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Accurate characterization 
of complex Bloch modes in optical 
chain waveguides using real‑valued 
computations
Maryam Ghahremani  & Mahmoud Shahabadi *

This research presents a highly accurate and easy‑to‑implement method to characterize the 
complex Bloch modes propagating along optical chain waveguides with three‑dimensional 
(3D) layered geometries and dispersive negative‑epsilon material compositions. The technique 
combines commercial EM solver results with analytical post‑processing to avoid iterative complex 
root estimation on the complex plane. The proposed methodology is based on the real‑valued 
computations that yield the complex Bloch wavevector with superior accuracy even when both 
radiation and material losses are present. In addition, we introduce a single unit‑cell technique to 
provide the possibility of dense meshing of 3D geometries when available computational resources 
are limited. To verify our results, two different plasmonic and dielectric case studies are discussed. 
The obtained results agree well with numerical and experimental results from the literature. Due to 
its generality, robustness, and high accuracy, the method is beneficial for studying a large variety of 
waveguide‑based nanophotonic components.

Periodic optical waveguides like their microwave counterparts consist of an array of identical elements separated 
by a certain distance along the wave propagation  direction1. Over recent years, different realizations of these 
waveguides have been presented in both two-dimensional (2D) and three-dimensional (3D) geometries. The well-
known examples are coupled-resonator optical waveguides (CROWs)2,3, nanoparticle chain  waveguides4,5, and 
subwavelength gratings (SWGs)6,7. They have shown several advantages in geometry and guided-mode properties 
over uniform (non-periodic) waveguides. For instance, they offer the possibility of implementing circuits with 
sharp  bends8,9 and designing filters with almost any desirable frequency  responses10. This renders them useful 
for numerous applications in integrated nanophotonic devices such as optical delay  lines11, passive  filters10,12, 
 couplers13, and  polarizers14, to name a few. To profit from periodic waveguides in the aforementioned devices, one 
needs to know the propagation characteristics of their guided Bloch modes. As an example, in the Bragg deflector 
couplers, the imaginary part of the Bloch wavevector can be used to accurately estimate the scattering strength of 
the structure which is an essential parameter for the design process. Therefore, developing a rigorous and efficient 
method for characterizing the Bloch modes in a layered waveguide subjected to open boundary conditions is 
of prime importance in the analysis and design of several optical devices. Due to its importance, this subject 
has been investigated by many researchers from the past years for simple 2D  structures15 to the present day for 
complicated 3D  structures4,16,17. In what follows, we first provide an extensive review of the existing methods.

Semi‑analytical methods
2D geometries
For a 2D optical waveguide with one-dimensional (1D) periodicity, a commonly used approach to characterize 
the Bloch eigenmodes is the Fourier modal method (FMM). A representative FMM technique is rigorous cou-
pled-wave analysis (RCWA)18 where the permittivity function of the periodic layer and EM fields are expanded 
in a Fourier series and Floquet-Fourier series, respectively. This leads to a matrix equation for the unknown 
expansion coefficients. Applying RCWA to the modal analysis of a 2D array waveguide requires determining the 
complex roots of a nonlinear  system19. Several techniques have been proposed to find these complex roots. One 
approach is a root-searching technique described in Ref.20,21, which uses an iterative algorithm like Newton’s 
method to find the unknown complex roots. To accurately compute the roots, this method depends on an initial 
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point sufficiently close to the actual roots. It also requires matrix truncations with large  values20,21 to ensure con-
vergence. A non-iterative method called the Cauchy Integration Method has also been  presented21. This finds 
complex roots in a predetermined closed region of interest but requires extra computational cost from contour 
integration over the region’s boundary. Another approach is the full-wave Source-Model Technique (SMT)15,22 
applicable to both lossless and lossy waveguides. The frequency-domain SMT uses an integral equation formula-
tion with a spectral representation of the periodic Green’s function for an array of elementary sources. It enables 
modal analysis of periodic arrays of arbitrary smooth cylinders in free  space15, or in a triple-layered  geometry23. 
Other similar methods are the generalized multipole technique (GMT)24 and the lattice sums (LS)  technique25 
for periodic waveguides. As with the above methods, the characteristic equations from these techniques must 
be numerically solved for their complex roots.

3D geometries
Depending on the structure of the periodic waveguide, several semi-analytical methods exist to calculate 
complex-valued Bloch wavenumbers. The coupled-dipole approximation (CDA) is a common semi-analytical 
method for modal analysis of a linear chain of nanoparticles (NPs) in a uniform  host26. This approach is valid for 
sufficiently small particles, or frequency ranges near the dipolar resonance, where the EM fields of the lowest-
order spherical multipoles (dipoles) dominate. A generalized dipole approximation method has recently been 
developed to identify modal properties along arbitrary-shaped NP chains in a homogeneous  medium16. However, 
considering all inter-particle interactions for lossy arrays requires analytic continuation to the domain of complex 
wavenumbers and frequencies. For a NP chain in a planar layered medium, an eigen-decomposition (ED) analysis 
has been  presented27. The ED method solves for scattering spectra over real-valued frequencies and wavenum-
bers, avoiding tedious root searching on the complex plane. The frequency bandwidth has been interpreted to 
estimate the quality factor of guided modes; however, calculating the imaginary part of the complex wavenumber 
is not possible. For coupled-resonator optical waveguides (CROWs), the guided modes can be approximated 
using an optical analogue of the tight-binding (TB) model from condensed-matter  physics2, or by means of 
transfer  matrices28. The TB model is suitable for approximate modal analysis of structures where non-nearest-
neighbor cavity couplings are negligible. For subwavelength grating (SWG) waveguides, the dispersion diagram 
can be estimated by first calculating the effective index of the waveguide. This requires exploiting approximate 
calculations from effective medium theory or the effective index  method29. To calculate the imaginary part of 
the effective refractive indices, a 3D FMM analysis based on 2D RCWA has been recently  developed30.

