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Segmentation of lung lobes 
and lesions in chest CT 
for the classification of COVID‑19 
severity
Prachaya Khomduean 1,3,4, Pongpat Phuaudomcharoen 2,3,4, Totsaporn Boonchu 2,3,4, 
Unchalisa Taetragool 3, Kamonwan Chamchoy 4, Nat Wimolsiri 2, Tanadul Jarrusrojwuttikul 5,6, 
Ammarut Chuajak 5,6, Udomchai Techavipoo 6 & Numfon Tweeatsani 6*

To precisely determine the severity of COVID-19-related pneumonia, computed tomography (CT) is an 
imaging modality beneficial for patient monitoring and therapy planning. Thus, we aimed to develop 
a deep learning-based image segmentation model to automatically assess lung lesions related to 
COVID-19 infection and calculate the total severity score (TSS). The entire dataset consisted of 124 
COVID-19 patients acquired from Chulabhorn Hospital, divided into 28 cases without lung lesions 
and 96 cases with lung lesions categorized severity by radiologists regarding TSS. The model used 
a 3D-UNet along with DenseNet and ResNet models that had already been trained to separate the 
lobes of the lungs and figure out the percentage of lung involvement due to COVID-19 infection. 
It also used the Dice similarity coefficient (DSC) to measure TSS. Our final model, consisting of 
3D-UNet integrated with DenseNet169, achieved segmentation of lung lobes and lesions with the 
Dice similarity coefficients of 91.52% and 76.89%, respectively. The calculated TSS values were 
similar to those evaluated by radiologists, with an R2 of 0.842. The correlation between the ground-
truth TSS and model prediction was greater than that of the radiologist, which was 0.890 and 0.709, 
respectively.

The rapid pandemic-level outbreak of coronavirus disease 2019 (COVID-19) has caused a wide range and degree 
of illnesses, predominated by respiratory tract infection1–4. Although most infected patients show asymptomatic 
or mild clinical manifestations, further investigation beyond real-time reverse transcriptase polymerase chain 
reaction (RT-PCR) or rapid COVID-19 tests such as chest radiographs is routinely indicated in worsening cases 
that require hospitalization5,6. Characteristic findings in chest radiographs of COVID-19 related pneumonia 
are bilateral patchy and/or confluent and bandlike ground-glass opacity or consolidation in a peripheral and 
mid-to-lower lung zone distribution. By contrast, several studies have found almost one-half of normal chest 
radiographs at initial presentation disagree with clinical symptoms7–10.

Because of its higher sensitivity, specificity, and speed, chest computed tomography (CT) has become more 
useful than RT-PCR in early detection, to obtain more information about chest pathology, and to evaluate the 
severity of lung involvement. Moreover, it can assist triage, especially when hospitalization is required but there 
is a shortage of healthcare personnel, inpatient beds, and medical equipment, and it may be useful as a standard 
modality for the rapid diagnosis of COVID-19- related pneumonia11–15. The chest CT findings are peripheral, 
bilateral, ground-glass opacity (GGO) with some round shapes with or without consolidation or intralobular 
lines, a reverse halo sign, or other findings of organizing pneumonia16–19.

The total severity score (TSS) has been proposed by Chung et al.20. It is calculated from the summation of 
lesion scores in five lung lobes and is used to categorize the severity of lung involvement and help determine the 
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proper therapeutic management and prognosis21,22. TSS reflects the clinical classification of COVID-1922. It has 
also been shown to provide high specificity in the detection of severe cases and high inter-observer reliability 
with a short interpretation time compared to other severity scoring system23. It has been used in many studies, 
such as the comparison of patients with and without vaccination24, and the viral load factor for hospitalization 
and mortality of patients25.

To reduce the amount of time required for interpretation and increase the accuracy of lesion detection, deep 
learning has been used to efficiently analyze medical images by performing tasks such as semantic segmentation. 
Deep learning was also used in the automated assessment of CT severity scores in COVID-19 patients. Lessmann 
et al.26 applied deep-learning algorithms that automatically segment the five pulmonary lobes and abnormalities 
and then predict the severity scores for patients suspected of having COVID-19. The results showed good agree-
ment with the results from independent observers. Chaganti et al.27 automatically computed the percentage of 
opacity and lung severity score by applying deep reinforcement learning for lung lobe segmentations and using 
the U-Net model for a semantic segmentation of GGO and consolidations. The results correlated well with the 
ground truth.

