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Application of machine learning 
models in the capacity prediction 
of RCFST columns
Khaled Megahed  , Nabil Said Mahmoud  & Saad Elden Mostafa Abd‑Rabou *

Rectangular concrete-filled steel tubular (RCFST) columns are widely used in structural engineering 
due to their excellent load-carrying capacity and ductility. However, existing design equations often 
yield different design results for the same column properties, leading to uncertainty for engineering 
designers. Furthermore, basic regression analysis fails to precisely forecast the complicated relation 
between the column properties and its compressive strength. To overcome these challenges, this 
study suggests two machine learning (ML) models, including the Gaussian process (GPR) and the 
extreme gradient boosting model (XGBoost). These models employ a range of input variables, such 
as the geometric and material properties of RCFST columns, to estimate their strength. The models 
are trained and evaluated based on two datasets consisting of 958 axially loaded RCFST columns and 
405 eccentrically loaded RCFST columns. In addition, a unitless output variable, termed the strength 
index, is introduced to enhance model performance. From evolution metrics, the GPR model emerged 
as the most accurate and reliable model, with nearly 99% of specimens with less than 20% error. In 
addition, the prediction results of ML models were compared with the predictions of two existing 
standard codes and different ML studies. The results indicated that the developed ML models achieved 
notable enhancement in prediction accuracy. In addition, the Shapley additive interpretation (SHAP) 
technique is employed for feature analysis. The feature analysis results reveal that the column length 
and load end-eccentricity parameters negatively impact compressive strength.

A concrete-filled steel tube (CFST) is a composite structural element composed of a steel tube and an inner 
concrete infill to optimize the usage of the two materials, resulting in favorable mechanical behavior over con-
ventional reinforced concrete or pure steel elements. The confinement provided by the steel tube enhances the 
concrete capacity and ductility, while the infill concrete restrains the inner local buckling of the steel tube1,2. 
Therefore, CFST columns are highly employed for their exceptional strength and excellent performance, making 
them the most suitable choice in many construction applications, such as buildings and bridges.

Many experimental studies have been conducted to understand the axial behavior of CFST columns3–5. In the 
early loading stage of CFST columns, no significant interaction stress is created between the outer tube and the 
concrete infill6 as the lateral strain of steel material is higher than that of concrete at the beginning of loading. 
However, as the loading progresses, concrete volume rapidly increases at the elastic–plastic stage, reducing the 
separation and activating confining stresses. These confining stresses increase gradually until the peak load is 
reached and a large contacting pressure is formed6. The post-peak behavior mainly depends on the confinement 
provided by the outer tube7. It was noticed that increasing the thickness of the steel tube and using relatively 
low-strength concrete can enhance the ductility and post-peak performance of CFST columns6.

Compressive resistance stands as the primary mechanical characteristic of CFST columns. Due to the complex 
behavior of CFST columns, exploring various techniques to extract their compressive resistance can facilitate the 
comprehension of their behavior. The most commonly used techniques for predicting the compressive strength 
of CFST columns are experimental investigation and finite element analysis8,9. While experimental analysis 
yields valuable findings, it is both labor-intensive and costly. Furthermore, finite element analysis requires high 
computational resources, a comprehensive understanding of the complex behavior of concrete material under 
confinement, and appropriate modeling of the concrete-steel interface. Many design codes are available for 
predicting compressive strength CFST columns, including Eurocode 410 and AISC 360-2211. However, it should 
be noted that they have specific application scopes and produce different results due to the restricted nonlinear 
mapping between the inputs and outputs, raising concerns about their prediction accuracy.
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The machine learning (ML) technique can be employed as an alternative to predict the axial capacity of 
RCFST columns. ML has emerged as a promising tool to tackle complicated problems by conserving resources 
using existing experimental tests and lessening the necessity for additional testing12–17. Recently, many studies 
have employed various ML algorithms, including artificial neural networks (ANNs), support vector regression 
(SVR)18, and Gaussian process (GPR)19, to develop empirical formulas and statistical models for predicting the 
compressive strength of RCFST columns based on experimental tests collected from the literature and have 
provided positive satisfactory outcomes20–26.

