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Plasticity-led evolution

as an intrinsic property

of developmental gene regulatory
networks

Eden Tian Hwa Ng & Akira R. Kinjo™

The modern evolutionary synthesis seemingly fails to explain how a population can survive a large
environmental change: the pre-existence of heritable variants adapted to the novel environment is
too opportunistic, whereas the search for new adaptive mutations after the environmental change
is so slow that the population may go extinct. Plasticity-led evolution, the initial environmental
induction of a novel adaptive phenotype followed by genetic accommodation, has been proposed to
solve this problem. However, the mechanism enabling plasticity-led evolution remains unclear. Here,
we present computational models that exhibit behaviors compatible with plasticity-led evolution

by extending the Wagner model of gene regulatory networks. The models show adaptive plastic
response and the uncovering of cryptic mutations under large environmental changes, followed by
genetic accommodation. Moreover, these behaviors are consistently observed over distinct novel
environments. We further show that environmental cues, developmental processes, and hierarchical
regulation cooperatively amplify the above behaviors and accelerate evolution. These observations
suggest plasticity-led evolution is a universal property of complex developmental systems
independent of particular mutations.

According to the modern evolutionary synthesis, the standard theory of evolution, all possible phenotypic vari-
ation is almost purely explained by genetic variation!, either ignoring environmental contributions or treating
them as noise*°. In this sense, the standard theory is said to be a theory of mutation-led evolution. Therefore,
the only means for an individual to survive a large environmental change is to possess mutations that produce
a phenotype already adapted to the novel environment. However, natural selection selects adaptive phenotypes
in the current environment, making the pre-existence of phenotypes adapted to novel environments highly
unlikely*. Suppose instead that adaptive variants only appear after the environmental change. In that case, adap-
tation requires searching for new adaptive mutations, which is likely too slow for the population to survive®.

Phenotypic plasticity, the ability to change the expressed phenotype in response to environmental cues, has
been proposed to remedy the above problem because it could produce a phenotype with higher fitness in a novel
environment without a change in the genotype. Phenotypic plasticity arises from the developmental process,
which integrates genetic and environmental information to generate a phenotype®~®. Biological experiments
suggest that formerly conditionally expressed traits can become constitutively expressed through a process
called genetic assimilation’. Genetic assimilation was later generalized to genetic accommodation to include
any adaptive refinement of phenotype regulation® '°.

In plasticity-led evolution, the novel adaptive phenotype is initially induced by novel environmental cues. If
the novel environment is persistent, then the novel phenotype undergoes genetic accommodation® ' '2. This
has been deemed to resolve the problem of gradualism implied by mutation-led evolution'®. Levis and Pfennig
proposed the following four criteria for plasticity-led evolution'®:

The novel adaptive phenotype is initially induced by plasticity.
Cryptic mutations are uncovered as a result of the plastic response.
The phenotype undergoes a change in regulation.

The phenotype undergoes adaptive refinement under selection.
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There are numerous studies on natural populations to evaluate whether plasticity-led evolution has occurred''.
However, the mechanisms by which plasticity-led evolution is made possible remain unclear, resulting in mis-
understanding and confusion on the meaning and implications of plasticity-led evolution® % >4, For example,
if plastic responses are regulated by particular genes, plasticity itself is a heritable trait! and, hence, is subject to
natural selection. The “plasticity-led evolution” based on such gene-regulated plasticity is, therefore, still within
the framework of Modern Evolutionary Synthesis, and hence the problem of gradualism remains. This suggests
that plasticity in plasticity-led evolution should emerge from non-genetic causes®'>1°. This is not to say that
plasticity does not depend on genetic information. It is to say that the plasticity in plasticity-led evolution should
be an emergent, collective property of the developmental system, including the genome and environment as a
whole> 116 A similar phenomenon has been suggested for evolutionary capacitance'”.