Numerical methods
Apart from some exceptions, the aforementioned semi-analytical techniques primarily deal with periodic wave-
guides with simple geometries. For more complex geometries, modal dispersion and attenuation can only be 
determined numerically using full-wave EM solvers. The major challenge for numerical full-wave methods is 
modeling an infinitely long periodic structure to fully account for all inter-particle interactions. To address this, 
several techniques have been introduced so far. A common technique is the numerical eigensolver  approach31 
which is capable of solving for the guided modes of periodic structures with complex geometry and arbitrary 
material composition. The eigen-solver module in COMSOL Multiphysics utilizes this approach. With this solver, 
periodic structures are simulated along a single period and the obtained complex eigenfrequencies enable cal-
culation of both the dispersion diagram and quality factor of the modes. The same modal information can also 
be generated using the finite-difference time-domain (FDTD) method, where the total power spectral density 
recorded by point-like monitors provides resonant peaks representing the establishment of an optical  mode32. 
In both the eigensolver and FDTD approaches, the spatial decay, which is related to the imaginary part of the 
complex wavenumber, has to be characterized  indirectly31,33. One strategy for this is to link the modal losses to 
the spectral bandwidth of the excited eigenmode through the group  velocity31. Only for very low levels of modal 
losses does this calculation lead to reliable loss  estimations34. Another strategy is based on full-wave simula-
tion of a finite number of unit cells with a source to view the mode profile and obtain the propagation  length33. 
However, the accuracy of this straightforward approach is limited by computational resources. Very recently, an 
iterative FEM-based technique in the frequency domain has been  presented17 that analyzes 3D geometries in a 
homogeneous environment but requires iterative searching on the complex plane.

This review surveys existing methods to calculate complex wavenumbers for guided modes in periodic optical 
waveguides. Many techniques estimate complex roots of a nonlinear characteristic equation by searching on a 
complex plane. The estimated attenuation constant is often inaccurate due to applied approximations. Accord-
ing to the authors, precise calculation of wavelength-dependent propagation loss has been limited, especially 
for 3D complex geometries.

Rather than estimating the complex roots of a characteristic equation, we derive a real-valued equation that 
governs the optical intensity on the midplane of a Fabry–Perot (FP) resonator. The resonator is formed by ter-
minating the periodic waveguide under study with two perfect mirrors. Since the derived equation contains the 
phase and attenuation constant of the guided modes, we obtain modal constants with high accuracy by fitting this 
equation to the calculated optical intensity. To reduce computational costs, we present a method that analyzes a 
single unit cell of the periodic structure. This general technique can be implemented with any electromagnetic 
solver that supports periodic boundary conditions, including finite element method (FEM) or finite-difference 
time-domain (FDTD) solvers. Our method can provide highly accurate estimates of modal attenuation constants, 
even when attenuation arises from both radiative and lossy regions within the periodic structure. No iterative 
search is required and all the electromagnetic interaction effects are considered. The method is widely applicable 
for analyzing a broad range of optical periodic structures. To demonstrate the superior accuracy and robustness of 
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our proposed method, we compare our results to Bloch modes previously characterized using other techniques, 
including the rigorous full-wave SMT  analysis23, and FDTD band structure  technique32.

Discussion
Bloch‑mode characterization
Consider the general case of an infinitely long one-dimensionally (linear) periodic waveguide consisting of 
unit-cells with arbitrary material composition being separated by a period of P along the wave propagation 
direction (the z-axis), as shown in Fig. 1a. Note that the structure is unbounded along x and y axes. For a given 
real frequency ω , our proposed method aims to characterize the proper modes of the waveguide structure in the 
presence of radiation or material losses. These proper modes are the source-free EM fields that can propagate 
along the periodicity axis with a constant Bloch wavenumber. This wavenumber is considered in the lower half 
of the complex plane when the time-harmonic function is assumed to be of the form exp 

(

+jωt
)

 , as is the case 
throughout the paper. As the modes of interest are proper, the lateral wavevector components are required to 
satisfy the radiation (outgoing-wave) condition. A formal mathematical statement of the outgoing-wave condi-
tion for periodic structures is described in Ref.35.

Proposed methodology avoiding complex root calculation
In this subsection, we propose our methodology to obtain the complex Bloch wavenumber of the propagating 
modes in periodic waveguides. This technique is based on a real-valued mathematical relation allowing straight-
forward computation of the phase and attenuation constants of guided Bloch modes. It is valid both for uniform 
and periodic optical waveguides with any particle geometries symmetrical about the central plane of the unit 
cell (see Fig. 1a). The materials composing the waveguide and/or background medium can be dispersive, i.e., 
with frequency-dependent behavior, thus dissipative. To derive the required mathematical relation, we first 
terminate the waveguide under investigation by two infinitely large perfect mirrors whose normals are parallel 
to the propagation direction such that an optical FP resonator is formed by them as illustrated in Fig. 1b. When 
the origin of the coordinate system is at the center of the resulting FP resonator, these perfect mirrors are placed 
at z = ±zp/2 . In the case of a periodic structure (Fig. 1), we have zp = NP/2 where N is a positive integer num-
ber; hence, the length of the resonator is equal to the length of N unit cells of the waveguide. In general, this reso-
nator possesses several complex natural frequencies. Their corresponding modes are eigensolutions of time-
harmonic source-free Maxwell’s equations. The complex natural frequencies of the resonator govern the 
frequency response of any transfer function defined within the resonator. In other words, the resonance line 
shapes observed for any transfer function contain modal information of the guided eigenmodes propagating 
along the optical waveguide under investigation. With this in mind, we may excite the FP resonator, for instance, 
with an infinitesimal electric dipole represented by a volume current density whose phasor is given by 
�J(�r) = I �dlδ3(�r − �rscr) in which I �dl and �r − �rscr denote the dipole moment and the location of this source, respec-
tively. When magnetic excitation is considered, the infinitesimal dipole of magnetic current is similarly given by 
�M(�r) = Imag

