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Experimental and digital 
investigations of heterogeneity 
in lower cretaceous carbonate 
reservoir using fractal 
and multifractal concepts
Mohamed Soufiane Jouini 1*, Abdulquadri O. Alabere 2,4, Mohammad Alsuwaidi 2, 
Sadoon Morad 5, Fateh Bouchaala 2 & Osama A. Al Jallad 3

Characterization and prediction of reservoir heterogeneity are crucial for hydrocarbon production. 
This study applies the multifractal theory using both numerical and experimental data to characterize 
quantitatively the heterogeneity of pore structures in Lower Cretaceous limestone reservoir from 
the United Arab Emirates. Fractal dimensions calculated from three dimensional digital images 
showed good correlation  (R2 =  + 0.69) with experimental high-pressure mercury injection (HPMI) 
measurements. Moreover, both experimental and numerical fractal dimensions correlate well with 
experimental HPMI porosity measurements. Multifractal parameters such as the non-uniformity 
degree of the pore structures Δα, the asymmetry degree in the vertical axis Δf(α), the concentration 
of pore size distribution α0 and the asymmetry degree in the horizontal axis Rd estimated from 
digital and experimental data correlated well and revealed ability to quantitatively describe samples 
heterogeneity. The ranges of digital and experimental multifractal parameters provided the means to 
differentiate between homogeneous and heterogeneous samples.

Carbonate reservoir rocks are highly heterogeneous and reveal complex pore geometry at various scales due 
to diagenesis and depositional processes. Pore structure is commonly characterized by the size, volume, con-
nectivity, shape and distributions of pore radii and pore  throats1,2. The concept of fractal dimension was intro-
duced to describe the irregularity and complexity of structures, utilizing the idea of self-similarity in an object 
(Mandelbrot, 1974, 1977, 1983). Several studies investigated sandstone, shale, and carbonate reservoir rocks 
suggesting that they reveal fractal behaviour within a certain range of  length3–7. The fractal dimension is a real 
number ranging from 1 to 2 for 2-D objects and from 2 to 3 for 3-D  objects8. The main advantage of utilizing 
fractal theory is its ability to connect microscopic geometry patterns with macroscopic structural properties 
and it has been largely applied in geosciences to investigate carbonates pore space structures based on various 
experimental and digital imaging approaches. The concept of multifractals goes beyond the standard dimen-
sions of fractals and can explain the hidden information that is not accounted by the conventional dimensions of 
 fractals9,10. Several studies have applied fractal and multifractal theories using High Pressure Mercury Injection 
(HPMI) experimental measurements to investigate the irregularity of porous media and its impact on various 
rock properties such as permeability, pore throat diameter and  porosity11–19. In the literature, several models 
relating capillary pressure and saturation introduced fractal dimension to consider geometric characteristics 
of the pore  space11,20,21. A universal capillary pressure model was developed by Li and  Horne11 to characterize 
heterogeneity in carbonate samples from the Geysers geothermal field by matching the capillary pressure model 
to the experimental data using experimental fractal dimension. Zhang et al.15investigated the heterogeneity in 
Lower Carboniferous carbonate reservoirs in the Marsel area in Kazakhstan using fractal dimensions computed 
from HPMI data and found relatively good correlations of fractal dimensions with several rock properties such as 
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porosity, permeability, sorting coefficient, and skewness. Guan et al.22 and Zhang et al.23 implemented multifractal 
analysis based on HPMI experimental measurements to investigate samples heterogeneity using multifractals 
parameters such as the non-uniformity degree and the width of singularity spectra and found good correlations 
between the multifractals parameters and the heterogeneity degree of pore size distributions in studied samples.

Fractal and multifractal theories were implemented in other studies using digital images of reservoir 
 samples24–31. Technological advancements in 2D and 3D image acquisition systems allow exploring pore space 
at several length scales from millimetre to nanometre using 3D X-ray Micro-Computed Tomography (3D-
MCT), Nano-Computed Tomography (NCT), and 2D Scanning Electron Microscopy (SEM). Following the image 
acquisition, the pore space is extracted using image segmentation methods to derive segmented binary images 
used to reveal the geometric distribution of  pores32. Subsequently, techniques such as box-counting and gliding 
box methods can be applied on these images to estimate the fractal  dimension33. Jouini et al.26 investigated the 
behavior of multifractal dimensions in SEM images of carbonate reservoir at several length scales and showed 
that fractal dimension concept can be used for a quantitative characterization of pore space heterogeneity. Fol-
lowing this study, Vega and  Jouini27 proposed an analytical model to upscale porosity using the numerical fractal 
dimension values from SEM and thin section images of carbonate samples. Jouini et al.30 investigated heterogene-
ity at the pore scale for twenty rock samples from sandstone and carbonate reservoirs using multifractal theory 
based on 3D X-ray micro-computed tomography images. Authors showed that the capacity dimension  D0 and 
the information dimension  D1 correlate with porosity and permeability simulated from images, respectively. In 
addition, Jouini et al.30 showed the ability of multifractal parameters to classify groups of rock samples according 
to their degree of heterogeneity.

Few studies have applied both numerical and experimental fractal concepts to analyse pore structures in 
clastic and carbonate reservoirs. Rahner et al.34 established a correlation between image and experimental fractal 
dimensions in relatively homogeneous shale and tight gas sandstones using 3D MCT and NCT images. Chen 
et al.35 derived experimental fractal dimensions from HPMI data of six sandstone reservoirs and compared them 
with numerical fractal dimension calculated from 2-D SEM and 3-D MCT images. The fractal dimensions from 
2-D and 3-D images were combined in a single parameter using a bridge function and results show that they are 
consistent with experimental fractal dimensions for only simple pore structure but not for more complex pore 
structures. Recently, Shi et al.36 calculated both experimental and digital fractal dimensions from HPMI and 
SEM data, respectively, in Lower carboniferous carbonate reservoir without discussing the relationship between 
image and experimental fractals due to the absence of representability between HPMI and SEM length scales. 
In addition to their scarcity, these studies did not investigate the relationship between experimental and digital 
multifractal parameters.