To pursue this possibility, we study computational models of evolutionary developmental systems. Such
models should be able to express changes in phenotype in response to changes in environmental cues and pos-
sess a developmental framework and hierarchical regulation'® *°. In plasticity-led evolution, the environment
encountered by a population plays two roles. One induces phenotypic response (environment-as-inducer), and
the other selects phenotypes more adapted to it (environment-as-selector). Existing works incorporate some
aspects of phenotypic response to different environmental cues?*-*>. However, so far, there seem to be almost no
studies that explicitly correlate the two roles of the environment*. A notable exception is Draghi and Whitlock?,
who used correlated environment-as-selector and environment-as-inducer (modeled as 2-dimensional vectors) to
study the effect of genetically encoded plasticity on adaptation. The developmental process is often overlooked in
traditional quantitative genetics models as it does not directly contribute to phenotypic variation>*> 26, However,
it is an essential process that integrates environmental and genetic information into phenotype®’. Developmental
processes are naturally modeled by gene regulatory networks (GRNs)?” %%, Biological GRNSs have a hierarchical
organization'® 2, However, most studies of computational models ignore this biological aspect of development
(except for Xue et al.?’, but their model lacks developmental regulation).

We demonstrate that GRN models incorporating all the above ingredients can satisfy the Levis-Pfennig cri-
teria for plasticity-led evolution under large environmental changes'!. We also illustrate how these ingredients
cooperatively enhance adaptation and accelerate evolution. We further show that this model exhibits plasticity-led
evolution as a generic feature independent of specific mutations or particular environmental changes.

Modeling

A computational model of plasticity-led evolution should incorporate several core notions: environment (-as-
inducer and -as-selector), gene regulatory network (GRN), developmental process, selection, and reproduction.
The environment-as-inducer represents the role of the environmental cue in determining phenotype alongside
the genome. The environment-as-selector represents the role of the environment as a selection agent. In our work,
we assume that these two roles of the environment are highly correlated. The GRN represents the regulation
of phenotype expression through gene-gene and gene-environment interactions. We model the developmental
process as the recursive regulation of gene expressions over time to express the phenotype. Selection favors
individuals that have adult phenotypes that better match the environment-as-selector. Selected individuals then
reproduce. Their genomes are recombined and mutated to produce the next generation of individuals.

A minimal model incorporating all these notions is a recursive GRN introduced by A. Wagner?’. In the
Wagner model, the gene expression at the s-th stage of development is represented by a vector g(s). The genome
is represented by a matrix G where the (i, j) element represents the regulatory effect of the j-th gene on the i-th
gene. The recursive equation defining the developmental process of the Wagner model is given by

g =0 > Gygls—1 (1)
j

where o is an activation function.

The developmental process is naturally represented by the sequence of vectors g(0), g(1),£(2), - - . The indi-
vidual’s phenotype is usually taken as the steady state of Eq. (1) if it converges. The Wagner model has been used
to demonstrate the evolution of mutational robustness?’, evolutionary capacitance'’, the link between mutational
and environmental robustness®, the role of robustness in evolution®"*?, the role of phenotypic plasticity in
directing evolution® and the emergence of bistability*>*. These works provide indirect evidence that the Wagner
model has the potential to exhibit plasticity-led evolution®.

However, most previous works using the Wagner model did not include correlations between the environ-
ment-as-inducer and environment-as-selector to validate whether a plastic response is adaptive. These works
also do not emphasize the roles of developmental processes or hierarchical regulation of GRNs. We, therefore,
extend the Wagner model by introducing these extra features.

Macro-environment and environmental cues

Recall that the environment plays two roles in eco-evo-devo biology. The “environment-as-inducer” forms a cue
integrated into phenotype expression. The “environment-as-selector” determines the fitness of adult individu-
als. We generalize the idea of Draghi and Whitlock? to a higher-dimensional case to model a wider variety of
environments and phenotypes. We define the macro-environment as a 200-dimensional vector e representing
the average environment exerted on the population. Each element of e takes a +1 or —1 value. We modeled each
individual’s environmental cue e as the macro-environment e with noise by randomly flipping 5% of elements of
e. This environmental cue e may be considered as the micro-environment of an individual.
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Genome and developmental process

We now introduce several variants of the Wagner model. The Full model (Fig. 1a) is the main focus of this study,
which incorporates response to environmental cues, developmental process, and hierarchical regulation. As
controls, we also introduce NoHier, NoCue, and NoDev (Fig. 1b-d) models to highlight the role of each ingredi-
ent in plasticity-led evolution.