�dlδ3(�r − �rscr) in which Imag
�dl represents the magnetic dipole moment. Either of these two choices 

is commonly in favor of the numerical technique utilized for this problem. In this work, the selected volume 
current density is assumed to be located at the midplane of the resulting FP resonator configuration. Regarding 

Figure 1.  (a) An infinitely long one-dimensionally periodic optical waveguide consisting of dispersive unit-cells 
being separated by a period of P along the wave propagation direction (the z-axis); (b) the optical Fabry-Perot 
resonator of length L = NP which is constructed by inserting perfect mirrors M1 and M2 at symmetry planes of 
z = −NP/2 and z = +NP/2 . Here, we assume N = 11.
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the direction of the current element �dl , it should be oriented to match the polarization of the modes intended 
for the characterization. To define the transfer function, we assume that the output is the phasor of the electric 
field at a sample observation point on the midplane of the cavity, i.e., at �robs =

(

xo, yo, zo = 0
)

 . Although in 
general the choice of the excitation and observation locations on the plane z = 0 is not fundamentally important 
(this has been numerically tested by choosing multiple observation points in each case study), regions with 
expected high field values are favorable. As mentioned above, the total electric field in the resonator can be 
expanded as a linear combination of the resonator modes, i.e., as �E(�r;ω) =

∑

l

Al(ω)�El(�r;ω) where the complex 

coefficient Al(ω) is the amplitude of the l-th resonator mode whose electric field is represented by the phasor 
�El(�r;ω)

36. As the source frequency approaches the resonance frequency of a resonator mode, i.e., when ω ≈ ωl , 
where ωl stands for the real resonance frequency of the l-th resonator mode, most of the source energy is coupled 
to this mode and the coefficient Al(ω) becomes the dominant amplitude, as a result of which the total field will 
be dominated by the field of a single resonator mode �El(�r;ω).

Obviously, this resonator mode is composed of the forward and backward traveling waves of the m-
th eigenmode of the periodic optical waveguide inserted between the two mirrors. Considering the above 
fact, we can derive the optical intensity or the intensity of the electric field for the m-th eigenmode, i.e., 
Im(ω) = �Em(�robs ,ω) · �E

∗
m(�robs ,ω) on the midplane of the resonator, i.e., at the point �robs =

(

xo, yo, zo = 0
)

 . This 
leads to the real-valued relation

which is valid for ω ≈ ωl . In this relation, αm(ω) and βm(ω) are the attenuation and phase constant of the m-th 
eigenmode of the periodic optical waveguide under investigation, respectively, Cm is a constant real coefficient, 
and L denotes the resonator length. In deriving Eq. (1), we have assumed an electric current density on the reso-
nator midplane; consequently, perfect magnetic mirrors are placed on both ends of the FP resonator. Further 
details of the above derivation are given in “Methods”. Equation (1) enables us to characterize modal properties 
of an optical waveguide from the sole knowledge of the electric field intensity on the midplane of a FP resonator 
as a function of frequency ω . After careful examination of Eq. (1), we realize that the maxima of this real-valued 
function occur at the real value ω for which

where k is an even integer number. The value of k is determined from the number of extrema of the established 
standing-wave pattern between the two mirrors. The phase constant of the m-th eigenmode of the periodic 
optical waveguide can thus be calculated using Eq. (2). Note that the spatial mode profiles are simultaneously 
monitored to distinguish different guided modes. For a given resonator length L, this approach determines the 
phase constant at specific frequencies. By analyzing the cavity for various lengths, we can arrive at additional 
points on the dispersion diagram and improve its frequency resolution. Having determined the modal dispersion 
characteristics, we are now able to calculate other modal properties independently and through the frequency 
lineshape of the excited resonance modes. To this end, we expand the phase constant βm(ω) and the attenuation 
constant αm(ω) in the vicinity of the resonance frequency of the FP resonator (that is ωl ) in terms of a truncated 
Taylor series as

These expansions are substituted in Eq. (1). Thus, the optical intensity in the vicinity of the resonance peak 
at ω = ωl is approximated by

where vg (ω) = dω/dβm represents group velocity of the propagating eigenmode. The remaining modal param-
eters will thus be determined by fitting Eq. (5) to the computational data obtained using any full-wave EM solver. 
The fitting procedure is explained in “Methods” section.

Any guided modes excitable through the applied current source can be characterized by the proposed tech-
nique. For the ideal case of a completely lossless structure with no radiation leakage or material dissipation, i.e., 
αm(ω) = 0 , resonance modes exhibit extremely narrow linewidth. Identifying such modes necessitates precise 
wavelength scanning in the computationally generated spectral response. The purely evanescent modes, i.e., 
βm(ω) = 0 , located within the stop band region represent cut-off waveguide modes. These modes can couple 
to the applied current source; however, they do not form standing waves along the resonator. As a result, they 
cannot be characterized by using Eq. (1).