In this study, we investigated the pore structure distribution and heterogeneity of Lower Cretaceous carbon-
ate reservoir from Abu Dhabi, United Arab Emirates (UAE) using coupled quantitative descriptors obtained 
from multifractal theory based on three dimensional digital images and HPMI experimental measurements. 
Furthermore, petrophysical properties were simulated numerically at pore scale to elucidate their correlation 
with multifractal descriptors. This study seeks to address the gap in analysing pore structure heterogeneity using 
the multifractal concept by applying the theory to both experimental and digital data.

Material and methods
Geological setting
The Thamama Group (Barriasian-Aptian) is a carbonate reservoir that was deposited in shallow-marine, low-
energy carbonate ramp and contains four formations: Habshan, Lekhwair, Kharaib and Shuaiba. Data from this 
study comes from Lekhwair Formation specifically from the Upper Thamama Zone D. The main depositional 
facies of Lekhwair Formation include high-frequency coarsening upward cycles of shallow-subtidal skeletal-
Bacinella floatstones, skeletal-peloidal wackestones; mud-dominated packstones, capped by skeletal-ooidal 
 grainstones37. The carbonate samples were selected carefully to represent six different reservoir rock textures 
defined within the Upper Thamama Zone D. The Upper Thamama Zone D frequently is considered as low resis-
tivity pay zone (LRPZ) due to the presence of multimodal pore  network37.

Samples and experiments
Samples used for this study include six core plugs  S1–S6 of 25 mm in diameter from Lower Cretaceous, shallow 
marine limestone reservoir in the UAE covering different depths and textural characteristics. The selected lime-
stone samples are composed of allochems dominated by skeletal fragments, ooids, peloids, and oncoids (Table 1). 

Table 1.  Brief description of the different samples, core plug features and their limestone textures.

Sample Limestone Dunham texture

S1 Skeletal ooidal packstone to grainstone

S2 Skeletal oncoidal grainstone to rudstone

S3 Skeletal-peloidal packstone

S4 Oncoidal packstone

S5 Skeletal wackestone to mud-dominated packstone

S6 Oncoidal wackestone to floatstone
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The limestones exhibit multi-modal pore network consisting of macropore (e.g., intergranular, moldic, vuggy 
pores) and micropores within skeletal fragments and between micrite particles, the distribution of which is con-
trolled by depositional textures and diagenetic  alterations30,37. X-Ray MCT and NCT are non-invasive acquisition 
methods used to reconstruct 3D tomographic image models of  rock38. These systems consist of X-ray emitting 
source and detector receiving the attenuated X-Ray signal crossing the sample. To generate the 3D image, a series 
of acquisitions were obtained at different angles. Projected data are reconstructed numerically to generate the 
3D grey level image representing the sample. The attenuation of incident X-rays is related to the sample inner 
density. Thus, high grey levels denote the solid phase whereas low grey levels are pores. To investigate the pore 
geometries and grain morphologies, a segmentation procedure needs to be implemented to separate solid and 
porous phases. The samples were scanned at coarse scale (20 μm resolution) using a Zeiss Xradia X-ray micro-
computed tomography scanner (Fig. 1). Subsequently, two 5 mm high subsamples representing the same sample 
texture were extracted physically from each core plug by visual inspection of the 3D images (Fig. 2).

The first subsample was used for HPMI measurements to experimentally characterize the capillary pressure 
curves. This approach involves introducing mercury into samples at increasing pressure, ranging from 0.5 psi to 
60,000 psi. The analysis of mercury intrusion volume at various pressures allows for the derivation of a distri-
bution function for pore throat sizes, along with determining the permeability and porosity of the subsample. 
This experimental method is valuable for rock typing, analysis and interpretation of core data. The results of the 
pore-throat distributions have yielded suitable information, allowing for the selection of the optimal scanning 
resolution that effectively captures the majority of pore features. The best resolution that X-ray MCT systems can 
reach depends on the energy and detector size. As the field of view is constrained by the detector size, smaller 
subsets were extracted physically from subsamples and scanned at higher resolutions to capture most pore 
features based on HPMI experimental results (Fig. 3). Furthermore, when experimental results reveal that most 
pore throats were below the micron, then NCT was implemented to capture pore network. For instance, the 
0.5 μm resolution scan of sample  S5 revealed few inter-particle pores that were not connected at this resolution 
(Fig. 4). Furthermore, the pore throat distribution curve of the same sample confirmed the presence of most 
pores below the 0.5 μm resolution (Fig. 5). Therefore, smaller representative subsets were further extracted and 

Figure 1.  HPMI experiments subsample selection and image acquisition at high resolution for Sample  S1: (a) 
core plug photograph, (b) X-Ray 3D-MCT at 20 μm resolution and selection by visual inspection of subsamples, 
(c) Subsample (trim) to be examined at high resolution, and (d) Subsample used for HPMI measurements.

Figure 2.  Subset selection and image acquisition at high resolution for Sample  S1: (a) Location of 4  mm3 
extracted subset on 3D X-Ray MCT at 20 μm resolution, (b) subset location on real core plug, (c) Subset 
extraction, and (d) Subset scanned at 4 μm resolution.
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scanned using NCT at a resolution of 60 ηm per voxel as illustrated in Fig. 4h. Table 2 summarizes dimensions 
and resolutions of X-Ray MCT and NCT scanned data for the six studied samples.