For example, Ahmadi et al.12,13 employed ANN to predict the compressive resistance of short CFST columns 
and derived a design expression for axially loaded CFST columns. Du et al.14 utilized ANNs to forecast the ulti-
mate capacity of stub rectangular concrete-filled steel tube (RCFST) columns using 305 specimens collected from 
the literature. Le et al.15 used ANNs to predict the axial load strength of square and rectangular CFST columns 
using a dataset of 880 specimens. Tran et al.16 used a database of 300 axially loaded experimental tests to compute 
the axial capacity of the squared CFT column using ANNs. Furthermore, Zarringol et al.17 utilized four separate 
databases for predicting the compressive resistance of circular and rectangular CFST columns under axial and 
eccentric loading and proposed empirical equations and strength reduction factors to facilitate practical design 
applications. Le20 proposed a GPR-based ML model for the ultimate strength of square CFST columns. In addi-
tion, Naser et al.21 employed a genetic algorithm (GA) and gene expression programming (GEP) for extracting 
the strength of rectangular and circular CFST columns using 3103 test results. Nguyen et al.23,24 proposed two 
ANN models trained with 99 concentrically loaded and 662 eccentrically loaded rectangular CFST specimens. 
Memarzadeh et al.25 predicted the axial capacity of square CFST specimens by training GEP and ANN models 
using 347 axially loaded rectangular CFST specimens. Wang et al.26 trained three models, including SVR, ANN, 
and random forest (RFR) models, to predict the strength of eccentrically loaded rectangular CFST specimens. 
Table 1 summarizes the recent machine learning models in predicting square and rectangular CFST column 
strength.

Table 1.   Summary of recent machine learning models for predicting the strength of square and rectangular 
CFST columns. * λg is the global slenderness ratio, EIs, EIc, are the flexural stiffness of steel and concrete 
materials, respectively. Npl is the sum of strength of steel and concrete material defined in Eq. (11).

Reference
Loading (number)
Type [Split ratio%] Models Input (output) Statistical criteria

Ren22 Concentric (180)
Square [70:30] SVR, PSO L, H, t, fy, fc’, Ec, Es (Pu)

(Train) R2 = 0.932, MAPE% = 14.3, MAE = 239, 
RMSE = 314
(Test) R2 = 0.914, MAPE% = 14.5, MAE = 227, 
RMSE = 304

Tran16 Concentric (300)
Square [85:15] ANN L, H, t, fy, fc’ (Pu) R2 = 0.99599, MSE = 0.011535

Nguyen23 Concentric (99)
Rectangular [80:20] ANN H, B, t, L, fy, fc’ (Pu) R2 = 0.978, RMSE = 47.9. MAE = 49.2,

Zarringol17
Concentric (895)
Eccentric (392)
Rectangular [85:15]

ANN L,
√
B2 +H2 , t, fy, fc’ (Pu) Concentric: R2 = 0.99, μ = 1.0, CoV = 0.138

Eccentric: R2 = 0.9959, μ = 1.0, CoV = 0.107

Le20 Concentric (314)
Square [70:30] GPR B, B/t, L/B, fy, fc’ (Pu) R2 = 0.97, RMSE = 377.3kN, MAE = 257.8kN, 

MAPE = 17.55,

Nguyen24 Eccentric (662)
Rectangular [80:20] ANN H, B, t, L, fy, fc’, e (Pu) R2 = 0.994, MSE = 0.506, RMSE = 0.225, 

MAPE% = 12.1

Naser21
Concentric (979)
Eccentric (394)
Rectangular [70:30]

GA, GEP L, H, B, t, fy, fc’, et, eb (Pu)

Concentric μ(GA) = 1.02, μ(GEP) = 1.06, 
CoV(GA) = 0.13, CoV(GEP) = 0.15
MAE(GA) = 202, MAE(GEP) = 238, 
RMSE(GA) = 295, RMSE(GEP) = 340
Eccentric μ(GA) = 1.26, μ(GEP) = 0.96, 
CoV(GA) = 0.18, CoV(GEP) = 0.20
MAE(GA) = 168, MAE(GEP) = 168, 
RMSE(GA) = 219, RMSE(GEP) = 251

Le15 Concentric (880)
Rectangular [83:17] ANN B, H, t, L, fy, Es, fc’ (Pu) R2 = 0.9956, a20-index = 92.5%, RMSE = 154.66, 