The U-Net model is a convolutional neural network-based model that was originally used for the semantic 
segmentation of biomedical images and is now one of the most utilized image segmentation techniques. The 
model structure is U-shaped and consists of two parts: a contracting path (encoder) and an expanding path 
(decoder)28. Subsequently, a U-Net model was created to support three-dimensional (3D) matrices and is called 
3D-Unet29. The 3D-UNet model was used to develop a more efficient 3D imaging model for the segmentation of 
lesions and lung tissue30,31. Cropping the lung area before lesion segmentation can improve accuracy32. Enshaei 
et al.33 developed a model for predicting the lesion area of COVID-19 patients from CT-scan images, using a 
model to predict the lung area before the lesion regions were considered. This method enables the lesion model to 
predict lesions more accurately. In another study, a deep learning model was applied to lung lobe segmentation. 
The model is capable of accurately segmenting each lung lobe from lung CT scans34. It is also utilized in lung lobe 
segmentation analysis for lung segmentation research to improve segmentation accuracy in multiple diseases 
such as chronic obstructive pulmonary disease (COPD), lung cancer, and COVID-19-related pneumonia35.

Many studies have used deep learning models for computer-aided diagnostics to determine the intensity of 
infections. For instance, Aswathy A. L. and Vinod Chandra S. S.36 employed 3D-UNet models to effectively seg-
ment the lung parenchyma and infected regions in lung CT scans. Additionally, a previous study demonstrated 
that the effectiveness of these models for medical image segmentation can improve sensitivity performance37. 
In another study, the U-Net model combined with the dense convolutional network (DenseNet) was effectively 
employed to develop a program for classifying the severity of lung CT in COVID-19 by analyzing the lesion 
area and comparing it with the lung area in lung CT scan images38. They calculated the percentage of infection 
(PI) using a U-Net model combined with pre-trained models such as residual neural networks (ResNet) and 
DenseNet. ResNet was first presented by He et al.39 to solve the vanishing gradient problem of deeper networks 
by adding feedforward links across some layers, resulting in residual optimization of those layers. DenseNet was 
first presented by Huang et al.40 to learn more features by using deeper convolutional layers with many feedfor-
wards linking across layers. For this reason, this knowledge can be applied to lung lobe segmentation and lesion 
segmentation in CT scan images.

In this study, deep learning semantic segmentation was used for the lung severity scoring of the COVID-19 
infection. The proposed method utilized a combination of 3D-UNet models integrated with pre-trained models, 
DenseNet and ResNet, to compute the PI from the lung lobe and lesion segmentation results and estimate the 
TSS automatically. The aim was to alleviate the radiologist’s workload and time spent on imaging diagnostics, 
as well as improve reporting accuracy.

Materials and methods
Datasets
Due to its retrospective nature, informed consent was waived, and all data were anonymized. This project was 
approved by the human research ethics committee of the Chulabhorn Research Institute (research project code 
167/2564) and complied with the Declaration of Helsinki. These COVID-19 patients were confirmed by RT-PCR 
acquired from Chulabhorn Hospital who underwent non-contrast enhanced axial chest CT as a part of routine 
clinical care throughout the pandemic.

In this study, we randomly selected 124 cases from the database. The selection contained 28 cases without lung 
lesions and 96 cases with lung lesions. According to TSS, experienced radiologists classified the cases with lung 
lesions as mild, moderate, and severe. We divided the selection into 3 groups, i.e., training set, test set 1, and test 
set 2. The training set was used in model training and validation for lung segmentation and lesion segmentation; 
test set 1 was for segmentation performance evaluation; and test set 2 was for TSS prediction evaluation. We 
also randomly selected these cases for each group. In addition, for the training set and test set 1, the numbers of 
cases across different severity types were set to be equal to prevent class imbalance in the training set (the class 
imbalance causing a potential bias in the trained model) and for a fair comparison in test set 1. The number of 
CT slices in these cases ranged from 92 to 208. This information was described in Table 1.