Full model

We introduce a vector p(s) representing the phenotype expressed at the s-th stage of development and p(s) as
the exponential moving average of the phenotype (see "Methods"). To reflect the hierarchical regulation of GRN
elements (such as epigenetic marks, RNAs, and proteins), we further introduce a layer of vector f{s) to represent
epigenetic marks and a layer of vector h(s) to represent higher-order complexes (such as proteins, supramolecular
complexes, etc.). Thus, we assume the following mutually recursive equations:

200 200
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where E is a matrix that represents the environmental regulation of epigenetic marks, F is a matrix representing
the epigenetic regulation of gene expression levels, G is a matrix representing the genetic regulation of epigenetic
marks, H is a matrix representing the genetic regulation of higher-order complexes, J is a matrix representing
interactions among higher-order complexes, P is a matrix representing regulation of the phenotype. Therefore,
the matrix ensemble {E, F, G, H, ], P} represents the individual’s genome. We set the base matrix density as
po = 0.02, which is the density of each matrix in the Full model. The matrix densities for the other models are
determined such that the number of nonzero elements is equal between different models on average. o7, oy, op,
and o) are activation functions based on arctangent or hyperbolic tangent functions (see "Methods"). The initial
conditions are set to f(0) = 0, g(0) = 1, h(0) = 0, and p(0) = 0, where 0 is the zero vector and 1 is the vector
with all elements equal to 1. f{s), g(s), h(s), and p(s) are all 200-dimensional vectors in the Full model, the values
of their elements can be interpreted as their respective normalized values. We iteratively compute the state vectors
f(s), g(s), h(s), and p(s) for s = 1,2, - - - until the phenotype p(s) converges (see "Methods").

Note that the environmental cues are fed to the system ase — p(s — 1) rather than e alone. In reality, no envi-
ronmental cues can directly influence an organism, but only through some receptors or sensors, which are part
of the phenotype®. The e — p(s — 1) term can represent these cue-receptor/sensor interactions most straightfor-
wardly. As the population adapts towards e, (selected elements of) p approaches e, and their difference converges
to 0. In other words, the influence of the environmental cues on the adult phenotype decreases as adaptedness
increases. In this way, we expect to model genetic assimilation’®. In contrast, early developmental stages (e.g.
embryos) are more strongly influenced by environmental cues, in line with experimental observations® >3,

NoHier model
To study the effect of hierarchical structure on GRNSs, we introduce a developmental model without a hierarchical
structure, which we name the NoHier model (Fig. 1b):

600 200
g =0 | Y Gigis =D+ > _ Ejlej—ps —1) |,

j=1 j=1

600 (3)
pi(s) =0y | Y Pigi(s)

j=1

To preserve the degrees of freedom between the Full and NoHier models, the vector representing gene expression
levels g(s) is set to 600-dimensional for the NoHier model. The matrix densities of the NoHier model are adjusted
so that the number of non-zero elements is the same as the Full model, on average (Table 1). The dimensions of
vectors representing the environment e and phenotype p(s) are kept at 200.

NoCue model
To study the effect of environmental cues on development, we introduce a developmental model where the
environmental cue e is absent, which we name the NoCue model (Fig. 1¢):
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Full NoHier NoCue NoDev
Vectors e—pf.ghp e—pgp —pf&hp efghp
Matrices EF,GH,J,P E G P EF,GH,J,P EF,GH,P
dimg 200 600 200 200
PG Po 4p0/9 Po Po
op £o Po/3 Po Po
PE £o po/3 Po Po
PH £0 N.A. 00 200
wfz 3 x 20006 N.A. 2 x 200pg 2 % 200pG
w; 20006 6000G + 2 x 200pg 200pG 200p6
w? 2 x 2000 N.A. 2 X 2000y 200
w}, 200pp 600pp 2000p 2000p