MAPE% = 7.54, VAF = 99.118

Wang26 Eccentric (403)
Rectangular [80:20] SVR, RFR, ANN Acfc’, e/H, e, Asfy, H, EIs, B, λg, fc’, L, t, EIc, Npl 

(Pu)*

SVR: μ = 1.01, MAPE% = 5, R2 = 0.99, a20 = 96%, 
RMSE = 92,647
RFR: μ = 1.03, MAPE% = 9, R2 = 0.96, a20 = 91%, 
RMSE = 187,170
ANN: μ = 1.03, MAPE% = 12, R2 = 0.97, 
a20 = 86%, RMSE = 171,021

Memarzadeh25 Concentric (347)
Square [85:15] GEP, ANN fy, fc’,Ac,As, B/t,� (Pu)

GEP: R = 0.98, CoV = 0.23, RSE = 0.17, 
RMSE = 464
ANN R = 0.99, CoV = 0.12, RSE = 0.01, 
RMSE = 254

This study Concentric (958) Eccentric (405)
Rectangular [80:20] GPR, XGB, SVR, ANN L, H, B, t, fy, fc’, et, eb (Pu/Npl)

GPR (concentric): μ = 0.998, CoV = 0.058, 
R2 = 0.996, MAPE = 3.78, a20 = 99
GPR (eccentric): μ = 1.003, CoV = 0.055, 
R2 = 0.996, MAPE = 3.41, a20 = 98.8
See Table 3 for remaining models
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The ML techniques mentioned earlier can be effectively combined with metaheuristic optimization methods27, 
such as particle swarm optimization (PSO)28 and grey wolf optimization (GWO)29. Metaheuristic optimization 
methods are specifically designed to mitigate the issue of getting trapped in local minima during optimization, 
unlike traditional optimization methods, such as gradient-based approaches. Several models have been employed 
in the literature for hybrid computational intelligence methods22,23,30,31. Ren et al.22 used a hybrid model based on 
an SVR, with parameters optimized using PSO to investigate the axial capacity of short square CFST columns.

Generally, ML can offer an innovative approach to predicting the capacity of CFST columns. Although various 
ML models have been introduced for CFST column predictions, as shown in Table 1, further work is necessary, 
primarily for the following reasons. First, most studies focused on predicting the loading capacity of RCFST 
columns under axial loads, with less exploration of their behavior under diverse loading conditions. Second, 
most studies focus on using ANN and SVR to predict the compression strength of CFST columns, and other 
ML algorithms, such as the Gaussian process (GPR) and the extreme gradient boosting (XGBoost) model32, are 
less commonly employed and require further exploration. Third, many researchers directly used axial strength 
as the output parameter despite its skewed and biased statistical distribution. In addition, the axial strength fails 
to capture the physical properties of CFST columns, such as the confinement efficiency of the CFST column and 
the effect of the local and global slenderness ratios. This paper introduces a dimensionless strength index as an 
alternative output parameter to address these limitations.

The primary objective of this research is to introduce several ML models, including the Gaussian process 
(GPR)19, extreme gradient boosting model (XGBoost)32,33, support vector regression18 optimized by the particle 
swarm optimization method (PSVR), and artificial neural network (ANN), for predicting the compressive resist-
ance of RCFST columns under axial and eccentric loadings.

Gaussian process model
Gaussian processes (GPR)19 are an ML method based on Bayesian and statistical learning theories. GPR defines 
a distribution over functions, as defined in Eq. (1), reasoning about functions based on observed data points. 
This technique can effectively handle uncertainty and adapt to noise and complexity levels.

where f(x) is the function value at input x , m(x) is the prior mean function, and K
(
x, x

′
)
 is the covariance (kernel) 

function determining the covariance between any inputs x and x′ . A combination of kernels, including the 
Gaussian kernel, Matern kernel, and periodic kernel, are used together to capture different aspects of the data, 
such as the overall level, smoothness, noise, and variations. The kernel parameters are optimized by maximizing 
the log-marginal-likelihood19. The mean procedures of the GPR are introduced in Fig. 1(a). Given observed 
input‒output pairs, GPR allows predictions for new inputs by inferring a Gaussian distribution over functions 
as follows:

where the posterior distribution p
(
f (x)|X, y

)
 is also a Gaussian distribution with a posterior mean function 

µp(X) and a posterior covariance function �p(X) defined, respectively, as follows:

(1)f (x) ∼ GP
(
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(
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′
))

,

(2)p
(
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)
,

(3)µp(x) = m(x)+ KT (X, x)
[
K + σ 2

n I
]−1(

y −m(X)
)
,

(4)�p(x) = K(x, x)− KT (X, x)
[
K + σ 2

n I
]−1

K(X, x),

Figure 1.   Flow charts of the introduced ML models.
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where µp(x) and �p(x) define the mean prediction of the new input point x and the uncertainty (variance) associ-
ated with each prediction. The mean procedures of the GPR are introduced in Fig. 1a.