(1)Im(ω) =
Cme

+αm(ω)L

cosh (αm(ω)L)− cos (βm(ω)L)

(2)βk(ω) =
k π

L

(3)βm(ω) ≈ βm(ωl)+ (ω − ωl)
dβm(ω)

dω

∣

∣

∣

∣

ω=ωl

(4)αm(ω) ≈ αm(ωl)+ (ω − ωl)
dαm(ω)

dω

∣

∣

∣

∣
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(
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As mentioned previously, the focus of this work is to obtain the complex propagation constant of the Bloch 
eigenmodes propagating along periodic optical waveguides. From the computational point of view, however, to 
numerically analyze a 3D resonator involving N unit cells is challenging as the large structure meshing influences 
the accuracy of the final results and the required computational resources. This becomes more crucial in the case 
of waveguides composed of plasmonic materials or complex geometries where a higher number of mesh cells 
is required. To avoid the possible cost of dense meshing and high computational resources, in what follows, we 
propose an alternative approach to restrict the computation to a single unit cell.

Synthetic realization of an FP resonator using a finite number of unit‑cell analyses
This section presents a numerical technique that enables us to replace the analysis of an FP resonator made of 
N unit cells (Fig. 1b) with the analysis of a single unit cell N times. There are computational advantages to this 
approach. Even though we have to perform a number of analyses that match the number of unit cells in the 
original FP cavity, the computational effort remains strictly proportional to the number of unit cells. However, 
the computation time required for a single unit cell is much smaller than this time for the full model containing N 
unit cells. Furthermore, our proposed method realizes infinitely large end mirrors whereas a direct computation 
of an FP resonator with N unit-cells models finite-size end mirrors. Hence, this synthetic but exact realization of 
an FP resonator is the main advantage of the analysis to be introduced in what follows.

To describe the method of analysis, we consider an arbitrary symmetrical unit cell, such as the one depicted 
in Fig. 1a. The central unit-cell whose central plane coincides with the midplane of the original FP resonator 
(z = 0) is excited using a volume current density given by �Ju(�r) and defined within a unit cell, i.e., for |z| < P/2 . 
The current density �Ju(�r) is assumed to be zero otherwise. Now, for the realization of an FP resonator of length 
L = NP , the periodic boundary condition is enforced at the planes z = ±P/2 where the phase difference between 
the two planes is assumed to be �φn = 2nπ/N . For every integer value n, by enforcing this periodic boundary 
condition, one realizes a current distribution according to the relation

The EM field generated by �Jn
(

x, y, z
)

 is stored at the observation points across the unit cell. This computation 
is carried out N times for n = 0, 1, . . . ,N − 1 . Note that the normalized superposition of the current distribu-
tions given by (6) will be

for |z| < P/2 and will be zero elsewhere in the FP resonator. In general, it can readily be shown that 
�Jtotal

(

x, y, z
)

= �Ju
(

x, y, z − n′P
)

 where n′ assumes the integer values {0, ± N , ± 2N , . . .} . The total current 
density �Jtotal

(

x, y, z
)

 is zero elsewhere. Therefore, the only nonzero current sources will be inside the unit cells 
whose central planes are at z = 0, ± NP, ± 2NP , etc. In other words, the infinitely long periodic waveguide is 
excited with an array of sources whose period is a multiple integer N of the waveguide period. According to the 
image theory, this is equivalent to the excitation of an FP resonator of length NP at its midplane with perfect 
mirrors located on z = ±NP/2 . It should be noted that the mirrors have infinitely large areas and can be forced 
to be either perfect electric conductors (PEC) or perfect magnetic conductors (PMC) depending on the proper-
ties of the driving current density �Ju(�r) existing in the central unit cell.

The above analysis also provides the spatial distribution of the EM fields within the synthetically realized 
FP resonator. Let �En

(

x, y, z
)

 be the phasor of the electric field generated by �Jn
(

x, y, z
)

 and stored for a given 
n at specific observation points across the FP resonator, that is for |z| < NP/2 . According to the principle of 
superposition, when the waveguide is made of linear time-invariant materials, we can determine the response 
to �Jtotal

(

x, y, z
)

 using the relation

In summary, by applying the aforementioned formulations to the numerical results obtained from N single 
unit-cell analyses, we can obtain the EM field inside the synthetically realized FP resonator terminated with infi-
nitely large perfect end mirrors. From Eq. (1), we only require the total electric field on the midplane of the FP 
resonator whence both the phase and attenuation constant of the waveguide Bloch eigenmodes can be calculated.

Numerical results
To verify our numerical technique, in this section, two different plasmonic and dielectric structures are analyzed 
to determine their Bloch modes. The obtained results are compared to the Bloch modes previously calculated by 
the rigorous full-wave frequency-domain methods. For both examples, the cavity configuration is realized using 
the single unit cell analysis explained in the previous section. To obtain the cavity frequency response (transfer 
function), the structure under investigation is excited using an infinitesimal electric or magnetic dipole depend-
ing on the mode profile to be characterized. This excitation current is located on the midplane (z = 0) of the FP 
cavity. The generated EM field is then monitored at a well-chosen sample point on the cavity midplane to probe 
the cavity frequency response as a function of source frequency. The point probe detects the field intensity at the 
probe position. Through analyzing the obtained frequency response, the modal properties of various propagating 

(6)�Jn
(

x, y, z
)

=

+∞
∑

q=−∞

�Ju
(

x, y, z − qP
)

exp(−jq�ϕn)

(7)�Jtotal(x, y, z) =
1

N

N−1
∑

n=0

�Jn(x, y, z) = �Ju(x, y, z)

(8)�Etotal(x, y, z) =
1

N

N−1
∑

n=0

�En(x, y, z)
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Bloch modes of the periodic waveguide can be characterized at discrete frequencies. Not only does our method 
of analysis avoid tedious searching of the roots in a complex-number plane, a method that has been widely used 
in the existing literature, but also provides the value of propagation loss with superior accuracy.

