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Proteomic analyses identify HK1 
and ATP5A to be overexpressed 
in distant metastases of lung 
adenocarcinomas compared 
to matched primary tumors
Helen Pasternack 1,8, Mirjam Polzer 1,2,8, Timo Gemoll 3, Christiane Kümpers 1, 
Thorben Sauer 3, Pamela Lazar‑Karsten 1, Sofie Hinrichs 1, Sabine Bohnet 4, Sven Perner 1,5,6, 
Franz Friedrich Dressler 1,7,8 & Jutta Kirfel 1,8*

Lung cancer is the leading cause of cancer-related deaths worldwide with lung adenocarcinoma 
(LUAD) being the most common type. Genomic studies of LUAD have advanced our understanding 
of its tumor biology and accelerated targeted therapy. However, the proteomic characteristics of 
LUAD are still insufficiently explored. The prognosis for lung cancer patients is still mostly determined 
by the stage of disease at the time of diagnosis. Focusing on late-stage metastatic LUAD with poor 
prognosis, we compared the proteomic profiles of primary tumors and matched distant metastases 
to identify relevant and potentially druggable differences. We performed high-performance liquid 
chromatography (HPLC) and electrospray ionization tandem mass spectrometry (ESI–MS/MS) on 
a total of 38 FFPE (formalin‐fixed and paraffin‐embedded) samples. Using differential expression 
analysis and unsupervised clustering we identified several proteins that were differentially regulated in 
metastases compared to matched primary tumors. Selected proteins (HK1, ATP5A, SRI and ARHGDIB) 
were subjected to validation by immunoblotting. Thereby, significant differential expression could be 
confirmed for HK1 and ATP5A, both upregulated in metastases compared to matched primary tumors. 
Our findings give a better understanding of tumor progression and metastatic spreads in LUAD but 
also demonstrate considerable inter-individual heterogeneity on the proteomic level.

Lung cancer is the leading cause of cancer deaths worldwide, with non-small cell lung cancer (NSCLC) as the 
prevalent form with a poor 5‐year survival rate of less than 15%1, 2. NSCLC is subdivided into three major his-
tological types: squamous cell carcinoma, large cell carcinoma, and adenocarcinoma. Lung adenocarcinoma 
(LUAD) is the predominant histological type of lung cancer and accounts for about 40% of all cases. It is the 
most common subtype diagnosed in never-smokers3.

Recent advancements in high‐throughput molecular biology technologies have deepened our understanding 
of the pathology underlying NSCLC and highlighted the significant heterogeneity of NSCLC. Especially in LUAD, 
sequencing of entire cancer genomes has resulted in the identification of recurrent driver alterations in several 
genes (e.g., EGFR, BRAF, ALK, RET, ROS1, TP53) and frequently transformed signaling pathways. Thereby, new 
molecular subtypes of LUAD were defined and novel targeted treatment options could be developed.
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Despite advances in personalized therapies as well as surgery, radiation and chemotherapy, longevity has 
not increased significantly. Thus, lung cancer patients’ prognosis is still poor and particularly dependent on the 
stage of disease while first diagnosis. Patients with stage I tumors can expect a 5‐year survival rate of up to 85%, 
for locally advanced disease, the survival drops to less than 30% and patients diagnosed with distant metastases 
have a miserable 5‐year survival rate of less than 5%2. However, diagnosis at an early stage is only achieved in 
each third case of lung cancer4. Therefore, in our study we focus on distant metastatic stage LUAD.

Among the various potential biomarkers, especially proteins are significant, because they represent the func-
tional gene products and are comparatively stable5. They carry out most biological processes and are therefore 
directly involved in disease progression. However, complex regulatory systems controlling protein expression lev-
els lead to dynamics of the proteome. Proteomics-based analyses, particularly mass spectrometry (MS), include 
the examination and classification of overall protein signatures in a quantitative manner. Differentially scaled 
proteomic technologies are applicable in various research settings. They are used to understand mechanisms of 
pathogenicity, in the analysis of diagnostic biomarkers, in order to detect differential expression patterns reacting 
to varying signals as well as functional examination of signaling pathways in several diseases. The collection of 
high-quality fresh tissue for proteomics-based clinical studies is intricate. Therefore, preserved formalin‐fixed 
and paraffin‐embedded (FFPE) tissues represent a valuable resource for retrospective studies with subsequent 
proteomic analyses6, 7.