Application of fractal and multifractal theories for HPMI data
Application of fractal theory for HPMI
HPMI measurements are extremely valuable because they: (i) represent valuable experimental information to 
characterize the distribution of fluids within the reservoir and rock transport properties, and (ii) provide capillary 
pressure curves that are commonly used to infer pore size distributions of rock samples. The capillary pressure 
and saturation relationship depends on several parameters including pore throats size distribution, grain and 
pore geometry. Depending on the implemented model, the calculated fractal dimensions may reflect specific 

Figure 3.  Semi logarithmic plot of experimental HPMI Pore throat distributions of the six samples.

Figure 4.  Horizontal slices obtained from the six samples (extracted from 3D images): (a) 3D-MCT for sample 
 S1 at 2 µm resolution, (b) 3D-MCT for samples  S2 at 1 µm resolution, (c–f) 3D-MCT for samples  S3 to  S6 at 
0.5 µm resolution, and (g,h) 3D-NCT for samples  S5 and  S6 at 60 ηm resolution.
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characteristics of the pores. For example, Li et al.11 and  Li21 developed a model based on a power-law function 
as in the following equation:

where r is the radius to fill a unit of the fractal object, N(r)is the number of the units having a radius r needed to 
fill the whole fractal object, b is a factor of proportionality and Df is the fractal dimension. The model assumes 
that a pore is represented by capillary tube with a length of l and a volume equal to πlr2. The number of units 
N(r) can be calculated based on experimental capillary pressure curves measurements. Furthermore, a common 
assumption implemented in the model considers l independent of r. When the pore structure of the rock is frac-
tal, Df the fractal dimension can be determined by finding the relationship between SHg the mercury saturation 
and Pc the capillary pressure as the following equation:

This fractal dimension reflects the pore size  distribution11. Moreover, the estimated fractal dimension model 
revealed high correlations with petrophysical properties of core  plugs11,39. Other models can provide fractal 
dimension reflecting the characteristics of pore volume distributions in three dimension. Friesen et al.20 imple-
mented a model describing measurements of the pore volume of a number of coal and char samples by mercury 
intrusion porosimetry. The fractal dimension was determined from the relationship in the following equation:

where b is a constant.
In addition, some models can provide a fractal dimension characterizing the roughness of the pore surface 

Zhang and  Li40. In our study, we focused on the model proposed by  Li21 as one of our goals is to find the correla-
tion between fractal dimension and petrophysical properties such as porosity and permeability in the samples.

Based on Eq. (1) the log − log plot of SHg and Pc was obtained from HPMI experimental measurements for the 
Sample  S1 as illustrated in Fig. 5a. The pore throat radius distribution revealed in Fig. 5b abimodal behaviour and 
the cumulative distribution function showed a dramatic increase at pore throat size of  r36% = 10 μm corresponding 

(1)N(r) = br−Df

(2)log
(

SHg
)

=
(

Df − 2
)

log(Pc)+ log(a)

(3)log

(

dSHg

dPc

)

=
(

Df − 4
)

log(Pc)+ log(b)

Figure 5.  (a) Log–log plot relating SHg the mercury saturation to the capillary pressure Pc for the sample S1, and 
(b) Plot of pore throat radius distribution and its cumulative function.

Table 2.  Subset dimensions and corresponding 3D-MCT and NCT image acquisition resolutions.

Samples

Micro-CT Nano-CT

Dimensions  (mm3) Resolution (µm) Dimensions (µm3) Resolution (ηm)

S1 64 4 NA NA

S2 8 2 NA NA

S3 0.125 0.5 NA NA

S4 0.125 0.5 NA NA

S5 0.125 0.5 216 60

S6 0.125 0.5 216 60
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to the value log(Pc) = 0.87 PSI at SHg = 36%. Using (2), the fractal dimension of pores Df was estimated as 2.24. 
The plot revealed a poor linear relationship between the variables with a coefficient of determination  R2 =  + 0.53. 
However, the curve showed a double-fractal characteristic depending on the range of the capillary pressure Pc. 
Figure 6a illustrates a strong linear relationship between SHg and Pc with a coefficient of determination  R2 =  + 0.98 
for all values less than log (Pc) = 0.87 PSI. The same strong relationship is observed for the values larger than log 
(Pc) =  + 0.87 PSI with a coefficient of determination  R2 =  + 0.95. Similar result was observed in several previous 
studies when deriving fractal dimension Df from HPMI experimental measurements Lai and  Wang41.

Moreover, many studies employed multivariate statistical analysis revealed that porosity and permeability 
showed better results when correlated to pore radius rp where p is the percentage of saturation of the non-wetting 
 phase42,43. Therefore, the Swanson’s method was implemented to determine the segmentation point for the 
fractal dimension from each HPMI curve for the studied  samples44. Several researchers used the position of the 
maximum value of the plot of SHg/(Pc) versus SHg, which is known as the Swanson point, to find the transition 
between highly and poorly connected pores from HPMI  curves42,43. The triangular purple point represents the 
Swanson point of the sample  S1 (Fig. 6b). Based on the Swanson’s point, the fractal dimension of the small pores 
DS and the large pores DL of sample  S1 were estimated from the slopes using Eq. (9) respectively as DS = 4.24 and 
DL = 2.12. This result indicates that the fractal dimension DS = 4.24 of sample  S1 is greater than 3.0 contradicting 
the Euclidean dimension. Therefore, this range of pores has a low impact on pore structure evaluation. The fractal 
dimension of large pore throats DL = 2.12 which is conformed to the Euclidean dimension.

