESM1.5 might be less wet than other models. Neverthe-
less, this general projection of a dramatic reduction (but not elimination) in the probability of very wet or even 
previously average years is a credible projection given a drying climate.

In contrast, the likelihood of rainfall below the 10th percentile of 1901–1960 increases consistently from 10 
to 20% until 2000, rising to 40% by 2020 (Fig. 6d). Towards the end of the century, the likelihood is projected 
to be above 90% under the two warmest scenarios. According to the ACCESS-ESM1.5 model, this situation is 
projected to improve significantly under the lowest emission scenario. However, even with a marked reduc-
tion in emissions, the SWWA rainfall will be below the 10th percentile of 1901–1960 for more than 45% of the 
late twenty-first century. Simulated years below the lowest on record in 1901–1960 follow a similar pattern—
comparing the scenarios—if we follow the two highest emissions scenarios, 70% of the simulated years in the 
late twenty-first century (2081–2100) will have rainfall less than the driest year in the early twentieth century 
(1901–1960) (Supplementary Fig. S1). However, under the lowest emissions scenario, the situation is not as bad, 
and in the late twenty-first century (2081–2100) only 20% of the simulated years will have less rainfall than the 
driest year during 1901–1960.

Discussion
The observed south-west Western Australia (SWWA) May–October averaged (cool season) 2001–2020 rainfall 
is the driest 20-year period on record, with the average over this period 20.5% below the 1901–1960 mean. Ran-
dom resampling of the observations implies a near-zero probability that a decline of this magnitude could have 
occurred from internal variability alone. Both CMIP5 and CMIP6 climate models suggest that the externally-
forced drying has already emerged over SWWA during the late twentieth century, and multi-model ensembles 
indicate that about half of the observed post-2000 decline can be attributed to external forcing. However, nearly 
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Figure 6.   Prospects of very wet and dry years in SWWA. (a) SWWA May to October averaged rainfall relative to a 1901–1960 baseline 
for 40 realisations of ACCESS-ESM1.5 under historical forcing (grey circles) and under two different future emissions pathways 
(SSP3.70 in red and SSP1.26 in blue circles). Observed rainfall is shown in the black line, with the 20-year running mean in the thick 
black line. The modelled 20-year averaged time-series of the first ensemble member (r1) of ACCESS-ESM1.5 under historical plus 
SSP3-7.0 scenario is shown in a thick red line. The percentage change in the 2001–2020 average is shown as a thin red diamond for 
each ensemble member and a black-filled circle for the observations. Comparison of the spread in 2081–2100 rainfall change between 
40 realisations of ACCESS-ESM1.5 under SSP1-2.6 (blue diamonds) and SSP3-7.0 (red diamonds) and the first realisation of CMIP6 
models under SSP3-7.0 (black diamonds) is shown in the top right box. The lower panels are summary statistics of the plot above. The 
lines in panels (b) and (c) show the relative frequency of the ACCESS-ESM1.5 40 ensemble members that exceed the 90th percentile 
and median rainfall of their 1901–1960 period under historical and four different SSPs, as shown in the legend. Panel (d) shows 
the relative frequency of the ACCESS-ESM1.5 40 ensemble members for years that show rainfall below the 10th percentile of the 
1901–1960 period. The smooth lines in panels b-d are 20-year running means. Open black circles in panels (b) and (c) indicate the 
years when observed May to October SWWA rainfall exceed the 90th percentile and median of 1901–1960 period records, while the 
same in panel (d) for the rainfall below the 10th percentile of 1901–1960 period.
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all CMIP5 and CMIP6 simulations considered here underestimated the magnitude of the observed drying for the 
2001–2020 period. An estimate of the contribution of external forcing to the observed drying in SWWA from a 
large ensemble of the ACCESS-ESM1.5 model, which exhibits a stronger drying signal, is 66%, and 10% of the 
ACCESS-ESM1.5 model simulations match the observed 2001–2020 rainfall decline. The inability of most models 
to fully replicate the large drying seen so far leads to two possible conclusions: the rainfall in this region is more 
sensitive to greenhouse gas concentrations than is currently modelled; or factors other than climate change have 
coincidentally reduced rainfall during the recent period of anthropogenic climate change.