Data preprocessing
The lung CT data were saved in JPEG format with a resolution of 512 × 512 pixels and labeled by a program called 
LabelME41 (version 4.5.12). The resulting labels were in JavaScript Object Notation (JSON) format. All labeled 
data were validated by four radiologists and then converted into matrices for model training and evaluation.

In the data preprocessing phase, CT scan images (JPEG format) and labeled data (JSON format) were resized 
using the “cv2.resize” function from 512 × 512 pixels to 256 × 256 pixels to minimize the required memory 
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resources (RAM). The interpolation parameter was set to “INTER_AREA” for the CT scan images and “INTER_
NEAREST" for the label data because this solution prevented any alteration of the values specified in each pixel. 
In addition, our model input shape was fixed at a size of 128 × 256 × 256. The CT volumes were adjusted to 128 
images per patient according to the following three conditions (Fig. 1).

The first condition, if the CT volume comprised 128 or fewer images, a 256 × 256 zero-padding matrix was 
added to increase the volume to 128 images.
The second condition, if the CT volume had between 129 and 175 CT images, 128 images from the CT vol-
ume’s middle range were selected to train the model because both the lung parenchyma and lesions appear 
in this range.
The third condition, if the CT volume contained more than 175 CT images, we skipped the CT slice by select-
ing only odd-numbered images and adding a 256 × 256 zero-padding matrix to reach a total of 128 images.

A color adjustment method was applied to improve image contrast by using the contrast-limited adaptive 
histogram equalization (CLAHE) technique42, which is available in the OpenCV library43. The CLAHE param-
eters were set to a clipLimit of 3 and a tileGridSize of (8, 8). Models were trained/tested in two experiments: the 
first with original images (no color adjustment) and the second with CLAHE-adjusted images.

Imaging protocol
A 256-slice dual-energy CT scanner (Revolution CT with Gemstone Spectral Imaging (GSI) Xtream, GE Health-
care) at Chulabhorn Hospital was used in this study. An axial chest CT scan without contrast agent was applied. 
The protocol started with a scout view from lung apices to lung bases in anterior–posterior (AP) and lateral views, 
and followed by an axial chest scan covering lung apices through bases from inferior to superior. The parameters 
were quiet breath inspiration, 1.25 mm thickness, 0.28 s/rotation, 0.992 pitch, GSI calculated kVp, 190 mA, lung 
window of (1550, − 700), soft tissue window of (400, 40), and postprocessing multiplanar reconstruction. The 
scan time was less than 1.6 s.

Model training
Two models were used in this study: (1) a lung lobe segmentation model and (2) a lesion segmentation model. 
Training set: 32 cases were split into 24 cases (75%) for model training and 8 cases (25%) for validation, where the 
dataset was divided equally at each severity type to prevent overfitting. According to related studies, a model that 

Table 1.   Summary of axial lung CT scan datasets.

Case type

Training set Test set 1 Test set 2

No. of cases Total slices
Avg ± std per 
case No. of cases Total slices

Avg ± std per 
case No. of cases Total slices

Avg ± std 
per case

No lesions 8 985 123 ± 22 5 705 141 ± 39 15 1953 130 ± 27

Mild 8 907 113 ± 12 5 707 141 ± 48 16 2119 132 ± 27

Moderate 8 941 118 ± 13 5 575 115 ± 20 27 3179 118 ± 27

Severe 8 919 115 ± 23 5 597 119 ± 36 14 1469 105 ± 12

Total 32 3752 117 ± 18 20 2584 129 ± 36 72 8720 121 ± 26

Figure 1.   Overall pipeline of the data preprocessing.
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combines a 3D-UNet structure with a DenseNet or ResNet is effective in segmenting parts of the image precisely. 
Therefore, pre-trained DenseNet121, DenseNet169, DenseNet201, ResNet18, ResNet34, ResNet50, ResNet101, 
and ResNet152 models were obtained through a segmentation-models-3D package from Solovyev et al.44.

Lung lobe segmentation. A multiclass semantic segmentation model was used to segment the five lung lobes. 
Annotated labels consisted of six categories: 0, 1, 2, 3, 4, and 5, which indicate the background, right upper 
lobe (RUL), right lower lobe (RLL), right middle lobe (RML), left upper lobe (LUL), and left lower lobe (LLL), 
respectively.