Application of multifractal theory for HPMI
The Box-Counting (BC) method is a standard technique used to estimate multifractal parameters revealing 
the complexity of a data. This method analyses patterns at several length scales to capture self-similarities by 
zooming in and out in the data. Furthermore, the technique requires the measurements to be equally spaced 
with a scale of ε. In our study, HPMI measurements were irregularly spaced so linear interpolation were used 
to obtain regularly spaced data points divided into N =  210 = 1024 sub-intervals. Practically, for each scale ε, the 
mass probability function  Pk(ε) of the  kth interval is defined as the ratio between Ni(ε) the pore volume of a kth 
interval and Nt the total pore volume. The mass probability function is an exponential function of scale ε as 
defined as in the following equation:

where αk is the singularity index.
Noted that the number of boxes N(ε) increases exponentially with the scale ε as in the following equation:

where Nα(ε) represents the number of boxes with singular strength in the interval [α, α + dα] and f(α) is the 
singularity  spectrum12.

The generalized dimensions Dq and the partition function χ(q,ε) are defined for q > 1 as in the following 
equation:

where χ
(

q, ε
)

=
∑

jP
q
j (ε).

For q = 1, D1 is expressed as in the following equation:

(4)Pk(ε) ∼ ε
αk

(5)Nα(ε) ∼ ε
−f (α)

(6)Dq =
1

q− 1
lim
ε→0

log
∑

kP
q
k (ε)

logε

Figure 6.  (a) Log–log plot relating SHg the mercury saturation to the capillary pressure Pc for the sample 
S1 illustrates the double-fractal characteristics, and (b) Plot of log SHgPc

 versus SHg illustrating the position of 
Swanson’s point: pore throat radius  r36% = 10 μm for the sample S1.
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The mass exponent τq and Dq the generalized dimension are related through the following equation:

For homogeneous objects the mass exponent τ(q) reveals a linear relationship with moments q. Conversely, 
for heterogeneous objects, the slope of τ(q) may change with respect to q and the deviation is related to the 
degree of the heterogeneity.

In addition, the multifractal theory provides a relationship between the singularity spectrum f(α) and the 
singularity α as in as in the following equations:

Figure 7 illustrates the mass exponent and singularity spectrum curves for sample  S1.
The variable α0 represents the concentration of pore size distribution corresponding to the maximum value 

of the singularity spectrum as illustrated in Fig. 7. The parameter Δα = αmin-αmax denotes the non-uniformity 
degree of the pore structures analysed, the larger Δα the higher the data spatial complexity, where α belongs to 
the interval [αmin αmax]. The symmetry of the singularity spectrum curve f(α) helps for a quantitative assessment 
of data heterogeneity. Indeed, uniform data are characterized by symmetric curves whereas heterogeneous ones 
reveal curve  asymmetry9,45. The parameter Δf = f(αmin) − f(αmax) denotes the shape characteristics of singularity 
spectra. The curve f(α) reveals an asymmetry to the right or to the left according to the dominant probability 
subset. Rd = (α0-αmax)-(α0-αmin) represents the asymmetry degree in the horizontal axis of the range [αmin, αmax] 
with respect to α0. When the value of Rd is positive, it indicates that the porosity distribution is mostly in sparse 
areas, and the opposite is true for negative  values46.

Image analysis and simulations of rock properties
Image Segmentation
In order to calculate the fractal and multifractal parameters from 3D X-Ray Digital images, the pore network 
needs to be identified using an image segmentation  method32. Indeed, every generated voxel inside the three-
dimensional X-ray image represents a grey level, coded in 16 bits, associated to the density at this precise spatial 
location. High and low grey level values denote solid and porous phases, respectively. Standard approaches 
implement thresholding algorithms to find automatically grey level limits separating these different phases in 
the image. In this study, we use a common thresholding method called the bi-level segmentation technique. This 
approach includes the grey levels spatial distribution into the histogram shape information to calculate thresholds 
separating porous and solid phases. The main advantage of this method is the use of region growing strategy to 
cope with the fuzzy transition zone representing the unresolved micro porous phase by X-ray imaging. Neverthe-
less, limitations in image acquisition resolution may lead to an intermediate mode in the histogram related to 
the presence of micro pores below image resolution. In this paper, the bi-level segmentation method was imple-
mented to find automatically the two thresholds separating the three phases. Lower and higher thresholding grey 

(7)D1 = lim
ε→0

∑

kPk(ε)logPk(ε)

logε

(8)τq = (q− 1)Dq

(9)f (α) = qα − τq

(10)α =
dτq

dq

Figure 7.  Sample  S1: (a) singularity spectrum f(α) calculated from HMPI experimental measurements, and (b) 
the mass exponent τq.
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level values for the sample  S1 were estimated respectively as 28,253 and 33,023 (Fig. 8b). In order, to calculate the 
fractal dimension, the intermediate phase was not considered. Each voxel belonging to this intermediate phase 
represents mixture of pore and grains below image resolution where geometry cannot be captured. Therefore, 
the binary image used for fractal dimension estimation implemented the lower thresholding value.