Extreme gradient boosting model
The extreme gradient boosting (XGBoost)32 model builds upon the foundation of gradient boosting trees 
(GBDTs) by introducing algorithmic enhancements, including robustness, effectiveness, and scalability for large-
scale datasets. XGBoost uses an ensemble of decision trees as its base learners. These decision trees are often 
shallow typically called weak learners. Combining multiple simple trees helps reduce overfitting and improves 
model generalization. XGBoost aims to reduce the sum of two key components: the training error and regulari-
zation, as illustrated in Eq. (5).

where L represents the loss function, quantifying the difference between the predicted and the actual value, and 
Ω denotes the regularization term, controlling the model complexity to prevent overfitting. The second-order 
Taylor approximation of the loss function can be written in Eqs. (6–8).

The fundamental tree employed in this study is a simple regression tree, defined by Eq. (9).

where γ represents the penalty factor, T defines the count of leaf nodes, and ωj defines the weighting assigned to 
the leaf j. Disregarding the constant term, the objective function reduces to the form in Eq. (10).

The superiority of XGBoost over other ensemble techniques can be attributed to its mechanism of integrating 
several weaker base learners to form a stronger model through a process known as boosting. Boosting is an itera-
tive training process such that training a new decision tree requires reducing the errors made by the preceding 
trees in prior iterations. The flow chart of the XGBoost model is illustrated in Fig. 1b.
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t
i

)
+

t∑

i=1

�
(
fi
)
=

n∑

i=1

L
(
yi , ŷ
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Figure 2.   RCFST column configurations under axial and eccentric loading conditions.
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Database description
To construct a precise model for predicting the strength of RCFST columns, a comprehensive experimental data-
base was compiled, consisting of 958 tests conducted on RCFST columns subjected to axial loading (Database 1) 
and 405 tests on RCFST columns subjected to eccentric loading (Database 2)3–5. While these experimental tests 
may not be identical in terms of their testing conditions, they are substantial in volume and diverse in sources, 
simulating different real-world manufacturing scenarios. RCFST columns subjected to monotonic axial loading 
are selected, where the entire cross-sections, i.e., concrete and steel tube, are fully loaded. Only CFST columns 
with normal and high-strength concrete and low-carbon steel tubes are collected. Specimens with stainless steel 
tubes, aluminum tubes, recycled aggregate concrete, steel fiber concrete, etc., are excluded.

As illustrated in Fig. 2, the input variables include geometric variables, including the column width (B), 
column height (H), steel tube thickness (t), column length (L), load top eccentricity (et), and load bottom eccen-
tricity (eb), as well as material properties, including steel yield strength (fy) and concrete compressive strength 
(fc’). Naser et al.21 suggested that the remaining material properties of concrete and steel, i.e., Young’s modulus 
of steel (Es) and concrete (Ec) and the ultimate strength of steel (fu), have no significant influence on the training 
of data-driven models. The statistical distributions of these databases are presented in Fig. 3 and Table 2.

Figure 3.   Distribution of the two databases.
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Generally, ML models perform better when working with data that follow a roughly normal distribution. 
However, the axial capacity distribution for the RCFST columns shown in Fig. 4a exhibits significant skewness, 
which can negatively impact model performance. A dimensionless strength index, denoted as psi, is introduced 
as the main output parameter to address this issue. It is defined by dividing the column axial load by the sum of 
the individual strengths of its components, as given in Eq. (11).

where As and Ac are the outer steel tube and concrete areas, respectively. This introduced index can reflect the 
confinement efficiency of the CFST column, i.e., a relatively high value of the strength index indicates high 
confinement exerted by the outer tube. Furthermore, the statistical distribution of the strength index resembles 
a normal distribution, as shown in Fig. 4b and Table 2, enhancing predictability performance.