Lesion segmentation. The lesion model was developed from a binary semantic segmentation model that 
outputs the value 1 for lesion areas and 0 for background areas. Images without extrapulmonary regions are 
preferred for lesion model training. The dataset used for model training was preprocessed as described in the 
data preparation section.

In the model training process, lung lobe and lesions segmentation models were trained on servers equipped 
with an Intel(R) Xeon(R) Gold 6126 CPU at 2.60 GHz, 40 GB of RAM, and an NVIDIA Tesla V100 SXM2 GPU. 
Figure 2 shows the overall workflow. The model’s output is the predicted class for each pixel, which is then used 
to compute the percentage area of lesions in each lung lobe for the CT score. This score is then used to calculate 
the TSS value for diagnosing the severity of the current pathology. For both models, Adam optimization was 
used, the loss function was a hybrid loss function (focal loss + Dice loss), the learning rate was set to 0.0001, 
a regularizer that applies L2 regularization was used with a value of 0.01, the batch size was set to 1, and the 
maximum number of epochs was 200. The lesion model activation function was set to sigmoid with a dropout 
rate of 0.4, whereas the pulmonary lobe model activation function was set to SoftMax with a dropout rate of 0.2. 
The hybrid loss technique45, which combined focal loss and Dice loss, was used to improve model performance.

PI
The PI in each lung lobe was calculated by dividing the number of predicted lesion pixels by the total number 
of lung lobe pixels in the CT volume. The predicted lesion pixels were obtained from the output of the lesion 
segmentation model, whereas the predicted lung lobe pixels were derived from the output of the lung lobe seg-
mentation model, in which the value of each pixel identifies the lobar type in the lung CT image. Therefore, the 
PI was calculated by performing the following equation.

TSS
The TSS proposed by Chung et al.20 was calculated from the sum of the five-lobe CT score, which was calculated 
from PI based on the criteria listed in Table 2. The severity of COVID-19 patients can be classified from the TSS 
value based on the severity criteria in Table 3 and the following equation:

Dice similarity coefficient
The most commonly utilized measurement to evaluate image segmentation is the Dice similarity coefficient 
(DSC). The DSC calculated the relative overlap between the predicted area and ground truth, and it was used to 
choose the most appropriate model. The DSC was defined as follows:

Percentage of Infectionlobe =
LesionArea (pixels)

Lung Lobe Area (pixels)
× 100

TSS = CT ScoreRUL + CT ScoreRML + CT ScoreRLL + CT ScoreLUL + CT ScoreLLL

Figure 2.   Segmentation Model Workflow and Total Severity Score Calculation Protocol for Lung CT Scans.
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where the term “true positive” (TP) refers to an outcome such that the model correctly predicts the positive class, 
“false positive” (FP) is an outcome such that the model incorrectly predicts the positive class, and “false negative” 
(FN) is an outcome such that the model incorrectly predicts the negative class.

Hausdorff distance
Hausdorff distance was proposed by Felix Hausdorff in 191446,47. The measure was applied to evaluate the model’s 
performance by measuring the distance between two images in pixels. The distance is defined as

where A is a set containing p points (pixels on image A): {a1, a2, . . . , ap} and B is a set containing q points (pixels 
on image B): {b1, b2, . . . , bq} . For implementation, we applied the function implemented in SciPy package48. Since 
the images used in this research were 256 × 256 pixels, the Hausdorff distance range was [0, 256

√
2].

Results
Lung lobe segmentation
The testing of lung lobe segmentation models was divided into two sections, one for the models trained on the 
original images and one for the models trained on the lung CT images processed by the CLAHE technique. The 
model’s test results for test set 1 were given in Supplementary Tables S1 and S2. The 3D-UNet + DenseNet169 
model trained with the original CT data was found to obtain the best lung lobe segmentation with a DSC of 
91.52% and an average Hausdorff distance of 12.9 pixels.