We performed proteomic analysis using high-performance liquid chromatography (HPLC) and electrospray 
ionization tandem mass spectrometry (ESI–MS/MS) on a total of 38 FFPE samples corresponding to 14 patients 
with advanced LUAD and available tissue of matched distant metastases. Changes at the protein level between 
primary and metastatic tissue were detected and differentially expressed proteins were identified and validated 
using immunoblot. So far, proteomic studies in lung cancer mostly focused on early tumor detection and often 
used blood samples as sample origin (reviewed in5 and8). Even in tissue-based studies, metastatic samples were 
usually not included. Currently, there is only one proteomic study focusing on brain metastatic LUAD9. To our 
knowledge, this is thus the first proteomic study on matched pairs of primary and differently localized metastatic 
LUAD tissues providing a deeper insight into the proteomic changes during metastatic spread of LUAD.

Results
Our cohort comprised a total of 38 FFPE samples corresponding to 14 patients diagnosed with LUAD and acces-
sible tissue of primary tumors as well as distant metastases (detailed sample information is given in Supplemental 
Table S1). Due to the limited availability of resected tissue samples especially of metastases we included several 
samples gained through clinical autopsies. Patient specific characteristics are summarized in Table 1. For each 
patient comprehensive molecular profiling was performed using fluorescence in-situ hybridization (FISH) and 
massive parallel sequencing (NGS, Table 1). None of the cases showed targetable gene alterations in EGFR, 
BRAF, ALK, RET or ROS1. One case was identified to carry an ERBB2 amplification and three cases showed the 
common KRAS p.G12C mutation. The most frequently mutated genes were TP53 in 57% and KRAS in 43%.

Table 1.   Patient cohort.

ID Sex Age at diagnosis [years]
Smoking history (pack 
years)

Pretreatment with 
chemotherapy

Number of analyzed 
metastases (localization)

Relevant detected molecular 
pathological alterations

1 Male 70 Yes (20py) No 1 (Stomach) TP53 c.743G > A p.R248Q, 
MET amplification

2 Female 56 Not available No 2 (Liver, Brain) KRAS c.34G > T p.G12C, 
TP53 c.818G > T p.R273L

3 Male 56 No Yes 4 (Bone, Adrenal gland, Liver) KRAS c.34G > T p.G12C

4 Female 53 Yes Yes 1 (Adrenal gland) STK11 c.827G > C p.G276A

5 Female 55 Yes Yes 1 (Adrenal gland)
KRAS c.35G > C p.G12A, 
TP53 c.1009C > T p.R337C, 
MET amplification

6 Male 48 Yes No (primary tumor), Yes 
(metastasis) 1 (Kidney) MET amplification

7 Male 48 Yes Yes 3 (Brain, Bone, Adrenal 
gland)

TP53 c.487 T > G p.Y163D, 
ERBB2 amplification, MET 
amplification

8 Male 62 Yes (70py) No 2 (Liver, Small intestine) TP53 c.473G > C p.R158P

9 Male 64 Yes (50py) not available 3 (Liver, Bone, Kidney) None

10 Male 56 Yes Yes 1 (Liver) BRAF c.1742A > G p.N581S,

11 Male 68 Yes (52py) Yes 1 (Liver) None

12 Male 76 Yes (1py) No 1 (Adrenal gland) KRAS c.35G > A p.G12A

13 Male 71 Yes (100py) No 2 (Liver, Bone) KRAS c.34G > T p.G12C

14 Female 60 Yes (30py) No (primary tumor), Yes 
(metastasis) 1 (Bone) KRAS c.34G > T p.G12C

Total: 14 24
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To compare primary tumors and metastases on the proteome level, we performed HPLC and microflow 
ESI–MS/MS analysis using data-independent acquisition for exact quantification. Spectronaut analysis revealed 
1405 distinct proteins identified across all samples (median 1003 per sample). 1055 were identified in ≥ 50% of 
the samples and were used for subsequent analyses. We first compared the pooled protein expression between 
primary tumors and metastases (Fig. 1 and Supplemental Table S2). 137 proteins (12.9%) were significantly 
(unadjusted p ≤ 0.05) differentially expressed between primaries or metastases. Of these 119 had a minimal fold 