Additionally, the correlations between all input and output variables in the databases are investigated through 
the Pearson correlation coefficient and are displayed in Fig. 5. There is a relatively strong correlation between 
the input variables and the axial capacity (P) across different datasets, negatively impacting the predictivity 

(11)psi =
Pu

Npl
,Npl = Asfy + Acfc′,

Figure 3.   (continued)
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performance. However, the correlations between the input variables and the strength index (psi) are less sig-
nificant. In addition, as shown in Figs. 3 and 5, increasing the load eccentricity, global slenderness λg, or local 
slenderness λl, defined in Eq. (12), reduces the column strength index. These observations align well with the 
experimental behavior of CFST columns. These findings indicate the benefits of using the strength index as an 
output variable instead of the axial capacity.

 where EsIs and EcIc are the flexural stiffness of steel and concrete materials.
It is important to acknowledge that the parameter ranges of CFST samples in the databases fall outside the 

scope of existing design codes10,11, as illustrated in Table 2 and Fig. 3. This aspect can be advantageous in training 
machine learning models with broader applicable ranges. In addition, the axial database covers a wide range of 
steel section slenderness, including both compact, noncompact, and slender sections (λl coefficient ranges from 
0.25 up to 10.17)11. In addition, a wide range of global slenderness is covered, ranging from 0.0243 to 2.64, cover-
ing short (λg < 0.5 as recommended by Eurocode 410) and long columns. Furthermore, the database encompasses 
a wide range of concrete and steel strengths. The introduced databases include both traditional materials (with 
fc’ values below 70 MPa and fy values below 460 MPa, as suggested by AISC 360-2211) and higher strength classes 

(12)�l =
H

t

√
fy

Es
, �g =

√
Np

Ncr
,Np = fyAs + 0.85fc′Ac ,Ncr =

π2
(
EIeff

)

L2
,EIeff = EsIs + 0.6EcIc

Table 2.   Statistic features of the experimental dataset.

Column type Variable Symbol Type

Statistics

Min Max Mean Std Skewness Kurtosis

Database 1

Height of outer tube H (mm) Input 60 750 160.9 74.31 2.89 14.25

Width of the outer tube B (mm) Input 44 750 144.9 68.15 2.85 15.75

Thickness of the outer tube t  (mm) Input 0.7 18.5 4.44 2.21 1.71 5.27

Column length L (mm) Input 60 4500 951.9 854.2 1.66 1.99

Yield strength of outer tube fy (MPa) Input 115 1031 398.2 174.2 1.43 1.51

Concrete strength fc ′ (MPa) Input 7.02 157.5 54.67 30.63 0.96 0.28

Local slenderness ratio λl – 0.25 10.16 1.633 1.008 2.62 11.76

Global slenderness ratio λg – 0.024 2.64 0.317 0.367 2.72 8.78

Axial load Pu (MPa) – 105 24,294 2297 2266 3.75 23.03

Strength index psi Output 0.19 1.493 0.97 0.176 − 1.2 3.25

Database 2

Height of outer tube H (mm) Input 76.2 323 152.8 47.31 1.3 2.24

Width of the outer tube B (mm) Input 76.2 323 147.5 46.12 1.34 2.41

Thickness of the outer tube t  (mm) Input 1.25 12.5 4.63 1.59 1.41 3.47

Column length L (mm) Input 330 4910 1753 1107 0.6 − 0.44

Yield strength of outer tube fy(MPa) Input 205 1031 396.8 140.9 2.05 5.42

Concrete strength fc ′ (MPa) Input 15 175.9 53.7 27.91 1.02 1.04

Top-end eccentricity et (mm) Input 6 300 43 37 3.36 15.64

Bottom-end eccentricity eb (mm) Input − 55 300 40.06 39.26 2.86 12.84

Axial load Pu (MPa) – 156 7136 1187 945.7 2.36 8.25

Strength index psi Output 0.15 1.053 0.52 0.183 0.14 − 0.41

Figure 4.   Frequency histogram of compressive strength and strength index for database 1.
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(with fc’ up to 175.9 MPa and fy up to 1031 MPa). While a wide range of material strengths is considered, their 
distributions are not uniform. Specifically, steel strength tends to cluster in the 200–800 MPa range, with only 
a limited number of samples exceeding 800 MPa. In the case of concrete strength, most specimens fall within 
the 20–100 MPa range, with a smaller subset exceeding 100 MPa. ML models rely on the information contained 
in the input data. However, the scarcity of training data within a specific range of an input feature can lead to 
insufficient learning for that range. Consequently, the application of the trained machine learning model might 
encounter challenges when applied to data falling within a range for which the model lacks sufficient training.