Image fractal and multifractal parameters
The 3D Box-Counting method was implemented to analyse patterns of self-similarities in 3D segmented images 
by breaking them into a grid of boxes. This approach is used, in general, to approximate the Hausdorff dimension 
of a fractal  dimension45. Boxes correspond to cubes used in investigating, by zooming in and out, the geometric 
complexity in a data at several length scales. In our application, pore structure was studied as main pattern of 
interest in three-dimensional binary images. The box-counting quantifies the presence of pores in each cube 
for a specific size of box. Practically, the number of cube boxes is calculated including the pore phase N(ε) for 
a specific cube side length ε. The procedure was repeated by covering the 3D image by a sequence of boxes of 
descending cube side lengths ε. Subsequently, the fractal dimension was estimated by the slope of the regression 
straight line representing the relationship between ln(N(ε)) and ln(1/ε) as in the following equation:

The extension of the fractal theory is known as multifractal analysis, and it is used when the geometry of a 
system cannot be described by a single fractal dimension. Instead, a range of fractal dimensions is defined to fully 
define these objects. Multifractals are measured using a probability distribution Pk in each kth box as Pk(ε) ∼ ε

αk 
as in shown in Eq. (3), where ε is the box size and αk is the Lipschitz–Holder exponent characterizing the sin-
gularity strength in the kth box. Zhang et al.23 proposed the use of αk factor to measure the level of complexity 
in the spatial distribution. They suggested that the number of boxes, denoted as Nα(ε) , can be used to represent 
the probability Pk of singularity strengths between α and α + dα. Additionally, the size of the boxes, ε, can be 
related to Nα(ε) as following Nα(ε) ∼ ε−f (α) where α corresponds to the singularity and f(α) is the singularity 
spectrum as in (4,9,10). Similarly, the mass exponent τq, the generalized dimension Dq, the partition function 
χ(q,ε), concentration of pore size distribution α0, the non-uniformity Δα = (αmin-αmax), the asymmetry degree 
in the vertical axis Δf = f(αmin) − f(αmax) and the asymmetry degree in the horizontal axis Rd of the range [αmin, 
αmax] with respect to α0 were derived from the same equations in section "Samples and experiments". Figure 8 
illustrates the result of image segmentation in addition to the generalized dimensions Dq and f(α) the singularity 
spectrum obtained for sample  S1.

(11)D = lim
ε→0

ln(N(ǫ))

ln( 1
ǫ
)

Figure 8.  Fractal dimension calculation process based on 3D X-ray micro-computed tomography for sample 
 S1. (a) The original 3D image, (b) histogram of grey levels with the thresholds implemented for 3D image 
segmentation, (c) segmented image, (d) the generalized dimension  Dq, (e) Fractal dimension D = 2.62 calculated 
as slope of the line ln(N(ε)) as a function of ln(1/ε), and (f) Singularity spectrum f(α) calculated from 3D 
segmented image.
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Numerical simulations of rock properties
Simulating permeability at pore scale using Lattice Boltzmann (LB) method on 3D X-ray images involves the 
following steps: (1) acquisition of 3D images of a porous material, (2) segmentation of the images to extract pore 
network and solid matrix, (3) assignment of boundary conditions and fluid properties to the pore network, (4) 
simulation of fluid flow through the pore network, and (5) calculation of permeability from the simulated fluid 
flow. The method considers the micro-scale features of the porous material, providing a more accurate representa-
tion of permeability compared to macro-scale models. In this approach, the fluid is modelled as particles moving 
in a lattice structure and their movement is described using a time and space distribution function. The governing 
equation calculates the density f(x,t) of the particles at each iteration, taking into account both the streaming and 
colliding terms, where x represents the location and t represents the time as in the following equation:

The particle movement direction in the lattice is indicated by ei, where i is the index for a specific direction. 
The particle velocity is ui, τ is the relaxation time controlling the rate of approach to equilibrium, Ω is a colli-
sion operator required to satisfy the conservation of total mass and total momentum, and F is an external force 
term. The LB method has several advantages as it calculates the particle velocity at each iteration using only the 
velocities of surrounding particles, making it easily implementable on high performance computer clusters. A 
multi-relaxation-time model based on the Lattice Bhatnagar–Gross–Krook (LBGK) scheme for the 3D lattice 
was used in this study, following a D3Q19 lattice  model47. The flow was set to be periodic between the inlet and 
outlet and the bounce-back rule was used to manage solid–fluid boundaries. Additionally, a no-slip boundary 
condition was implemented at the solid–fluid interface. When the steady state is reached, the permeability is 
estimated using the unidirectional Darcy’s law as in the following equation:

where K is the absolute permeability, ΔP represents the pressure difference along the length of the sample, A 
is the surface section area, Q stands for the flow rate and µ is the dynamic fluid viscosity. The permeability value 
estimated is in lattice units and are converted to a real value using the resolution of the scanned image. Moreo-
ver, the porosity can be determined by calculating the ratio of the number of voxels within the segmented pore 
space to the total number of voxels in the image. This value is calculated directly from the segmented 3D images.

Results and discussion
Numerical and experimental fractal analysis of pore structures
Comparison between the simulated and experimental properties showed a good agreement for both porosity 
and permeability rock properties with coefficient of determinations of  R2 =  + 0.69 and  R2 =  + 0.98, respectively 
(Fig. 9a,b). The correlation between experimental and simulated permeability values is higher than those of 
porosity because permeability have larger magnitude variation, from 0.02 to 800 mD. These observations indi-
cate that the three-dimensional images captured successfully digital pore networks representative of the real 
pore space in subsets used for HMPI experiments. This result confirms that image segmentation and Lattice 
Boltzmann methods provide accurate results for porosity and permeability when implemented on high quality 
resolution images as reported in several  studies30,48,49. Figure 9c reveals a fair agreement between the fractal 
dimension DL derived from HPMI and the fractal dimension FDL calculated form 3D images with a coefficient of 
determinations  R2 =  + 0.69. This observation suggests the existence of a link between pore structures description 
using image fractals and experimental rock properties in the studied carbonate samples.

Furthermore, the image fractal dimension FDL showed a positive correlation with porosity with a coefficient 
of determination  R2 = 0.56 for a direct linear fitting relationship (Fig. 9d). This observation suggests that high 
porosities correspond to high image fractal dimension FDL values because high porosity images usually have 
more compact pore structure. Figure 9e revealed no correlation  (R2 =  + 0.13) between the image fractal dimen-
sion and the experimental permeability measurements obtained from HPMI. Indeed, the fractal dimension FDL 
also called capacity dimension usually captures the average presence of pores rather than their  connectivity29. 
Furthermore, a positive correlation was revealed between the fractal dimension FDL and the radius at Swanson’s 
segmentation point with a relatively fair coefficient of determination  R2 =  + 0.45 (Fig. 9f).