Figure 1.   Differential expression between primaries and their metastases. (A) Volcano plot with upregulated 
proteins in metastases on the left side (51, red) and in primaries on the right (68, blue), horizontal line is 
unadjusted p = 0.05, vertical lines are absolute log2 fold changes = 0.5; (B) Gene ontology (GO) pathways 
significantly enriched in primaries or metastases; GO terms ordered by false discovery rate (upward bars) with 
parallel display of the significance thresholds (0.05; dashed) and unadjusted p-values (downward bars); (C) 
STRING protein–protein interaction network of all significantly regulated proteins from (A); negative fold 
changes represent upregulation in metastases; only connections with more than 0.4 interaction score are shown; 
light grey visualizes the metastasis-linked cluster of proteins; circled candidate proteins underwent immunoblot 
validation.
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change of 0.5 with overexpression in primaries (68) or metastases (51), respectively (Fig. 1A). The most frequent 
biological processes belonging to the proteins upregulated in metastases were the oxidation–reduction process, 
the mitochondrial electron transport, fatty acid beta-oxidation, and angiogenesis. For those upregulated in 
primaries these were complement activation, receptor-mediated endocytosis, the Fc-gamma receptor signal-
ing pathway involved in phagocytosis, mRNA splicing, and the innate immune response. Of note, a number of 
metastasis-specific proteins were related to the extracellular matrix/stroma (e.g., the collagen subtypes COL4A2, 
COL18A1, and COL1A2). To evaluate the functional alterations more comprehensively, we used gene/protein 
set enrichment analyses (GSEA, Fig. 1B and Supplemental Table S3). Here, significantly enriched pathways were 
mostly found in the metastasis group (11 out of the top 15 pathways). In line with the biological processes, these 
were related to cellular energy metabolism, interestingly also mostly involving mitochondrial pathways. For all 
significantly regulated proteins (unadjusted p ≤ 0.05) a STRING protein–protein interaction network was created 
(Fig. 1C), which also showed a metastasis-linked cluster of metabolic proteins.

Due to the high variances in standard differential expression analysis, we used a second, orthogonal, and 
unsupervised evaluation approach to identify proteomic patterns across primary LUAD samples and metastases. 
This approach is generally applied to identify patterns across multiple types of quantitative data, including tran-
script and protein expression data (e.g.10). For unsupervised cluster analysis (Fig. 2 and Supplemental Table S4) 
rank determination by cophenetic correlation and dispersion revealed a distinct local maximum for k = 5 clusters 
with reasonable cluster separation and stability (Fig. 2A–C). Four of the five identified clusters were composed of 
a mixture of both primaries and metastatic samples, while one cluster included almost all metastases from one 
individual patient—highlighting the relevant interindividual heterogeneity. Similarly, a principal component 
analysis made some separation visible but explained only a minor variance (Fig. 2D). The similarity between 
matched pairs becomes evident, for example in patients 3, 10, 11, and 13. However, a clustering based on the 
metastatic locations is not visible. In order to show the effect of imputation, a principle component analysis 
(PCA) plot of the samples before (100% valid value filter, 334 values) in comparison to the one after imputation 
(50% valid value filter plus imputation) is given in Supplemental Fig. S1. Omission of imputation leads to less 
separation by the first two principal components, with a similar sample-wise pattern.

Figure 3 visualizes the 10% most cluster-relevant proteins (protein score > 90th percentile)11. The overlap 
between these 106 cluster-relevant proteins and those differentially expressed in pooled comparison comprised 
nine proteins (ARHGDIB, HNRNPA1, SRI, CYRIB/FAM49B, HNRNPL, HK1, IGKC, PAFAH1B2 and ATP5A1) 
and was used to choose proteins likely involved in metastasis for further validation. Due to their potential role 
in tumorigenesis HK1 and ATP5A (upregulated in metastases) as well as SRI and ARHGDIB (upregulated in 
primaries) were selected. Quantitative expression was measured in n = 6 primaries, n = 8 matched metastases and 
n = 2 additional metastatic samples using immunoblotting (Fig. 4). Significant differential expression (p < 0.05) 
could be confirmed for HK1 and ATP5A, both upregulated in metastases compared to matched primary tumors 
in immunoblot as well as LC–MS/MS analyses (Fig. 4A, B). An exemplary immunoblot reflecting differential 
expression is shown in Fig. 4C. All immunoblots are provided as original TIFF files in Supplemental Figs. S2–S7 
with a corresponding sample matrix given as Supplemental Table S5. SRI and ARHGDIB did not show significant 
differences in the immunoblot analysis.