For lung lobe segmentation, the results indicated that the model trained on the original images outper-
formed the model trained on the CLAHE-adjusted images, as indicated in Table 4. Figure 3 presented the image 
segmentation results for both the original and CLAHE-adjusted images. In the case of the middle lobe (blue) 
of the no-lesion group, the model trained on the original images performed better than the model trained on 
CLAHE-adjusted images, which erroneously labeled as the right upper lung (red) and the background area.

Segmentation results for each severity level indicated that the mild group underperformed the other groups 
for the model trained on the original images. The DSC values for each lobe segment were presented in Table 4 
and Supplementary Tables S3, revealing that the left lobe (upper and lower) segmentation was more accurate than 
the right lobe segmentation. However, the right and left lower lobes (RLL and LLL) exhibited lower boundary 
distances, with HD values of 9.41 and 9.36 pixels, respectively.

Lesion segmentation
The results of the lesion model on test set 1 were divided into two sections, one for the original images and one 
for the images processed using the CLAHE technique (Supplementary Tables S4 and S5). The models trained 
with the CT images processed by CLAHE were found to be the most effective for lesion segmentation, with the 
3D-UNet + DenseNet169 model obtaining a DSC of 76.89% and an average Hausdorff distance of 37.82 pixels.

DSC =
2TP

2TP + FP + FN

H(A,B) = max(h(A,B), h(B,A))

h(A,B) = maxaǫAminb∈B||a− b||,

Table 2.   CT-score criteria based on the percentage of infection (PI) for the diagnosis of pneumonia in 
COVID-19 patients proposed by Chung et al.20.

PI Score

No lesion 0

 < 5% 1

6–25% 2

26–50% 3

51–75% 4

 > 75% 5

Table 3.   Severity type classification based on the total severity score (TSS).

TSS Severity type

 ≤ 7 Mild

8–17 Moderate

 ≥ 18 Severe
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According to the test results, the model trained on the CLAHE-adjusted images performed better than the 
model trained on the original images. The best model (3D-UNet + DenseNet169) was evaluated on test set 1, and 
the results were shown in Table 4 and Fig. 4. These results implied that lesion models often accurately predicted 
lesions when images were completely free of lesions (no-lesion images) and obvious lesions like consolidation, 
while faint lesions such as GGO were often less accurate in prediction.

Table 4.   Lung lobe and Lesion segmentation results of the 3D-UNet + DenseNet169 model with test set 1 
(n = 20) showing Dice similarity coefficient (DSC), Hausdorff distance (HD), and their ± standard deviations. 
The overall performance values are in bold. *Predicting lung area without lesions instead of predicting lesion 
area.

Non-CLAHE CLAHE

DSC (%) HD (pixels) DSC (%) HD (pixels)

Lung lobe segmentation

 (Divided into lobes)

  RUL 89.52 ± 4.58 13.38 ± 7.23 89.95 ± 4.74 13.55 ± 7.40

  RML 90.56 ± 4.22 16.46 ± 8.90 88.91 ± 5.14 17.45 ± 9.97

  RLL 91.29 ± 4.20 9.41 ± 5.37 91.21 ± 4.64 10.91 ± 5.71

  LUL 92.72 ± 3.16 15.91 ± 5.29 92.26 ± 3.40 17.51 ± 7.29

  LLL 93.53 ± 2.33 9.36 ± 6.80 92.32 ± 4.67 9.28 ± 4.66

 (Divided into severity types)