Heterogeneity characterization using HPMI experiments
Various types of pores with varying sizes develop in carbonate reservoirs, leading to heterogeneity in the struc-
ture of the pores (Chen et al., 2016). A brief description of the six samples features and their limestone textures 
is provided in Table 1. The permeability of samples  S1 and  S2 derived from HPMI results analysis are 401.63 mD 
and 112.84 mD respectively (Table 3). These high values of permeability shows that samples are dominated by 
large pore throats. This observation is in agreement with the wide bimodal pore throat size distributions with a 
major peak at around 16 µm (Fig. 3). A second peak appears around 0.113 µm and 0.21 µm for samples  S1 and 
 S2, respectively. Both samples show well connected large pores in their macro-porous phases and 3D-MCT scan 
data, and the presence of inter-particle and intra-particle pores. In contrast, the samples  S3 to  S6 showed low 
permeability values spanning from 0.03 mD to 6.75 mD, suggesting that the samples are dominated by small pore 
throats (Table 3). Samples  S3 and  S4 showed bimodal pore throat size distributions, narrower than samples  S1 and 
 S2, with a major peak at around 1.2 µm (Fig. 3). A smaller peak appeared for both samples at 0.58 µm as well.

The 3D-MCT image of sample  S3 acquired at 0.5 µm resolution showed a well-connected macropore sys-
tem and presence of dolomite rhombs within the micrite matrix. The 3D-MCT scan of sample  S4 at 0.5 µm 

(12)f (x + ei , t + 1) = f (x, t)+�(x, t, F, τ , ui)

(13)K =
µLQ

A�P
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resolution showed that the micro-porous phase exits inside the leached grains in grain supported texture. The 
HPMI data of samples  S5 and  S6 revealed unimodal pore throat size distributions with a major peak at 0.27 µm 
and 0.14 µm, respectively. Both samples display relatively narrow distributions by comparison to the other four 
samples (Fig. 3). The NCT image acquired at 60 ηm resolution revealed that most of the microporous phase 
exists inside the mud matrix for sample  S5 and exists within the micrite between the oncoidial allochems for 
sample  S6. Furthermore, the fractal characteristics of the pore space for the six samples were investigated using 
experimental HPMI measurements. In percolation theory suggests that the flow properties are predominantly 
influenced by a characteristic length, which plays a pivotal role in governing the fluid flow in reservoir  rocks42. An 
increased fractal dimension indicates a shift in the regular pore morphology towards a more complex  form15,21,41. 
Consequently, this transformation results in a decrease in both fluid flow and permeability. Several researchers 
have used fractal dimension on tight sandstone to predict permeability. For example, Lai and  Wang41, applied 
Li’s21 model to assess the fractal characteristics of tight sandstones, revealing the presence of two distinct fractal 
regions in all tight sandstone samples in their investigation. The fractal dimension value acts as a quantitative 
measure of reservoir heterogeneity, demonstrating that an elevation in the fractal dimension corresponds to a 
more complex pore structure, ultimately resulting in decreased permeability. Nevertheless, in our study Fig. 10 

Figure 9.  Correlation between experimental and simulated rock properties for the 6 samples: (a) porosity, (b) 
permeability, (c) experimental and simulated fractal dimensions DL and FDL. Correlations between image fractal 
dimensions FDL and (d) porosity, (e) permeability, and (f) Radius at Swanson’s segmentation point.

Table 3.  Experimental and numerical porosity and permeability values for the six samples.

Samples

HMPI Digital simulations

Porosity (φ(%)) Permeability (K(mD)) Porosity (φ(%)) Permeability (K(mD))

S1 22.2 401.63 18.5 833

S2 23.6 112.84 28.6 222

S3 20.8 6.75 25.2 52

S4 18.0 3.09 10.9 3.62

S5 23.0 2.03 19.2 0.95

S6 7.8 0.03 6.6 0.02
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reveals the existence of a relatively strong direct linear relationship between the fractal dimension and the loga-
rithm of the simulated permeability with  R2 = 0.72. This outcome is consistent with the result reported by Xin 
et al.26 revealing an increase of permeability with respect to the increase of fractal dimension in a fractured-vuggy 
carbonate reservoir. However, Zhang et al.15 studied fractal dimension of pore structures of Lower Carbonifer-
ous carbonate reservoir and showed the existence of an inverse linear relationship with permeability  (R2 = 0.75). 
Figure 11 shows the log − log plot of SHg and Pc samples  S2 to  S6. As for sample  S1 the plot showed poor linear 
relationships fitting between the variables. Nevertheless, Fig. 12a revealed that all curves have a double-fractal 
behaviour characterized by the Swanson segmentation points. The curves obtained by plotting SHg versus SHg/Pc 
denoted sharp apex for each sample (Fig. 12b). Table 4 summarizes the maxima values obtained for each sample 
at the corresponding saturation percentage SHg.

The double-fractal characteristic is revealed by piecewise linear regressions showing good fits with a positive 
coefficient of determination  R2 spanning in the interval [0.87, 0.95] for the six samples. The fractal dimensions 
of the large pores, denoted DL, ranges from 2.04 to 2.23. In addition, a good fit is revealed for the left segments 
corresponding to smaller pores in Fig. 12a, the estimated fractal dimensions DS values are all greater than 3.0, 
which contradicts the Euclidean dimension revealing absence of fractal characteristics. Among, our studied six 
samples, only sample  S2 may reveal three sections for the log(Pc) versus log(Shg) curves. However, the estimation 
of the fractal dimension in the intermediary section provided also a fractal dimension larger than 3.0 contra-
dicting the Euclidean dimension. Therefore, we used only DL revealing the fractal behaviour for macro-pores.