In total, our analyses identified several metabolic proteins with differential expression between primary LUAD 
and matched distant metastases. HK1 and ATP5A could be validated. However, we also observed considerable 
inter-individual heterogeneity.

Discussion
Lung cancer is the leading cause of cancer-related mortality worldwide and lung adenocarcinoma (LUAD) is the 
most common form of lung cancer with a poor 5-year survival rate of less than 15%1. Prognosis for lung cancer 
patients strongly depends on the stage of disease at time of diagnosis and the presence of metastasis is the major 
factor for low survival rates2. Therefore, there is an urgent need to discover processes and signaling pathways 
involved in metastasis formation in LUAD. In our study we compared the proteomic profiles measured by high-
performance liquid chromatography (HPLC) and electrospray ionization tandem mass spectrometry (ESI–MS/
MS) of primary LUAD samples to those of matched distant metastases.

Our cohort comprised a total of 38 FFPE samples corresponding to 14 patients diagnosed with LUAD and 
accessible tissue of primary tumors as well as distant metastases. The most frequently mutated genes in our cohort 
were TP53 in 50% and KRAS in 29%, reflecting a typical distribution in a LUAD cohort. KRAS mutation is known 
to be the most common gain-of-function alteration, accounting for around 30% of LUADS in western countries12.

In recent years, proteomic studies have become a widely used research tool in analyzing cancer biology, 
complementing the results of genetic profiling. As most biological functions are carried out by proteins, protein 
profiles can often represent even more accurately a disease state and thus be a more reliable and quantitative tool 
to discover new cancer biomarkers. Mass spectrometry (MS) techniques allow the identification of differentially 
expressed proteins in small quantities of tumor samples13, 14. As fresh frozen tissue with corresponding clinical 
data is often not available for retrospective analyses, several studies showed the feasibility of using stored FFPE 
tissues for MS-based comprehensive proteomic profiling6, 7. So far, most proteomic studies on lung cancer focused 
on the differentiation of histological subtypes or early diagnosis of malignant disease15–21. A very recent study 
analyzed also distant metastatic tissue, but included only brain metastases9. To our knowledge, our study is now 
the first proteomic study on matched pairs of primary and differently located metastatic LUAD tissues providing 
a deeper insight into the proteomic changes during the metastatic spread of LUAD.

We identified 1405 proteins across all samples with 1055 shared by at least 50% of the samples. Our differ-
ential expression analysis between primary tumors and their corresponding metastases revealed 137 proteins 
significantly upregulated in primaries or metastases respectively. Another recent LC–MS-based proteomic study 
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on 22 LUAD patients using fresh frozen tissue samples revealed 365 and 366 proteins differentially expressed in 
early-stage (I-II) or advanced-stage (III-IV) LUAD compared to normal tissue, respectively22. Comparable to our 
study, the authors identified 155 proteins dysregulated between early- and advanced-stage tumors. Their PCA 
showed a clear separation between four clusters corresponding to different stages and normal vs. tumor tissue. As 
in our cluster analysis as well as PCA the similarity between matched pairs of the same patient becomes evident 
and emphasizes the importance of using matched tissue samples for comparative analysis, as we did in our study.