Into the future, regardless of the emissions scenario, both CMIP5 and CMIP6 climate models exhibit a forced 
signal that remains outside the range of internal variability in the preindustrial climate at the end of the century. 
But strong mitigation of emissions will reduce the rainfall changes from 65% of the 1901–1960 average under 
a business-as-usual scenario (RCP8.5 or SSP5.85) to 85% under a scenario with major emissions reductions 
(RCP2.6 or SSP1.26) suggesting future rainfall is highly dependent on the future trajectory of greenhouse gas 
emissions. At the end of the century, again according to the ACCESS-ESM1.5 model, some years with average 
rainfall will begin to return under the low emission scenarios. But very wet years are projected to be extremely 
rare towards the end of century under the top three emissions scenarios (i.e., 4 out of 2400 simulated years or 
1 in 600), however a strong cut in emissions increases the likelihood substantially (i.e., 18 out of 800 simulated 
years or 1 in 45). In contrast, SWWA rainfall is projected to remain below the decile 1 value of 1901–1960 for 
approximately 45% of time during the late twenty-first century, even under a scenario with a marked reduction 
in greenhouse gas emissions (i.e., low emissions scenarios RCP2.6/SSP1.26). The projected decline in wet years 
as well as the climatological average suggests that even agriculture and other activities that can opportunistically 
use occasional wet years may well struggle, especially under higher levels of climate change.

Our new analysis and results emerging from the CMIP6 ensemble of models provide further clarity and 
nuance to earlier findings around the decline of rainfall in SWWA in the historical period20 and projections23,24. 
The observed rainfall decline is better captured by the models compared to earlier single-model studies21, possibly 
due to the method to calculate the model areal-average rainfall that is less strict about the coastal boundary36, as 
described in the “Methods” section. The pattern of average CMIP6 rainfall projections is similar to those from 
CMIP525, but the CMIP6 change is greater over the land than in CMIP5. We show that for the lower emissions 
scenario, the response in CMIP6 is also more emphatic than CMIP5. The large ACCESS-ESM1.5 ensemble 
highlights that a model’s internal variability will produce decadal variability on top of the forced signal, and these 
nuances are worth exploring further as more results become available.

The observed record is only one realisation of the climate response to external forcing and we have shown 
that more than half of the observed post-2000 decline may be due to internal variability, thus the last two decades 
could have had a different rainfall signature. To explore that, large ensembles might help us better understand the 
potential range, particularly if combined with further evaluation of the circulation changes driving the rainfall 
change in both observations and models37. The circulation changes in projections17 will reflect the modelled 
mechanisms by which increasing greenhouse gases are altering the atmospheric circulation, but further research 
into how the circulation has changed in historical single forcing runs (e.g., aerosols only) could form a further 
study.

In addition to climate forcing, land surface changes associated with a shift from forestry to agriculture have 
been postulated to contribute to a reduction of how much rainfall is drawn from any passing weather system 
during the cool season in SWWA​38,39. Land cover changes40 are included in some of the CMIP6 histALL simula-
tions (e.g., ACCESS-ESM1.5), but not others (e.g., ACCESS-CM2) however it is hard to pinpoint any impact 
without single forcing simulations from the same model. Results from Land Use MIP could form the basis of 
further study as they become available. Factors such as the Antarctic stratospheric ozone hole recovery and its 
impact are also worth further exploration, as we learn more about links to surface climate41,42.

The rainfall reduction appears to stabilise in some models if we follow a very low emissions pathway and 
reach net zero emissions, indicated by change under RCP2.6 and SSP1-2.6 (Figs. 5 and 6). This might suggest 
that SWWA could return towards its 1900s climate during the twenty-second century after global atmospheric 
greenhouse gases stabilise43. However, this result is not strong and is likely to be model dependent. Using esti-
mates of the climate at these latitudes after it stabilises after emissions stop increasing, we do not see a return to 
the very wet conditions evident in other periods with high levels of carbon dioxide such as in the Pliocene or 
under extended simulations into the twenty-second century43–45.