All of the following full-wave simulations are performed in the platform of COMSOL MultiphysicsTM by 
utilizing four cores of a 64-bit PC (Intel quad-core CPU with 2.83 GHz clock speed and 24 GB RAM). The per-
fectly matched layer (PML) absorbing  boundaries37 are incorporated into the cavity structure to emulate open 
boundary conditions and to truncate the computational domain. The PML layers are positioned �/2ns away from 
the substrate and superstrate where � is the longest wavelength in the specified range and ns denotes refractive 
index of the layer. The excitation sources are chosen as an infinitely long out-of-plane line source for 2D and 
as a point dipole for 3D chain waveguides. The periodic Floquet boundary condition is applied on the unit cell 
planes perpendicular to propagation to account for inter-cell effects. To achieve the synthetic realization of the 
FP resonator with the length of L = NP , a single unit cell is simulated N times with the Floquet k-vector defined 
as kn = 2nπ/NP with n ∈ 0, . . . ,N − 1 providing the required phase difference among excitation sources. The 
fields from these unit cell simulations are extracted and post-processed using the equations discussed in the 
previous section to determine properties of the corresponding FP resonator.

Linear chain of plasmonic nanowires embedded in a triple‑layered structure
As an example of a possible periodic configuration of interest within the frame of the present work, the case of 
a 2D plasmonic optical waveguide (invariant in the out-of-plane direction, i.e., the x-axis) is considered. The 
structure is composed of a linear chain of metallic nanowires (NWs) embedded in a triple-layered structure, as 
illustrated in Fig. 2a. In this example, we compare the results obtained using our method with those provided by 
the available rigorous analysis. The rigorous full-wave frequency-domain SMT method has been chosen to make 
such a  comparison23. The prime reason motivating us to discuss this example is to confirm that our proposed 
approach can generate highly accurate results for optical plasmonic array waveguides which are more complicated 
in terms of analysis than all-dielectric counterparts.

The NWs are assumed to be made of silver whose equivalent complex permittivity follows empirical data 
reported by Johnson and  Christy38. The radius of NWs is chosen as R = 20 nm, and the period of the chain is 
P = 50 nm. The refractive index data for the silicon slab is adopted  from39, and its thickness is taken as h = 10 
R. The silicon layer is deposited on a half-space glass substrate with nglass = 1.52 at y = −5 R while the upper 
layer is air (see Fig. 2). The properties of the excitation current should be deliberately chosen to match the 
spatial field profile of the resonance modes intended for study. Here, we are seeking the propagation proper-
ties associated with the first two TM-polarized guided modes of the structure. Thus, the structure is excited 
using an infinitesimal electric dipole represented by �J  which is located on the central plane of the unit cell and 
oriented parallel to the y-axis inside the Si slab, as illustrated in Fig. 2b. Due to the exciting current pattern, 
a non-zero distribution of the electric field on the midplane of the synthesized FP resonator is ensured. Only 
resonance modes with spatial field distribution accurately congruent with the imposed excitation current will 
be strongly excited and made observable. Modes mismatched to the current in their field configurations may 
not be appreciably excited. As both the L-mode and T-mode exhibit y-directed electric field amplitude centered 
on the midplane of the FP resonator, this current source will effectively drive both modes. The constructed FP 
configuration corresponds to Fig. 9a discussed in “Methods”. The normalized source frequency ωL/2πc is swept 
over the spectral range of interest for a given value of N. The complex y-component of the electric field phasor, 
i.e., Ey(�robs ,ω) with �robs = (xo, yo, z = 0) , is computed where the observation point �robs is located inside the Si 

Figure 2.  (a) A periodical array of plasmonic nanorods with a period of P resided in a silicon slab with a 
thickness of h = 10R . The Si slab is deposited on a glass substrate with a refractive index of nSiO2

= 1.51 at 
y = −5R and is covered by air. The structure is adopted from Ref.23. (b) Schematic diagram representing full-
wave simulation configuration of a unit cell of the periodic waveguide which illustrates location of the enforced 
driving source. Configuration of the required FP cavity is realized by synthetically analyzing this single unit cell.
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slab. Figure 3 represents the spectrum of the electric field intensity, i.e., I(ω) = Ey(�robs ,ω)E
∗
y (�robs,ω) , for N = 8 . 

To characterize the Bloch-mode phase constant associated with each of the observed resonance frequencies, we 
have determined the EM field pattern of the established standing wave on the longitudinal section of the resona-
tor. For this purpose, the x-component of the magnetic field at the observed resonances is computed; the results 
are depicted in Fig. 4. The obtained field profiles belong to the two first TM-polarized modes of the waveguide, 
i.e., longitudinal mode (L-mode) and transverse mode (T-mode), which are to be characterized in this section. 
The spectral response at shorter wavelengths is required to identify higher-order TM modes.