Figure 2.   Unsupervised cluster analysis (A) Consensus matrix for k = 5 clusters, color indicates stochastic 
reproducibility across independent runs; (B–C): Rank determination by cophenetic correlation (B) and 
dispersion (C); (D) Principal component analysis for the different samples; abbreviated localizations are given 
for each metastatic sample (ADR adrenal gland, HEP liver, KID kidney, OSS bone, OTH other).
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Recently, Gillette et al. published a comprehensive proteogenomic characterization of 110 LUAD and 101 
matched normal adjacent tissues (cryopulverized tissue). They revealed four subgroups defined by key driver 
mutations, country, and gender and identified new therapeutic targets. The study, however, did not include stage 
IV cancers with distant metastases. It is thus not surprising, that there is no overlap with the herein identified 
candidate proteins23. Another large deep-scale proteogenomics study of LUAD in Taiwanese population24 and 
a comprehensive proteogenomics analysis of 103 LUAD in chinese patients25 were published in recent years.

There are several proteomic studies on LUAD tumor progression that compare different stages of the dis-
ease. Kawamura et al. identified 81 proteins significantly differentially expressed in stage IA compared to IIIA 
LUAD26. Further analysis revealed NAPSA to be significantly reduced expressed in advanced stage tumors as 
well as hAG-2 highly expressed in stage IIIA vs. IA LUAD. Additionally, differential expression of hAG-2 was 
related to regional lymph node metastasis27. Also, the study of Hsu et al. focused on lymph node metastasis in 
LUAD28. They identified 133 differentially expressed proteins and selected six of them for further validation 
(ERO1L, PABPC4, RCC1, RPS25, NARS, and TARS). All of these studies were based on non-metastatic cases 
and further work identifying biomarkers for distant metastasis formation in LUAD is still lacking. Therefore, 
our study included only cases with distant metastasis and no early-stage tumors.

A recent study by Woldmar et al.9 conducted proteomic profiling on 20 surgically resected primary and brain 
metastatic LUAD samples. They identified 1496 proteins differentially expressed between primary tumors and 
corresponding metastases. Pathways activated in primary tumors were associated with the immune system, 
cell–cell/matrix interactions and migration, whereas metastatic tumor samples displayed overrepresentation of 
pathways related to metabolism, translation or vesicle formation. In part, these results correspond to the pathways 
connected with differentially expressed proteins we detected in our study. Similar to Woldmar et al. we found dis-
tant metastases to be for example associated with metabolic processes, whereas primary tumors showed amongst 
others overrepresentation of pathways related to the immune system. However, several particular pathways as 

Figure 3.   Expression heatmap of cluster-relevant proteins. Log2-normalized and zscore-transformed expression 
data for the 10% most relevant proteins for the clusters from Fig. 2; Missing values in grey.
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well as individual biomarker candidates identified in the different studies do not correspond. This might be due 
to the fact that instead of analyzing only brain metastases we included also distant metastases of other locations.

Using gene/protein set enrichment analyses we mostly detected significantly enriched pathways in the metas-
tasis group (11 out of the top 15 pathways). In line with the biological processes associated with differentially 
expressed proteins, these were related to cellular energy metabolism, especially involving mitochondrial path-
ways. The importance of mitochondrial processes for lung cancer initiation and progression is also described in 
other studies (e.g.29 or reviewed in30). Of note, Chuang et al. discovered a specifically altered mitochondrial func-
tionality related to the metastatic cell state of LUAD and that this association could also be used therapeutically31.

In our study, the overlap between the 137 differentially expressed proteins and 106 most relevant proteins 
identified by cluster analysis revealed 9 candidate proteins involved in metastasis formation of LUAD. Of these, 
four were chosen for validation by immunoblotting: Hexokinase 1 and ATP Synthase F1 Subunit Alpha (HK1, 
ATP5A, upregulated in metastases) as well as Sorcin and RhoGDP Dissociation Inhibitor Beta (SRI, ARHGDIB, 