Performance and results of ML models
Data normalization is performed using the min–max scaling technique to mitigate the impact of multidimen-
sionality and ensure numerical stability. During the training phase, the grid searching technique was employed 
for tuning the model hyperparameters, and fivefold cross-validation was utilized to reduce overfitting issues. 
As recommended by Nguyen 202023 and other studies24,26, eighty percent of the original dataset was chosen 
randomly for training, leaving the remaining 20% to test the models. To compare and evaluate the effective-
ness and reliability of the introduced models, two different ML models, including the support vector machine 
integrated with particle swarm optimized (PSVR)22 and ANN models, were introduced. Figure 6 illustrates the 
relation between the predictions generated by the four ML models and the experimental results. It is evident 
from Fig. 6 that the scatter between the predicted and experimental results for the four ML models closely follows 
the diagonal line, falling mostly within the ± 20% margins for the training and test subsets. Table 3 presents the 
evaluation metrics to assess the prediction accuracy for these ML models: the mean (μ), coefficient of variation 
(CoV), coefficient of determination (R2), root mean squared error (RMSE), mean absolute percentage error 
(MAPE), a20-index, Nash–Sutcliffe efficiency (NSE), Willmott index of agreement (d), and confidence index 
(CI)34. These measures are defined as:

Figure 5.   Correlation matrix for the RCFST columns databases under axial and eccentric loading conditions.

Figure 6.   Comparison between ML models for training and testing datasets.
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where yi defines the actual output value of the i-th sample, ŷi is the output value of the i-th sample, y is the 
mean value of experimental observations, and n is the number of specimens in the database. The a20-index15,35 
is a percentile-based metric that measures the partition of samples for which the absolute differences between 
predicted and observed results exceed 20%.

As observed in Table 3, the prediction accuracy of the introduced ML models exhibits little difference with 
R2 and mean values approaching 1.0 and CoV values less than 0.113. The predictions of all proposed models 
have error values lower than 20% for 95.5% of axially loaded specimens and 91.1% of the eccentrically loaded 
specimens. Similar performance can be found for the remaining metrics. Table 3 reveals that the GPR model 
introduces the best evaluation metrics for the training and testing subsets, with MAPE% values equal to 3.78% 
and 3.41% for the axially and eccentrically loaded column datasets, respectively, followed in accuracy by the 
XGBoost model for the axially loaded column dataset and the ANN model for the eccentrically loaded column 
dataset. The ANN and XGBoost models are the least accurate for axially and eccentrically loaded column data-
sets, respectively, while the PSVR model introduces moderate prediction accuracy. In addition, the evolution 
metrics of the testing sets exhibit similar results to the training sets, indicating minimizing the overfitting issues.

The predictions by the introduced models were compared with the existing codes in Table 3, including 
Eurocode 4 (EC4)10 and AISC36011. The mean values of code methods are all above 1.0, representing conserva-
tive predictions. This result is reasonable as design codes are inclined to be conservative to yield safer designs. In 
addition, the accuracy of the introduced ML models is significantly higher than that of the two design standards, 
particularly noticed when evaluating a20-index. For instance, 99%, 97.8%, 96.1%, and 95.5% of the concentrically 
loaded CFST database obtained, respectively, from GPR, XGBoost, PSVR, and ANN models exhibit error rates 
within 20%, much higher than the 74% and 64% proportions reported by EC410 and AISC 360-2211, respectively. 
Furthermore, the RMSE and MAPE of EC4 and AISC36011 predictions are approximately two to four times those 
of ML models, indicating the better performance of ML models compared to available standards. These findings 
can be attributed to the fact that AISC 360-22 neglects the confinement interaction between steel and concrete 
materials, and EC4 disregards the local buckling effect and imposes a limitation for the slenderness ratio λl.