Figure 10.  Relationship between fractal dimensions FDL and simulated permeability log(K) for sample  S1 to  S6.

Figure 11.  Log–log plot relating SHg the mercury saturation to the capillary pressure Pc for sample  S2 to  S6.
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Moreover, several multifractal parameters were calculated based on the HPMI measurements of the six 
samples. The mass exponent τ(q) and the singularity spectra f(α) were calculated for the six samples. Figure 13a 
illustrates slope variations of the mass exponent τ with respect to q for the six samples. Samples  S1 and  S2 show 
higher changes in slopes values compared to the other four samples. These large variations are due to the higher 
heterogeneity in pore throat size distributions in these two samples described in both HPMI data and observed 
in 3D X-Ray images. This observation confirms the ability of multifractal parameters to assess quantitatively 
heterogeneity in HPMI measurements. The singularity curves for the six samples revealed convex parabolic 
shape as illustrated in Fig. 13b. The samples  S1,  S4 and  S6 revealed singularity spectra curves f(α) with a left asym-
metry around α equals to 1. Singularity curves of samples  S1,  S4 and  S6 showed wider left portions with sharper 
slopes than the right ones. However, asymmetric singularity curves of samples  S2,  S3 and  S5 revealed wider right 

Figure 12.  (a) Swanson’s segmentation points for samples  S1 to  S6, and (b) Log − log plot of SHg and Pc obtained 
from HPMI experimental measurements for samples  S1 to  S6 revealing double-fractal behaviour.
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portions with sharper slopes than the left ones. These behaviours indicate that distributions of pores reveal a 
multifractal behaviour for all six samples. Moreover, singularity parameters Δα and Δf(α) were calculated to 
assess heterogeneities characteristics of the samples. Table 5 summarizes the results values for the six samples. 
The concentration of pore size distribution α0 values were in the range [1.03, 1.14] for the six samples. Smaller 
α0 values indicate larger concentrated distributions. The degree of heterogeneity in the distribution of probabil-
ity measures of physical quantities over the entire fractal structure is indicated by the width of the multifractal 
spectra Δα. Samples  S1 and  S2 revealing strongest heterogeneity of pore distributions revealed largest Δα values 
among the six samples of 1.22 and 1.91, respectively. The range of non-uniformity degree Δα was [0.47, 0.93] 
for the other four samples. The most homogeneous sample in term of pore size distribution appears is sample 
 S5 with the Δα value of 0.47. These results confirm the ability of this multifractal parameter to describe quanti-
tatively the heterogeneity in samples. In addition, Δf(α) values were positive for samples  S1,  S4 and  S6 indicating 

Table 4.  HPMI fractal dimensions, image fractal dimensions and Swanson’s segmentation points for the six 
samples where x represents the saturation of Hg in %.

Samples

HPMI fractal dimensions Image fractal dimension
Segmentation 
point

DL R2 Df R2 D R2 FDL R2 SHg (%) rx (µm)

S1 2.12 0.95 2.24 0.53 2.62 0.99 2.27 0.99 33 10

S2 2.23 0.94 2.31 0.76 2.63 0.97 2.38 0.97 18 9.5

S3 2.16 0.90 2.59 0.67 2.53 0.98 2.24 0.98 43 1.0

S4 2.20 0.87 2.66 0.58 2.68 0.99 2.28 0.99 41 0.7

S5 2.14 0.88 2.37 0.54 2.74 0.98 2.16 0.98 67 0.25

S6 2.10 0.91 2.33 0.58 2.59 0.99 2.05 0.99 42 0.10

Figure 13.  Multifractal parameters for samples  S1 to  S6 from HPMI experimental measurements: (a) singularity 
spectrum f(α), and (b) the mass exponent τq.

Table 5.  Multifractal parameters from HPMI measurements.

Samples α0 αmin αmax Δα Δf Rd

S1 1.06 0.43 1.65 1.22 0.93 0.39

S2 1.04 0.06 2.06 1.99 0.94 − 0.04

S3 1.03 0.61 1.55 0.93 0.56 − 0.09

S4 1.12 0.75 1.37 0.62 0.50 − 0.60

S5 1.03 0.70 1.17 0.47 0.26 0.19

S6 1.14 0.84 1.47 0.62 1.14 − 0.02
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that a large probability subset was dominant in these samples. The samples  S2,  S3 and  S5 show Δf values that are 
negative indicating that a small probability subset was dominant in these samples.

Multifractal characteristics of pore structures using image analysis
The analysis of 3D-MCT images of samples  S1–S4 produced fractal dimensions values D ranging from 2.53 to 2.64, 
whereas NCT images gave fractal dimensions 2.59 and 2.74 for samples  S5 and  S6, respectively. The image fractal 
dimensions D values (Table 4) reveal larger values when compared to the range of experimental fractal dimension 
obtained from HPMI which are in the range [2.10, 2.23]. This result was expected as fractal dimension calculation 
was based on all pores included in images. Therefore, to have a more representative comparison, image fractal 
dimensions (FDL) were recalculated keeping only pores with sizes larger than the Swanson’s segmentation points. 
Figure 14 illustrates the comparison between fractal dimension values calculated including all pores in red and 
including only pores larger than 10 µm in blue. The recalculated fractal dimension values vary in the range [2.05, 
2.38] (Table 4). The fractal scaling law, as observed in various studies, suggests that an increase in porous area 
(in 2D images) or volume (in 3D images) will result in higher fractal  dimensions23. Consequently, the decrease 
of fractal dimension values is in agreement with results reported in these previous studies.