Figure 4.   Immunoblot validation. (A) Immunoblot results; Normalized densitometric intensities of n = 5 
primaries and n = 8 metastases; Whiskers represent interquartile range; p values are from Mann–Whitney-U; 
light lines link sample pairs; (B) Mass spectrometric normalized intensities of the samples from (A); (C) 
Exemplary immunoblot; STD = Standards for cross-blot normalization; Sample type blue = Primary; Sample type 
red = Metastasis; Full-width blots cropped for the specific protein bands; Blot #2 for the quantification of Sorcin 
with a separate loading control, which matches its molecular weight; complete original blots are presented 
as Supplemental Figs. S2–S7 with a corresponding sample matrix as Supplemental Table S5; quantitatively 
compared blots were generated during the same experiment and processed in parallel.
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upregulated in primaries). All four candidates have previously been reported to be likely involved in tumori-
genesis and partially even in lung cancer. For example, overexpression and amplification of the calcium-binding 
protein Sorcin has been described for different cancer entities, including lung cancer32. Additionally, the associa-
tion between SRI overexpression and resistance to gemcitabine could repeatedly be shown. Qu et al. identified 
14 proteins related to gemcitabine resistance in NSCLC cell lines, among them SRI33, which has previously been 
found to be overexpressed in several multidrug-resistant cell lines34. Also, ARHGDIB is reported to be involved 
in lung cancer tumorigenesis35. It was initially shown to be a metastasis suppressor in bladder cancer and later 
found to be lost in many metastatic tumors36.

In our validation, significant differential expression could be confirmed for HK1 and ATP5A, both upregu-
lated in metastases compared to matched primary tumors in immunoblot and LC–MS/MS analyses. ATP5A 
itself has not yet been described to be associated with lung cancer, but another ATP synthase subunit could 
already be identified as biomarker for LUAD by Chen and colleagues37. They identified nine enzymatic proteins 
significantly overexpressed in LUAD compared to adjacent normal lung tissue using 2DGE and MALDI-MS 
or peptide sequencing, including the ATP synthase subunit D (ATP5D). Additionally, it has been reported that 
inhibiting the ATP synthase suppresses proliferation and growth of lung cancer cells38. ATP5A is furthermore 
described as shared drug target for aging and dementia39. The hexokinase HK1 is involved in glycolysis (and in 
part bound to the mitochondrial outer membrane). Its herein observed differential expression thus corresponds 
to the detected metastasis-linked cluster of metabolic proteins, mostly involving mitochondrial pathways. We 
found HK1 to be overexpressed in metastases compared to primary tumors. So far, HK1 was rather described 
to be expressed in normal tissues, whereas cancer cells often show additional or alternative expression of the 
HK2 isoform40, 41. HK2 was detected to be required for tumor initiation and maintenance in mouse models of 
KRAS-driven lung cancer40 and HK1 knock-out lung cancer cells expressing only HK2 were shown to be sensi-
tive to HK2 silencing-induced cytostasis41. In hepatocellular cells HK1 expression correlates with resistance to 
tyrosine kinase inhibition and its function could be impaired by Lonidamine, a glycolysis inhibitor that inhibits 
the activity of mitochondrially bound hexokinases42, 43. In order to exclude that differential expression of HK1 
and ATP5A is caused by an underlying tissue-specific expression we checked protein expression using the 
human protein atlas44. Both proteins are described to be expressed ubiquitously in a non-tissue-specific man-
ner, especially without enhanced expression in any of the herein analyzed localizations. Our validation cohort 
comprised samples from the discovery cohort. Therefore, an additional validation on a larger and independent 
cohort would be desirable in the future.

We observed heterogeneous protein expression profiles of matched primary tumors and their distant metas-
tases across patients. Nonetheless, several mostly metabolic proteins were associated with the metastatic state. 
HK1 and ATP5A could be identified and validated as candidate proteins. These findings give a better under-
standing of tumor progression and metastasis formation and might help to improve biomarker-based diagnosis 
and prognosis prediction.

Methods
Study design and sample selection
This study has been granted approval by the ethics committee of the University Luebeck (project code AZ 16-277, 
AZ 16-278). The ethics committee assesses the appropriateness of the design of the retrospective study, in which 
the samples were included completely anonymized. The requirement for obtaining informed consent has been 
waived. All investigations were carried out in adherence to the principles in the Declaration of Helsinki.

In total, 38 samples corresponding to 14 patients with advanced lung adenocarcinoma and available tissue 
of matched distant metastases were identified. Of these, primary tumor tissue from 9 patients and metastases 
tissue from 12 patients were harvested in clinical autopsies. Patients were annotated by sex, age at diagnosis and 
smoking status. Detailed information on pretreatment with chemotherapy, localizations, and number of analyzed 
metastases for each patient is shown in Table 1.