Compared with some ML models introduced in the literature, as summarized in Table 1, the developed mod-
els achieved notable improvement in prediction accuracy. The introduced GPR model exhibits an a20-index of 
98.8%, surpassing the models introduced by Wang et al.26 (a20-index = 96%) and the GPR model proposed by 
Le et al.15 (a20-index = 92.5%). The enhanced performance of the introduced GPR model compared to the GPR 
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Table 3.   Comparison of the developed ML models for different databases.

Metrics*

Training data Testing data All data

GPR XGB PSVR ANN GPR XGB PSVR ANN GPR XGB PSVR ANN EC4 AISC

Database 1

Mean μ 0.998 0.998 0.999 0.999 0.999 1.002 0.996 0.999 0.998 0.999 0.999 0.999 1.12 1.16

CoV 0.049 0.072 0.083 0.093 0.086 0.087 0.099 0.102 0.058 0.075 0.086 0.095 0.13 0.16

R2 0.997 0.992 0.995 0.989 0.993 0.993 0.991 0.987 0.996 0.992 0.994 0.988 0.96 0.94

MAPE% 3.226 5.061 4.923 7.125 5.992 6.217 6.861 7.815 3.78 5.292 5.311 7.264 14.4 18.7

RMSE 0.043 0.064 0.08 0.09 0.08 0.079 0.092 0.095 0.052 0.068 0.083 0.091 0.15 0.18

a20-index 0.996 0.98 0.965 0.96 0.964 0.969 0.948 0.938 0.99 0.978 0.961 0.955 0.74 0.64

NSE 0.968 0.925 0.885 0.849 0.872 0.871 0.825 0.805 0.951 0.915 0.874 0.842 0.8 0.76

d 0.957 0.918 0.88 0.868 0.877 0.882 0.851 0.848 0.938 0.911 0.874 0.864 0.73 0.67

CI 0.926 0.849 0.779 0.737 0.765 0.768 0.702 0.683 0.892 0.834 0.764 0.727 0.58 0.51

Database 2

Mean μ 0.999 0.987 0.996 0.998 1.018 1.027 1.022 1.015 1.003 0.995 1.001 1.002 1.07 1.07

CoV 0.035 0.106 0.098 0.069 0.098 0.128 0.106 0.106 0.055 0.113 0.1 0.078 0.14 0.22

R2 0.999 0.978 0.984 0.993 0.985 0.973 0.985 0.969 0.996 0.977 0.984 0.989 0.96 0.91

MAPE% 2.536 7.552 6.773 5.376 6.888 9.765 8.387 7.94 3.406 7.995 7.096 5.889 12.4 14.7

RMSE 0.018 0.049 0.052 0.036 0.05 0.068 0.06 0.054 0.028 0.053 0.054 0.04 0.08 0.09

a20-index 1.0 0.92 0.938 0.988 0.938 0.877 0.901 0.926 0.988 0.911 0.931 0.975 0.79 0.78

NSE 0.995 0.961 0.958 0.98 0.958 0.916 0.935 0.95 0.988 0.952 0.954 0.975 0.89 0.87

d 0.991 0.953 0.944 0.97 0.944 0.912 0.927 0.937 0.981 0.944 0.940 0.963 0.89 0.87

CI 0.986 0.916 0.904 0.951 0.904 0.835 0.867 0.89 0.969 0.899 0.897 0.939 0.79 0.76
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model of Le et al.15 can be attributed to using a combination of kernels, which can capture various aspects of the 
data, including smoothness, noise, and variations. Furthermore, the MAPE of the proposed GPR model stands 
at 3.41, which is considerably lower than that of the SVR models proposed by Ren et al.22 and Nguyen et al.24.

In addition to the relatively high accuracy of the GPR model, it can provide the confidence intervals for the 
prediction results, as shown in Fig. 7 for the axially loaded column database. This quantification of uncertainty 
enhances its applicability in guiding practical design considerations. The even distribution of the predicted 
column strength around the measured strength, as depicted in Fig. 7, further confirms the accurate predictive 
capabilities of the GPR model for RCFST column strength.