Palaeoclimate reconstructions of the recent era can also help assess the potential rainfall variability in an 
unforced world to help understand the potential variability we might see around the forced signal in coming 
decades. Reconstructions from tree rings and caves suggest that decadal rainfall variability in SWWA is signifi-
cant, but primarily stochastic, and only weakly correlated with large-scale drivers such as ENSO, the Southern 
Annular Mode or local sea-surface temperatures46. From a site in the wheat belt there is evidence that multi-
decadal dry spells have occurred before, and that the early 1900s were unusually wet in that region, suggesting 
that internal climate variability is an important factor in understanding decadal rainfall changes in SWWA​12. 
Isotopes in cave structures and groundwater also highlight different aspects of the rainfall changes including 
variability in the most intense events of the year47 and groundwater variability. In the very wet south-west coastal 
region the recent decades have seen the lowest soil moisture in at least the last 800 years48, shallow karst aquifers 
are becoming disconnected from rainfall, and groundwater is failing to recharge.

In south-west Australia two desalination plants have helped supply water to the city of Perth and the Water 
Corporation has planned well for the extended dry informed by climate science. Away from the city and coast, 
regional towns and agriculture are dependent on surface water and increasingly also on groundwater. A warming 
and drying climate presents enhanced stress on plants across the region49 and adaptive measures in agriculture 
have already been applied such as changing planting to perennials, which also help with soil salinity (e.g., South 
Coast Natural Resource Management Inc 2018). There is high confidence in further rainfall declines in SWWA, 
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and so there may continue to be demand for a transition to industries less reliant on water. However, strong 
mitigation could help reduce the extreme 20-year rainfall declines projected by models, and wet years may occur 
sporadically.

Methods
Data
Rainfall data is from the 5 km × 5 km Australian Gridded Climate Data (AGCD50), which is regridded to 
1.5° × 1.5° using a conservative interpolation method51,52 to match the coarse-resolution of CMIP models. Other 
observational datasets were also compared with AGCD: AWAP53, SILO54 and CRU TS4.0555. The distributions 
of the differences between these datasets were largely centred around zero (not shown), suggesting that each 
dataset would be a reasonable choice for this area. The few large differences were during very wet months (up to 
20 mm) and likely linked to the different treatment of the background climatology.

The climate model data are from the Coupled Model Intercomparison Project Phase 5 (CMIP556) and Phase 6 
(CMIP657,58) including: preindustrial control; simulations forced with full historical forcing and the projections 
under different future emissions scenarios, three Representative Concentration Pathways (RCPs59) under CMIP5 
(RCP2.6, RCP4.5 and RCP8.5) and four Shared Socio-economic Pathways under CMIP6 (SSP1-2.6, SSP2-4.5, 
SSP3-7.0, SSP5-8.5)—RCP2.6 and SSP1-2.6 representing a low emissions future and RCP8.5 and SSP5-8.5 a high 
emissions future. Note that the second number in the SSPs refers to the radiative forcing at 2100 in Wm−2, as in 
the RCPs, thus although the pathways differ, RCP8.5 and SSP5-8.5 can be considered high emissions scenarios, 
while RCP2.6 and SSP1-2.6 are both very low. Unless otherwise stated, we only use those models that provide 
at least 500 years of rainfall under preindustrial conditions to ensure a good estimate of the variability in pre-
anthropogenic climate19,30. Historical simulations (CMIP5: 1900–2005, CMIP6: 1900–2014) include all-forcings 
(histALL) including volcanic eruptions, solar variability, atmospheric greenhouse gas, aerosol, and ozone changes. 
See Supplementary Tables S1 and S2 for a full list of the models and available simulations. Models’ data are also 
interpolated from their native spatial resolutions to a common 1.5° × 1.5° grid resolution using a conservative 
interpolation method51,52 prior to computing the area-averaged rainfall time-series over the South West Coast 
drainage region (Fig. 2).

Methodology
We performed Bootstrap resampling60 to estimate the likelihood of occurrence of the recent rainfall decline by 
random chance. This is done by random resampling of individual years (with replacement) of May–October 
average full historical period rainfall (120 years: 1901–2020) 10,000 times, with an assumption of zero persistence. 
This is justified as no statistically significant autocorrelation is found in the area-averaged detrended cool season 
rainfall (not shown). Then the percentage change for the last 20-year average rainfall (i.e., 2001–2020 average) 
compared to the first sixty years average rainfall (i.e., 1901–1960 average) is computed for each resample. This 
supplied 10,000 values which are used to estimate the probability density function (PDF) against which the 
actual decline is compared and the probability of occurrence due to its own statistical variability is determined.