Histological and molecular pathological characterization
Histological analyses on formalin-fixed/paraffin-embedded (FFPE) tumor blocks were performed in the Institute 
of Pathology of the University Hospital Schleswig–Holstein, Campus Luebeck. Histology of each case including 
growth pattern was assessed by senior pathologists experienced in lung pathology. Using H&E-stained slides, 
tumor areas were marked and tumor cell content was estimated.

For each case, tissue areas with preferably high tumor cell content (mean: 69%, standard deviation: 19%, 
CV: 0.27, Supplemental Table S1) were selected for nucleic acid extractions. Isolation of genomic DNA was 
performed using the Maxwell RSC DNA FFPE Kit and the Maxwell RSC instrument (Promega, Fitchburg WI, 
U.S.A.). DNA samples were quantified using the Qubit fluorimeter (TermoFisher, Waltham MA, U.S.A.). To 
identify genetic alterations in AKT1, ALKMUT, BRAF, CTNNB1, DDR2, EGFR, ERBB2Mut, ERBB4, FBXW7, FGFR1, 
FGFR2, FGFR3, KRAS, MAP2K1, METMut, NRAS, NOTCH1, PIK3CA, PTEN, STK11, SMAD4 and TP53 massive 
parallel sequencing using the Ion AmpliSeq Colon and Lung Cancer Research Panel v2 and Ion PGM sequencing 
platform (ThermoFisher Scientific) were used. Additionally, the possible presence of ALK, RET or ROS1 trans-
locations as well as amplifications of MET and ERBB2 in the primary tumors was investigated by fluorescence 
in-situ hybridization (FISH) using the corresponding ZytoLight probes (ALK Z-2124, RET Z-2148, ROS1 Z-2144, 
MET Z-2087, ERBB2 Z-2017, ZytoVision, Bremerhaven, Germany).

Protein extraction
For each primary tumor or metastasis tissue areas with preferably high tumor cell content were selected for 
proteomic analysis and 45 µm sections were cut off and stored at room temperature. To solubilize the proteins 
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1 ml Heptane was added to each sample, vortexed for 10 s. After 1.5 h at room temperature, 50 µl Methanol were 
added and the samples were vortexed again. The samples were centrifuged for 2 min at 9000×g at room tempera-
ture, the supernatant was removed, and the samples dried out for 5 min at room temperature. The QProteome® 
FFPE Tissue Kit (Qiagen, USA) was used for protein extraction. Subsequently, total protein concentration was 
determined in triplets using the fluorescence-based EZQ™ Protein Quantification Kit (Life Technologies, USA). 
Fluorescence visualization was carried out with the Typhoon™ FLA 9000 laser scanner (GE Healthcare). Densi-
tometric analysis was performed using the ImageQuant™ TL software (GE Healthcare).

For each sample 100 µl lysate containing 25 µg protein were purified using methanol and chloroform. The 
protein pellet was washed with ethanol and dissolved in 1% RapiGest (Waters, USA) in 25 mM Ammonium 
bicarbonate (ABC) buffer. Proteins were reduced with 50 mM Dithiothreitol (DTT) and incubated at 37 °C at 
950 rpm for 1 h. Afterwards, 100 mM iodoacetamide (in ABC buffer) was used to alkylate the proteins by shak-
ing the samples at 37 °C with 950 rpm for 1 h. Proteins were digested using 25 ng/µl Trypsin (Sigma-Aldrich, 
USA) in ABC buffer over night at 37 °C. Trifluoroacetic acid (5%) was added and the samples were incubated at 
950 rpm at 37 °C. The samples were centrifuged and the supernatant was transferred into a new tube, dried out 
by vacuum centrifugation for 3 days and stored at − 80 °C until further analysis.

Proteomic analysis by high‑performance liquid chromatography (HPLC) and electrospray ioni‑
zation tandem mass spectrometry (ESI–MS/MS)
With minor adjustments, proteomic analysis was performed as described previously45. The samples were solu-
bilized in 2% acetonitrile/0.5% formic acid. Luna C18 (2) (5 μm, 20 × 0.3 cm; Phenomenex, USA) was used 
as trap column and the samples were desalted for 5 min. An analytical column (LC Column, 3 μm C18 (2), 
150 mm × 0.3 mm, Phenomenex, USA) was used to separate the peptides. Analyzation with mass spectrometer 
and following SWATH (sequential window acquisition of all theoretical mass spectra) were performed accord-
ing to Sauer et. al.45. Thereby, the collision energy (CE) was set to 10 and the updated SWATH Variable Window 
Calculator V2.0 was used to define the precursor isolation windows.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 
the PRIDE46 partner repository with the dataset identifier PXD042604. Corresponding raw file names can be 
obtained from Supplemental Table S1.