Repeating similar procedure for different values of N (different lengths of the FP resonator), we have arrived 
at the dispersion diagrams for both of the L- and T-modes. The obtained numerical results are shown in Fig. 5a. 
They agree very well with those provided by the SMT  technique23. Using the determined dispersion diagram 
along with the simulated resonance linewidth, we calculate the remaining modal parameters including the Bloch-
mode attenuation constant and group velocity in what follows. According to “Methods”, the optimal initial guess 
values of the group velocity at resonance points are first found by approximating Eq. (26) as

where the unknown constant coefficients are calculated by fitting this model to the actual dispersion data obtained 
for both modes. It can be seen that the fitted curves (the red dotted lines shown in Fig. 5b) match closely to those 
numerically determined so that the constants for the L-mode are obtained as c1 = 3.91 , c2 = 16.99 , c3 = 3.91 , 
c4 = −25.11 , c5 = 7.235 , and for T-mode are obtained as c0 = 3.43 , c1 = −9.05 , c2 = 24.85 , c3 = −29.056 , 
c4 = 16.48 , c5 = −3.69 . Therefore, the optimal initial guess value for the group velocity at each resonance fre-
quency is provided by Eq. (9). The Bloch-mode attenuation constant and group velocity can thus be straightfor-
wardly extracted by fitting the transfer function given by Eq. (5) to the computed intensity spectra in the vicinity 
of the resonances. The fitted curves are depicted as the red dotted lines in Fig. 3.

Having accomplished a similar analysis for different values of N (i.e., different resonator lengths), we have 
calculated the attenuation constant and group velocity versus frequency, as shown in Fig. 5c,d, respectively. Our 
obtained attenuation constants align with those calculated in Ref.23 (purple blocks) using the SMT technique.

Linear chain of high‑index dielectric nanoparticles on a quartz substrate
In our second example, we study modal properties of a linear chain of high-index cylindrical dielectric nanoparti-
cles located on a quartz substrate (Fig. 6) operating at near-infrared (NIR) wavelengths. Here, we are motivated to 
narrow the modal analysis of this example to a single unit cell simulation and generate highly accurate data using 
our proposed solution scheme as we confirmed in the previous example. To examine the numerical accuracy, 
our obtained results for the Bloch mode dispersion and attenuation are compared with those we have calculated 
using the FDTD band structure  method32 and the measurement data provided  by33, respectively.

A schematic of the investigated waveguide is shown in Fig. 6a, where an infinitely long linear chain of Si 
cylindrical nanoparticles with a diameter D, a height H of 220 nm, and a gap of 50 nm (P = D + G) are placed on 
top of a SiO2 substrate. Silicon material parameters are taken from Ref.40 while the SiO2 layer has been assumed 
non-dispersive in the spectral range of interest and modeled by a real refractive index of 1.45. The dominant 
transmission mode of this chain is the transverse magnetic (TM-like) mode. For the presented geometry, there 

(9)1
k0P

= f (βP) ≈ c0 +
c1
βP + c2

(βP)2
+ c3

(βP)3
+ c4

(βP)4
+ c5

(βP)5

Figure 3.  Simulated electric field intensity spectrum of the first two TM-polarized propagating modes which 
is monitored at a sample observation point 

(

xo, yo, z = 0
)

 for the FP cavity of length L = 8P (N = 8) with the 
choice of R = 20 nm and P = 50 nm. The required FP cavity configuration is realized using synthetic analyses 
of a single unit cell whose central plane coincides with the plane of z = 0 , as explained in the previous sections. 
In terms of the driving source parameters, an infinitesimal electric dipole is employed inside the Si slab which 
flows parallel to the x-axis and is located on the central plane of the unit cell. A high-resolution simulation has 
been carried out close to the resonance frequencies to locally trace the exact spectral line shapes of the excited 
resonance modes. The red dotted lines represent fitting of our proposed model (i.e., Eq. (5)) to the intensity 
spectrum near the resonance frequencies.
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are two similar TM modes, one for vertically oriented (parallel to the cylinder axis) and one for horizontally 
oriented (perpendicular to both the cylinder axis and the propagation direction) dipole modes of the cylindrical 
particles. The mode for the horizontal dipoles (along the x-axis) is the one to be investigated in this study. To that 
end, we excite the single unit cell of the structure with an infinitesimal x-directed magnetic dipole, i.e., with the 
magnetic current density �M located on the central plane of the unit cell inside the Si nanoparticle, as shown in 
Fig. 6b. Taking the waveguide symmetry into account, we only analyze one-half of the structure after employing 
a perfect magnetic wall on the symmetry plane x = 0 . This will save the computational resources and reduce the 
computation time significantly. For a given value of N, the normalized source frequency ωL/2πc is being evenly 
discretized. The synthesized FP configuration in this example corresponds to Fig. 9b discussed in “Methods”. We 
extract the complex y-component of the magnetic field, i.e., Hy(�robs ,ω) , where �robs = (xo, yo, z = 0) is a sample 
observation point with (xo, yo) is positioned inside the Si nanoparticle. Figure 7a represents the spectrum of the 
corresponding magnetic field intensity, i.e., I(ω) = Hy(�robs ,ω)H

∗
y (�robs ,ω) , when N = 8 . Two resonant peaks 

are visible in the chosen wavelength range. To characterize the Bloch-resonance frequencies, based on Eq. (2), 
the EM fields on a longitudinal section of the resonator are computed. In this regard, the spatial distributions 
of ẑ component of the electric field phasor at the above resonance frequencies are computed using Eq. (8) and 
shown in Fig. 7b,c. Final dispersion diagram of the desired TMx-polarized Bloch mode is retrieved With the 
same calculations for different values of N (Fig. 8a). In the same figure, the obtained results are compared with 
those we have calculated using the numerical FDTD band structure  calculations33.