To capture the rainfall signal over the small SWWA region in the climate models the full grid points were 
included in the spatial average (Fig. 7). They include some sub-grid points defined as ocean, however this approxi-
mation better captures the rainfall signal as there is a known climate model bias whereby rainfall is modelled 
off-shore but observations suggest that it should actually have fallen over land36.

Evaluation of climate models
The strong seasonal cycle in SWWA rainfall is a good index of whether the model processes are adequately 
representing the weather systems of the region and the shape and magnitude of each model’s seasonal cycle was 

Figure 7.   The 1.5 degree grids (a) land-sea fraction mask (LSFmask) used in the observations, where 1 mark 
fully land and zero marks fully ocean and (b) land-sea adjusted mask (LSAmask) used in the CMIP data to 
capture the bias of off-shore rainfall.
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evaluated (Fig. 8). The AGCD average is shown in black and the preindustrial in green and histALL in red. The 
range of each is shaded and the multi-model mean is in bold. The comparison of the result averaged over different 
regions is also included in the top row compared to the next. Using the wider region (middle row) improves the 
seasonal cycle of the multi-model mean. All models from both CMIP5 (left column) and CMIP6 (right column) 
represent the pattern of the seasonal cycle well and are included.

We also assess how well the models simulate year-to-year and decade-to-decade variability of SWWA rainfall 
in their historical simulations, extended with each RCP or SSP to 2020 (Fig. 9). Many of the CMIP6 models have 
similar decadal variability to observations but almost all have reduced year-to-year variability; the majority have 
reduced variability on both timescales. The CMIP5 model results are more spread, and many sit outside the range 
of observed variability, particularly in the quadrant showing reduced variability, but some models have greater 
variability than observed, while several have higher decadal variability but reduced interannual variability.

We also compared the magnitude of the very wet year (i.e., rainfall above the 90th percentile of the 1901–1960 
records) in each ACCESS-ESM1.5 ensemble member against the observations. We found that the spread for very 
wet rainfall in the ACCESS-ESM1.5 across the 40 ensemble members is large and ranges from 18 to 36% above 
the 1901–1960 average but, encompasses the observed 90th percentile of 22%.

Figure 8.   The seasonal cycle of SWWA area-averaged rainfall in the AGCD observations (black), the piControl 
(green) and the histALL (red) with the multi-model mean in bold. Each row shows which masks are applied to 
compute the area-average rainfall and are shown in the panels heading in parenthesis after the obs. and models, 
where ’LSFmask’ and ’LSAmask’ represent the masks shown in Fig. 7a and b, respectively. Vertical error bars on 
the monthly average AGCD rainfall represent the 5th and 95th percentiles confidence interval estimated using 
bootstrapping of monthly average rainfall. Left panels are CMIP5 and right are CMIP6.
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Estimation of modelled internal variability
To estimate the probability density function (PDF) of the modelled internal variability, we used climate models 
with at least 500 years of simulations under preindustrial control simulations. For each preindustrial model, we 
randomly resampled the 500-years of data 1000 times and computed the percentage change of the last 20 year’s 
average rainfall compared to the average of any non-overlapping six decades. This results in a sample of 24,000 
values (24 models times 1000) of percentage rainfall changes for CMIP5 and 25,000 values for CMIP6 (25 models 
times 1000), which is then used to estimate the relative frequency of 20-year average rainfall changes relative to 
any non-overlapping six decades due to internal climate variability. The one and two standard deviations of this 
distribution are shown in Fig. 4. This process is repeated, however this time the percentage changes in rainfall in 
20-year blocks in 500-years of pre-industrial simulations are computed relative to the long-term pre-industrial 
mean for each time and for each model. Finally, those values are used to estimate the PDF of the possible range 
of 20-year change that can arise due to internal climate variability only. This PDF and its associated statistics are 
used to estimate the timing of when the signal due to external forcing emerges from the internal variability and 
estimate the likelihood of future rainfall changes under different emission scenarios (Fig. 5).

Data availability
The datasets and codes used and/or generated in this study are stored in the National Computational Infra-
structure (NCI) repository which is supported by the Australian Government. Relevant materials are available 
from the corresponding author on reasonable request. The CMIP5 and CMIP6 data used in this study is publicly 
available through the Program for Climate Model Diagnosis and Intercomparison (https://​esgf-​node.​llnl.​gov).
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