  No lesion 91.86 ± 0.52 12.94 ± 2.35 91.42 ± 2.47 14.78 ± 6.54

  Mild 90.36 ± 1.35 15.11 ± 3.45 90.03 ± 2.92 15.31 ± 5.10

  Moderate 92.70 ± 2.39 12.09 ± 5.23 92.47 ± 3.14 11.91 ± 4.98

  Severe 91.16 ± 4.09 11.48 ± 5.96 89.80 ± 5.60 12.95 ± 6.33

Overall 91.52 ± 2.44 12.90 ± 4.35 90.93 ± 3.61 13.74 ± 5.49

Lesion segmentation

  No lesion* 93.02 ± 8.24 6.53 ± 14.59 90.3 ± 14.49 11.75 ± 26.28

  Mild 75.92 ± 13.17 47.80 ± 34.19 77.78 ± 6.92 40.19 ± 29.33

  Moderate 65.18 ± 10.32 57.88 ± 11.66 67.85 ± 8.00 55.08 ± 14.10

  Severe 67.77 ± 12.58 42.98 ± 5.99 71.62 ± 16.87 44.25 ± 24.69

Overall 75.47 ± 15.2 38.80 ± 26.89 76.89 ± 14.28 37.82 ± 27.68

Figure 3.   Examples lung lobe segmentation results for each severity level obtained by the 3D-UNet + the 
DenseNet169 model trained on the original images and images processed by CLAHE. Each lobe of the lung, 
right upper lobe (RUL), right lower lobe (RLL), right middle lobe (RML), left upper lobe (LUL), and left lower 
lobe (LLL), is indicated by the colors red, blue, green, yellow, and pink, respectively.
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TSS regression analysis
The best-performing lung and lesion models with the highest DSC were applied to perform image segmentation 
for 72 cases (test set 2). The segmentation results were used to calculate the PI in each lung lobe, which was then 
used to compute the TSS. To analyze the trends and correlation of the TSS results, we compared the radiologist 
measurements with TSS values calculated based on our approach using Pearson correlation coefficients (r) and R2 
values. Figure 5 presented the results of the analysis of the TSS values obtained by models and those obtained by 
radiologists. According to the appropriate statistical analysis, the Pearson correlation coefficient of 0.918 indicated 
that the model-based predictions and the radiologist’s diagnosis were positively correlated with an R2 of 0.842.

To compare the outcomes of TSS that our approach predicted and those that radiologists diagnosed, we used 
the Bland–Altman plot. The x-axis represented the range of the TSS score and the y-axis represents the differ-
ence in the score of TSS between the two methods. It was found that the 95% limits of agreement, or the range 
of values within -3.318 to 7.652. The mean difference between the two methods was 2.167, which means that the 
radiologists diagnosed more than TSS predicted on average by 2.167, as shown in Fig. 5A.

Additionally, three techniques for measuring the TSS value were compared: using the label mask of test set 1 
as the ground truth, the radiologist’s diagnostic TSS (Radiologist), and the model-based TSS (Prediction). TSS 
(Radiologist) indicated the radiologist determined the TSS value. TSS (GT) indicated the TSS value obtained by 
using the ground truth for the calculation. TSS (prediction) was the TSS result obtained using the model pre-
dictions for the computation. The outcomes of the investigation were presented in Fig. 6. The TSS (Prediction) 
values were correlated with TSS (GT) values, resulting in an R2 of 0.890. Furthermore, the R2 of 0.709 from the 

Figure 4.   Example of segmentation results obtained by models trained on the original images and images 
processed by the contrast-limited adaptive histogram equalization (CLAHE) at each level of severity. The red 
pixels indicate the lesion areas.

Figure 5.   Distribution of TSS values obtained by our model prediction and a radiologist for test set 2 (n = 72). 
(A) Bland–Altman plot illustrating the comparison of TSS values between the radiologist and prediction. (B) 
Regression plot depicting the correlation between TSS calculated from the radiologist and prediction.
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comparison between TSS (Ground Truth) and TSS (Radiologist) indicated a higher correlation for the model 
compared to a human.

Ethical approval
Ethical approval was obtained from the human research ethics committee of the Chulabhorn Research Institute 
(research project code 167/2564).

Informed consent
Informed consent was waived by the human research ethics committee of the Chulabhorn Research Institute 
due to retrospective study and all data were anonymized.

Discussion
We compared the proposed lung lobe segmentation model’s performance with the performance of models 
in other related studies. Tang et al.45 reported a DSC of 91.48% on the LUNA16 dataset and 94.17% on the 
Tianchi dataset, indicating that our model underperformed theirs. However, Tang et al. employed CT data-
sets of lungs without lesions for their test datasets, and the models were trained on 40 cases, whereas our 
model utilized the no-lesion training dataset, which consisted of eight cases. The performance of our model 
(3D-UNet + DenseNet169) was equivalent to that of Tang et al., with a DSC of 91.86% in the no-lesions group 
(Table 4). This demonstrates that our approach can be trained using a small dataset. Furthermore, a comparison 
with a lung segmentation algorithm based on the lung fissure surface yielded a DSC of 84.00%49. This indicated 
that a deep learning approach could efficiently enhance the performance of lung lobe segmentation, particularly 
due to the continuous training of 3D-Unet on a complete set of data by inputting entire CT slices per case. As a 
result, the 3D-Unet model was suitable for precise lung lobe segmentation in continuous CT images.