To evaluate the remaining modal parameters, the simulated spectral response has been fitted to the proposed 
model (Eq. 5) near the observed resonances. Firstly, the optimal initial guess value for the group velocity is 
explored by fitting the approximate dispersion relation of Eq. (9) to the obtained dispersion diagram (Fig. 8b). The 
unknown constants are computed as c0 = 12.77 , c1 = −144.7 , c2 = 676.3 , c3 = −1558 , c4 = −1765 , c5 = −778.9 . 
Thus, the attenuation constant and group velocity of the desired mode are straightforwardly characterized at 
resonance frequencies. The obtained results are compared with the results presented in Ref.33 (Fig. 8c). This 
diagram shows a reasonable agreement although there is a wavelength shift to longer wavelengths. This shift is 
rather expected and most probably originates from the difference between the material permittivities used in 

Figure 4.  Normalized x-component of the magnetic field at resonance frequencies observed in the spectrum 
of Fig. 3: (a–d) T-mode, (e) and (f) L-mode. Using the obtained field profiles, the longitudinal mode number is 
determined to calculate the phase constant corresponding to each resonance frequency according to Eq. (2).
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Ref.33 and those assumed in our simulations. The material parameters in Ref.33 were taken from ellipsometric 
measurements of the deposited films while the data reported by Ref.40 are adopted in this study. Figure 8d illus-
trates that the group velocities obtained using our proposed approach (blue circles), i.e., fitting Eq. (5) to the 
resonance line shapes observed in the frequency response of FP cavity, are well compared with those character-
ized using the approximate model of Eq. (9). The numerical results of this second example confirm, once again, 
that our proposed solution scheme based on a single unit-cell analysis is capable of characterizing complex modal 
properties of guided Bloch modes, even for 3D complicated geometries.

Conclusion
Determining the propagation characteristics of guided Bloch modes is essential for exploiting periodic wave-
guides in nanophotonic devices. This paper first presents a comprehensive overview of existing techniques. 
Semi-analytical techniques require complex-root search, suffer from high computational costs, and are limited 
to simple geometries. Full-wave EM solvers yield phase constant but not accurate attenuation constant for open 
structures. The technique proposed in this research accurately calculates both the phase and attenuation constants 
from a real-valued function predicting optical intensity in a Fabry-Perot resonator. In other words, it combines 
the numerical results of commercial solvers with analytical post-processing for determination of complete dis-
persion diagrams. A single unit-cell technique is also presented to avoid high computational loads. For 2D and 
3D radiative waveguides, our numerical results match literature values.

Methods
Derivation of the optical intensity spectrum
Let us assume that the FP resonator of Fig. 1b is an optical periodic waveguide terminated by two infinitely 
large PMC planes, as shown in Fig. 9a. As we have mentioned before, this FP resonator is composed of periodi-
cally repeated elements each symmetrical about the central plane of the unit cell. The resonator is excited by an 
electric current density located on the resonator midplane. When the excitation frequency is close to ωl , i.e., 
the resonance frequency of the l-th mode of the FP resonator, the EM field inside the FP resonator is dominated 
by the corresponding mode field of the optical periodic waveguide. Hence, the total EM field can be viewed as 
a superposition of multiple forward and backward traveling waves each of which governed by that particular 
eigen-mode of the optical periodic waveguide which is dominant at ω = ωl . We assume that this eigen-mode 
is the m-th mode of the optical periodic waveguide which has a complex propagation coefficient given by 
γm(ω) = αm(ω)+ jβm(ω) . Under the above assumption, the infinite series of forward-traveling waves begins 

Figure 5.  (a) Calculated phase constants of the first two TM-polarized guided modes (L and T modes, 
respectively) of the structure under consideration (Fig. 2) which are obtained through analyzing the synthesized 
FP resonator for different lengths (blue and green circles) and are compared with those provided by rigorous 
SMT  technique23 (purple blocks). (b) Fitting our approximate model of the dispersion relation presented by Eq. 
(9) to the phase constants calculated by our proposed method. (c) attenuation constant, and (d) group velocity 
calculated for the afore-said parameters.
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with �E+m,0

(

�robs,1
)

 as the complex amplitude of the m-th eigen-mode of the optical periodic waveguide. It is meas-
ured on the right-hand side of z = 0 plane at the observation point �robs,1 =

(

xo, yo, zo = 0+
)

 , and travels to the 
right (designated by the superscript “+”). The complex amplitude of the succeeding forward-traveling wave, i.e., 
after a complete round-trip, can be formulated as

where ŴPMC = 1 is the reflection coefficient of the PMC mirrors, and L is the resonator length ( L = NP for peri-
odic waveguides). Following the same procedure, the complex amplitudes of the next forward-traveling waves 
can be determined. The total forward-traveling electric field of the m-th eigenmode at the position of �robs,1 is 
denoted by �E+m

(

�robs,1
)

 and can be calculated as the sum of an infinite geometrical series. The result of this sum is

The total field returning from the PMC mirror on the right-hand side and traveling to the left (indicated in 
Fig. 9a by the superscript “-”) is obviously given by

at �robs . Therefore, the total electric field of the m-th eigenmode on the right-hand side of z = 0 , i.e., at �robs,1 is 
obtained as

(10)�E+m,1

(

�robs,1
)

= Ŵ2
PMC exp (−2γmL)�E

+
m,0

(

�robs,1
)

(11)�E+m
(

�robs,1
)

=
1

1− Ŵ2
PMC exp (−2γmL)

�E+m,0

(
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)

(12)�E−m
(
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)

= ŴPMC exp (−γmL)�E
+
m

(
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)