SWATH data processing
The software tool Spectronaut v13.2 (Biognosys, Switzerland) was used for the SWATH data processing. First a 
hybrid spectral library was established from all 38 SWATH runs and five pooled DDA runs using Spectronaut 
with default settings. The hybrid spectral library was subsequently searched using the default settings with 
Spectronauts pulsar search engine. The false discovery rate (FDR) was set to 1% at the peptide precursor level 
and protein level, respectively. Additionally, all proteins considered in this study were identified by at least two 
peptides. The human UniProtKB/Swiss-Prot database47 was used for protein inference from identified peptides.

Immunoblot
Immunoblotting was performed as described previously6. The primary antibodies were anti-HK1 (1:500; 
monoclonal mouse IgG; antibodies- online ABIN933202, Aachen, Germany), anti-ATP5A (1:1000; monoclo-
nal rabbit IgG; abcam ab176569, Cambridge, UK), anti-Sorcin A (1:1000; polyclonal rabbit IgG, antibodies-
online ABIN5014335, Aachen, Germany), anti-ARHGDIB (1:500;polyclonal rabbit IgG, antibodies-online 
ABIN2855594, Aachen, Germany) as well as loading controls anti-Cofilin (1:1000; Cell Signaling Technology 
5175S, Danvers, USA) and anti-HPRT (1:100; Santa-Cruz sc-376938, Dallas, USA). Secondary antibodies were 
1:2500 goat anti-rabbit IgG (ThermoFisher 31460, Schwerte, Germany) and 1:2500 goat anti-mouse IgG (Ther-
moFisher 31430, Schwerte, Germany).

Conditions for relative protein quantitation were ensured48 and the linear ranges determined beforehand. 
Sample-specific protein abundances were normalized to the mean of the same-gel standards prior to normaliza-
tion to loading controls.

Bioinformatics and statistical analyses
Data processing and statistical analyses were performed in Python (2.7.17 and 3.9.9) using the modules nimfa 
1.4.0, gseapy 0.10.8 (permutation_type = ’phenotype’, permutation_num = 100, method = ’t_test’, processes = 4, 
seed = 7), matplotlib 2.2.5, numpy 1.16.1, sklearn 0.20.4 (including decomposition.PCA with default settings), 
pandas 0.24.2, scipy 1.2.2, and seaborn 0.9.1. The raw data was filtered for proteins quantified in at least 50% of 
all samples. Data was normalized using Normicsmedian

49 based on the top 100 invariant proteins. Significance for 
differential expression was calculated with Mann–Whitney-U tests (unadjusted due to comparison to orthogonal 
unsupervised evaluation). Due to the unequal number of metastases per primary, a more conservative unpaired 
statistical approach was chosen over paired statistical tests to avoid biased weights across samples. Additionally, 
Benjamini–Hochberg adjusted p-values are included as an additional worksheet (“adjusted”) in Supplemental 
Table S2. Unsupervised non-negative matrix factorization was performed on all proteins for k = 2 up till k = 10, 
with missing values replaced by the mean of all valid values. The mean was chosen over minimum/low values or 
other more sophisticated methods as a conservative approach (to reduce power rather than introducing biases) 
in this setting of relatively high missingness (at random) and known performance heterogeneity in FFPE samples 
in line with suggestions from the literature50. Overall, missing values were not imputed for any test, except for 
PCA and unsupervised cluster analysis. The local maximum at k = 5 was chosen as it demonstrated a distinctive 
peak for both cophenetic correlation and dispersion. Relevance scores were computed as implemented in the 
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nimfa package51 defined by Kim and Park11. For gene set enrichment analyses (GSEA) the 2018 gene ontology 
terms for biological processes were used. The STRING network was created on string-db.org52.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 
PRIDE46 partner repository with the dataset identifier PXD042604.
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