For the lesion segmentation studies, Xiao et al.30 reported a 3D-UNet model with a DSC of 89.12%, and 
Qiblawey et al.38 reported a DSC of 94.13% for the Feature pyramid network (FPN) combined with the 
DenseNet201 model. Both models outperformed ours because training a model required a considerable vari-
ety of data. For example, Qiblawey et al.38 used 15,698 images for training, whereas our model training used a 
limited number of 3752 images. Despite the smaller dataset, our lesion model’s results demonstrated that it was 
capable of accurately predicting lesions in the no-lesion and obvious lesions, despite the inaccuracies in lesion 
segmentation for faint lesions. Many approaches that should improve the performance of lesion segmentation 
include increasing the amount of training data, applying data augmentation to increase the variety of lesions, 
enhancing the contrast rate, and utilizing the recent developments in state-of-the-art segmentation models, 

Figure 6.   Distribution of TSS values for method comparison with ground truth using Test Set 1. (A) Bland–
Altman plot illustrating the comparison of TSS values between the ground truth and prediction. (B) Regression 
plot depicting the correlation between TSS calculated from the ground truth and TSS predicted. (C) Bland–
Altman plot demonstrating the comparison of TSS values between the ground truth and radiologist. (D) 
Regression plot analysis showcasing the correlation between TSS values calculated from the ground truth and 
those provided by the radiologist.
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e.g. PaddleSeg50, to achieve improvements in accurately segmenting lesions from medical imaging data. These 
approaches would be potential solutions included in our future work.

Image enhancement using CLAHE could not be suitable for the lung lobe segmentation model. The results 
showed that the lung model trained on the original image accurately segmented better than the model trained 
on CLAHE images. It might be possible that CLAHE locally emphasizes many details on the image, and thus 
making the lung fissures more difficult to detect. In contrast, for the lesion segmentation model, using CLAHE 
provided a small improvement. Other enhancement methods such as the Balance Contrast Enhancement Tech-
nique (BCET)51 could be a potential solution for enhancing contrast quality and preserving the histogram pat-
tern of the image. As shown in a previous study focusing on COVID-19 classification using lung X-ray images, 
BCET outperformed CLAHE52.

Additionally, the TSS regression analysis showed that our model can be utilized to segment lung CT scans 
effectively. An analysis of the radiologist’s diagnostic TSS and model-based TSS results revealed that our method 
produced observation results that were more accurate with respect to the ground truth than human observation. 
This demonstrates that the measurement software could be used to eliminate human error in the estimation of 
infection rates in the lung area. Furthermore, our approach could perform lesion area segmentation and calcu-
late the infection rate automatically. This could dramatically reduce the radiologist’s workload and enhance the 
efficiency of diagnosing COVID-19 severity levels.

TSS is a rapid and objective assessment method for radiologists that provides information in each lobe and is 
more feasible for manual evaluation. However, it grades each lung lobe equally significantly, without concerning 
about their volume differences. In contrast, PI calculates the entire affected volume, resulting in a more accurate 
evaluation of infected lung volume. Nevertheless, some remote hospitals lack an automated program, and TSS 
appears to be an effective evaluation instrument.

Conclusion
Constructing a model for the automatic segmentation and scoring of COVID-19 infection in chest CT was 
accomplished through the application of deep learning techniques. According to the findings, the combination 
of 3D-UNet and DenseNet169 achieved the highest level of performance when it came to the segmentation of 
lung lobes and lesions. The projected severity score had a strong correlation with the visual assessments made 
by radiologists. This accurate model provided a dependable method for quantifying the extent of lung involve-
ment. The proposed model was helpful in determining the extent of the lower respiratory tract infection and 
monitoring the disease in COVID-19 patients.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Code availability
The source code used for this research work is made publicly available in the GitHub repository https://​github.​
com/​hds-​69/​csc-​app.
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