Figure 6.  (a) Schematic view of the investigated array waveguide consisting of Si cylindrical nanoparticles with 
a diameter D and a height H of 220nm. The particles reside on top of a quartz substrate with a period of P along 
the wave propagation direction (z-axis). A gap of 50 nm exists between two neighboring nanoparticles. (b) 
Schematic diagram representing single unit cell simulation configuration in which location of the applied source 
is illustrated. The synthetic FP resonator is realized by numerical analyses of this single unit-cell (c) Schematic 
representation of z = 0 cross-section of the unit cell.
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Figure 7.  (a) Simulated intensity spectrum of the FP resonator of length L = 8P(N = 8) constructed 
from the periodic waveguide shown in Fig. 6a. This spectrum is monitored at an observation point on 
the resonator midplane 

(

xo, yo, z = 0
)

 with the parameters of D = H = 220 nm and g = 50 nm. The FP 
resonator is synthesized using the single unit cell analysis. As for the structure excitation, an infinitesimal 
x-directed magnetic dipole is applied inside the Si nanoparticle. The red dotted lines represent fitting of our 
proposed model (i.e., Eq. (5)) to the intensity spectrum near resonance frequencies. Normalized z-component 
(longitudinal) of the electric field for the TMx-polarized guided mode at the two resonance frequencies R1 (b) 
and R2 (c) observed in the frequency response.

Figure 8.  (a) Modal dispersion diagram of the fundamental TMx-polarized guided mode which propagates 
along the Si nanoparticle chain waveguide shown in Fig. 6. The numerical results obtained using our proposed 
method (blue circles) are compared with those we have calculated using the FDTD band structure technique 
(solid purple line). (b) Fitting our model of the dispersion relation (Eq. 9) to the phase constants achieved by our 
proposed method to compute the unknown coefficients. (c) Modal loss calculation of the fundamental TMx-
polarized guided mode. Our numerical results (blue circles) compare well with those presented in Ref.33 (red 
circles) except for a wavelength shift. (d) Blue circles represent group velocities calculated using our proposed 
method which are thoroughly matched to the results obtained using Eq. (9) (dotted line).
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Similarly, the total electric field of the m-th eigenmode on the left-hand side, i.e., at �robs,2 =
(

xo, yo, zo = 0−
)

Accordingly, the total electric field of the m-th eigenmode at an observation point on the resonator midplane, 
i.e., at �robs =

(

xo, yo, zo = 0
)

 is given by �Em(�robs) =
[

�Em
(

�robs,1
)

+ �Em
(

�robs,2
)]/

2 . The initial electric fields on 
the right-hand side of the plane z = 0 can be decomposed in the transverse and longitudinal components, i.e.,

where u being a linear combination of x̂ and ŷ represents the transverse components of the electric field. Due to 
the existing symmetry about the resonator midplane, one can obtain the total electric field on the midplane as

As a consequence, the electric field intensity at a sample observation point on the midplane is obtained using 
the relation 

∣

∣�Em(�robs)
∣

∣

2
= �Em(�robs) · �E

∗
m(�robs) as

where Cm is a real-valued constant.
In the dual case, we assume the FP resonator under investigation is terminated by two PEC planes and 

is excited by a magnetic current density located on the resonator midplane (as shown in Fig. 9 (b)). Here, 
�H+
m,0

(

�robs,1
)

 plays the role of �E+m,0

(

�robs,1
)

 ; therefore, the dual relation of Eq. (10) can be formulated as

and the dual relation of Eq. (11) is

Again, the dual relation of Eq. (12) is given by
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Figure 9.  Longitudinal cross-section of the constructed FP resonator illustrated in Fig. 1b. (a) The structure 
is terminated by two infinitely large PMC planes and is excited by an electric current density on the resonator 
midplane, (b) The dual problem when the FP resonator is terminated by two infinitely large PEC planes and is 
excited by a magnetic current density on the resonator midplane.
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Therefore, the total magnetic field of the m-th eigenmode on the right-hand side of z = 0 at �robs,1 is obtained as

Similarly, the total magnetic field of mode m on the left side at �robs,2 =
(

xo, yo, zo = 0−
)

 can be written as

The dual relation of Eq. (15) is

which results in

Consequently, the magnetic field intensity at a sample observation point on the midplane �robs is obtained 
using the relation 

∣

∣ �Hm(�robs)
∣

∣

2
= �Hm(�robs) · �H

∗
m(�robs) as

where Dm is a real-valued constant.
It should be noted that the reflection coefficient for the tangential magnetic field ŴH

PEC satisfies ŴH
PEC = −ŴPEC 

whereŴPEC refers to the reflection coefficient for the tangential electric field.

Calculation of the group velocity
As explained previously, the attenuation constant and group velocity of the Bloch modes are evaluated by fitting 
Eq. (5) to the optical intensity spectrum obtained by means of a full-wave simulation. For instance, the nonlinear 
optimization toolbox available in MatLab can be utilized for this purpose. However, to carry out a nonlinear 
fitting process, one requires the initial guess values as close as possible to the actual value in order to achieve fast 
convergence with the desired numerical accuracy. Here, there is the possibility of finding a proper initial guess 
for the group velocity vg by using the calculated dispersion diagram. To this end, we model the dependence of 
the propagation phase constant on the frequency ω by

where k0 = ω/c is the wavenumber in vacuum and c is the speed of light. We readily fit the above analytical 
function to our computationally calculated dispersion diagram. The group velocity as a function of frequency 
can thus be approximated directly using the relation vg (ω) = dω/dβ . This leads to a highly accurate value for 
vg at resonance frequencies, and simplifies the curve fitting procedure for obtaining the attenuation constant. 
This leads to a highly accurate value for vg at resonance frequencies and simplifies the curve-fitting procedure 
for obtaining the attenuation constant.

Data availibility
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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