Feature importance analysis
Analyzing the impact of input parameters on compressive strength is a crucial guiding factor in designing RCFST 
columns. In this study, the Shapley Additive Explanation (SHAP) method is utilized to assess the impact of input 
parameters on the strength index33,36. As depicted in Fig. 8, a feature value larger than zero signifies a positive 
correlation between the variable and the strength index. In contrast, a feature value less than zero indicates a 
negative impact on the strength index. For RCFST columns under eccentric loading, the top-end eccentricity 
(et) and column length (L) emerge as the most influential design parameters within the collected database. The 
feature importance of the remaining variables is ranked from highest to lowest. Furthermore, it can be deduced 
that, except for column width (B), height (H), and steel tube thickness (t), all remaining input variables have a 
negative influence on the strength index, indicating that an increase in these parameters reduces the strength 
index. Increasing column height and steel thickness enhance the flexural strength and confinement behavior 
of RCFST columns while increasing column length and load eccentricity reduce the column capacity strength. 
These findings agree well with the experimental results.

Limitations and future works
This section outlines the limitations of the established data-driven models and highlights potential areas for 
future research. The validity of the proposed model is constrained within the range of minimum and maximum 
values for each input parameter, as outlined in Table 2. These values not only define the applicability of the 
computational model but also set the boundaries within which accurate predictions can be made. In addition, 
considering the uneven distribution of certain parameters, as explained in Fig. 3, applying the ML models needs 
caution where the input features fall within ranges lacking sufficient training data, and experimental studies are 
needed to enrich the database within these less-represented ranges.

An innovative methodology that can be considered involves integrating finite element modeling with the GPR 
model within the Design of Experiments (DOEs) framework. This approach is designed to identify and select 
the optimal training points that can effectively reduce errors through adaptive learning and use the predictive 
capabilities of finite element modeling to model these critical points. The accuracy of predictive models can be 
substantially enhanced, yielding more efficient and reliable ML models for CFST columns.

Figure 7.   Gaussian process regression on a semilog scale on the y-axis for axially loaded column database.

Figure 8.   Summary plot and SHAP feature importance for the eccentrically loaded RCFST column database.
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Conclusions
This study introduces two ML models, including the Gaussian process (GPR) and extreme gradient boosting 
(XGBoost) models, for predicting the compressive resistance of rectangular concrete-filled steel tubular (CCFST) 
columns subjected to axial and eccentric loading conditions. These models are compared with other ML mod-
els, including support vector regression optimized by particle swarm optimization (PSVR), an artificial neural 
network (ANN), and previous ML studies. The key findings are summarized as follows:

1.	 The provided ML models can effectively capture the complicated relationship between geometric and mate-
rial parameters and compressive resistance for RCFST columns subjected to different loading conditions.

2.	 The proposed normalization approach of the axial load by introducing the strength index yields a nearly 
normal distribution, which improves model performance and robustness. In addition, using the strength 
index as an output parameter reflects insights into the level of strength in terms of local and global buckling.

3.	 The GPR model is the most accurate and reliable model, with MAPE% less than 4%. In addition, the remain-
ing ML models offer acceptable accuracy with MAPE% less than 8%. This high prediction accuracy promotes 
using the ML techniques as valuable tools alongside design code standards for estimating the compressive 
strength of RCFST columns.

4.	 Compared with existing standards and ML studies, the developed models achieved better performance in 
prediction accuracy. The predictions of all proposed models have error values lower than 20% for 95.5% of 
axially loaded specimens and 91.1% of the eccentrically loaded specimens, much higher than the proportions 
reported by EC 4. and AISC 360-22.

5.	 From feature importance analysis, top-end eccentricity and column length have the most negative influence 
on the strength index of RCFST columns. Therefore, designers should consider these parameters in optimiz-
ing and designing RCFST columns.

In summary, the proposed data-driven models can extract the axial compression capacity of RCFST columns 
with reliable and accurate results, making them valuable tools for structural engineers. While this paper illustrates 
the capability and precision of the introduced ML models for RCFST compressive strength prediction, future 
studies are needed to address the existing gaps in databases and to integrate the predictive capabilities of finite 
element modeling with ML models.

Research significance
This study introduces two machine learning (ML) algorithms for predicting the compressive strength of rectan-
gular concrete-filled steel tubular (RCFST) columns under different loading conditions. It employs two powerful 
ML models, the Gaussian process (GPR) and the extreme gradient boosting (XGBoost) model. The employed 
techniques can be considered valuable tools alongside the design code standards and finite element analysis.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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