Furthermore, samples  S1 and  S2 revealed image fractal dimensions FDL values of respectively 2.27 and 2.38 
larger than the four other samples with values ranging in the interval [2.05, 2.28]. This observation indicates the 
effectiveness of fractal dimensions in capturing complexity in pore structures of samples through the imaged 
pore network.

The singularity curves f(α) for the six samples showed right sided asymmetric convex parabolic shapes as 
illustrated in Fig. 15. Also, Table 6 summarizes the image multifractal parameters results for the six samples. 
The concentration of pore size distribution values α0 ranged between 2.977 and 2.988. Larger α0 values indicate 
smaller concentrated distributions. Samples  S1 and  S2 revealed largest Δα values among the six samples respec-
tively 0.413 and 0.416 whereas Δα was in the range [0.357, 0.392] for the other four samples. This observation 
confirms that the non-uniformity degree of the pore structures Δα captures heterogeneity from 3-dimensional 
image data. Moreover, Δf(α) values were negative for the six samples indicating that a small probability subset 
was dominant in these samples.

Correlation between HPMI and digital multifractal parameters
The correlations between multifractal parameters derived from HPMI experimental measurements and three 
dimensional images were analysed. Figure 16a revealed the existence of a strong linear relationship between the 
non-uniformity degree Δα calculated from HPMI and images with a relatively high determination coefficient 
 R2 =  + 0.73. Furthermore, the concentration of pore size distribution α0 showed also a relatively good linear 
relationship with a determination coefficient  R2 =  + 0.69 (Fig. 16b). However, the relationship between the shape 
characteristics of singularity spectrums Δf(α) derived from images and HPMI experiments showed a weaker 
correlation with a determination coefficient  R2 =  + 0.51 (Fig. 16c). These results show that the multifractality 
notion could describe independently both digital and experimental representations of the same data and that a 
correlation exists between these two representations.

The results obtained in this study indicate the relevance of multifractal parameters to describe heterogeneity 
quantitatively in pore structures from both experimental and digital data. The comparison between multifractal 
parameters ranges allowed discriminating homogeneous from heterogeneous samples. Nevertheless, this method 
suffers of lack of clear established reference ranges.

Figure 14.  Fractal dimensions calculated as slope of the line ln(N(ε)) as a function of ln(1/ε) in sample  S1: in 
red D = 2.62 including all pores and in blue D = 2.27 including all pores with r > 10 µm.
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In future studies, it is imperative to explore a broader spectrum of experimental and digital measurements to 
establish statistically more comprehensive parameter ranges for Δα, α0,  Rd, and Δf(α) in carbonate rocks. These 
parameters serve as quantitative indicators for classifying the degree of heterogeneity in carbonate formations. 
Subsequently, in a secondary phase of the research, the goal is to identify the most significant multifractal param-
eters among these, influencing key rock properties such as porosity, permeability, and elasticity. Ultimately, our 
aim will be to integrate the most influential parameters among Δα, Δf(α),  Rd, and α0 as quantitative heterogeneity 
indicators into rock physics models for carbonate formations.

Figure 15.  Singularity spectra f(α) for samples  S1 to  S6 calculated from 3D segmented images.

Table 6.  Multifractal parameters from 3D images.

Samples α0 αmin αmax Δα Δf Rd

S1 2.985 2.967 3.381 0.413 0.488 − 0.377

S2 2.977 2.964 3.381 0.416 0.530 − 0.391

S3 2.983 2.958 3.350 0.392 0.436 − 0.342

S4 2.986 2.967 3.352 0.385 0.442 − 0.346

S5 2.978 2.947 3.304 0.357 0.444 − 0.294

S6 2.988 2.952 3.314 0.362 0.484 − 0.289

Figure 16.  Correlation between experimental and digital multifractal parameters for samples  S1 to  S6: (a) non-
uniformity Δα, (b) concentration of pore size distribution α0, and (c) shape characteristics of singularity spectra 
Δf(α).
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Conclusions
The main findings of this study on pore structures investigation of the Lower Cretaceous, shallow marine lime-
stone reservoir by HPMI and 3D X-Ray MCT and NCT in combination with fractal and multifractal theories 
are listed as below (Supplementary Information S1):

• The primary advantage of this study is to offer a quantitative tool for categorizing rock samples based on their 
heterogeneity within this reservoir. Indeed, multifractal analysis can effectively capture the heterogeneity 
present in carbonate samples, whether derived from experimental data or digital rock images. Furthermore, 
we establish the presence of a correlation between these multifractal parameters, even when estimated at 
various scales. These observations should be investigated for more samples in future studies to have statisti-
cally more representative and accurate results.

• The image simulated rock properties agree with experimental measurements suggesting that 3D imaging, 
and simulation are effective methods to represent HPMI experimental measurements. Image fractal dimen-
sions values span from 2.05 to 2.38 and revealed fair correlation with experimental HPMI measurement of 
porosity. Overall, a good correlation was revealed with pore throat radius at Swanson segmentation point.

• Higher correlation between experimental and simulated permeability than porosity values due to larger 
magnitude of permeability variation indicates that 3-dimensional images captured successfully digital pore 
networks representative of the real pore space in subsets used for HMPI experiments.

• A double fractal behaviour was revealed in the curves relating mercury saturation to capillary pressure. The 
intervals with fractal characteristics are characterized by Swanson segmentation points. Fractal dimensions 
calculated from HPMI measurements showed a good correlation with experimental HPMI measurement of 
porosity.

• The existence of good correlation between image and experimental multifractal parameters suggest that 
the description of pore scale morphologies can be described accurately by 3-D X-ray images representing a 
foundation for further research.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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