Table 1. Summary of parameters in model variants. dim g is the dimension of the g vector. All other vectors,
if present, are 200-dimensional. Matrix densities (pg, pp, PE, pH) are chosen to ensure that the number of
non-zero elements is equal between different models on average. Our study used pp = 0.02. of, g, W} and
w, are scaling constants for the input of the respective activation functions (squared values are shown; see
"Methods").
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Figure 1. Diagram representing regulation between different layers of different models. Boldface e represents
the macro-environment. e, f, g, h, p represent vectors. Black solid arrows represent regulatory interactions. The
red solid arrow represents noise. The black dotted arrow represents selection. E, F, G, H, ], P represent regulatory
matrices. (a) Full model (Eq. 2); (b) NoHier (Eq. 3); (c) NoCue (Eq. 4); (d) NoDev (Eq. 5).
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Apart from the absence of the vector e, this is identical to the Full model.

NoDev model

To highlight the importance of the developmental process, we use the Full model described by Eq. (2) but set
the maximum number of developmental steps to 1 for minimal development. We name this the NoDev model
(Fig. 1d):
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Hence, p(1) is immediately considered the adult phenotype. To compensate for the absence of self-regulation of
the h layer, we double the density of the H matrix (Table 1).

Natural selection and reproduction

We evaluate each individual’s fitness by matching the macro-environment e with the adult phenotype p (assum-
ing that p converges). In other words, the macro-environment e plays the role of environment-as-selector by
being the optimal phenotype. We also included the number of developmental steps up to convergence into the
fitness calculation such that individuals with fewer developmental steps are favored. We define the raw fitness
of the i-th individual as:

w; = exp(—(allp —ell1 + ,BNstep)) (6)

where ||p — e]|; is the absolute (L1) distance between the first 40 (out of 200) elements of the adult phenotype p
and the corresponding elements of the macro-environment e, Nitep is the number of developmental steps until
convergence, and we set« = 20 and 8 = 2—10 In other words, only 40 traits (elements of the phenotype vector)
are subject to selection, and other 160(= 200 — 40) traits are allowed to evolve freely. In this paper, we call the
value of |[p — e||; mismatch. Individuals whose phenotype p(s) does not converge before a pre-specified num-
ber (200) of steps are given a fitness value of zero. The population in which all individuals have completed the
developmental process is called the adult population in the following. The relative fitness of the i-th individual

of the adult population is given by
w;

= max;{w;j} )

where max;{w;} is the maximum raw fitness among the adult population.
The offsprings of individuals are generated as follows:

Initialize the selected population as an empty set.

Uniformly sample individual i from the adult population.

Sample a random number r from the uniform distribution between 0 and 1.

If r < 2, then a copy of the i-th individual is added to the selected population.
The i-th individual is put back to the adult population.

Al o M
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Figure 2. Simulating plasticity-led evolution. During each epoch, a population of individuals is subject to
selection under a constant macro-environment. Each epoch lasts for 200 generations. At the end of each epoch,
the macro-environment is changed by randomly flipping 50% of the environmental factors. This process is
repeated so that the population is subject to selection under 50 different environments in turn. The first 40
epochs are the training phase; we tracked the final ten epochs to assess plasticity-led evolution.

6. Repeat steps 2-5 until the size of the selected population reaches the maximum population size of 1000
individuals.

7. Individualsiandi+ 1wherei = 1,3,5,- - - of the selected population are paired to become parents.

8.  For each pair of parents, two offsprings are produced by randomly shuffling the corresponding rows of the
genome matrices with probability 0.5 between the parents.

9. Duplicate the offspring population. Now we have two populations of 1000 offsprings each.

10. The genome matrices of both offspring populations are independently mutated with a given probability

(see "Methods").

We then develop one offspring population in the “ancestral” environment and the other in the “novel” environ-
ment (see the following subsection for definitions of the ancestral and novel environments). Only the individuals
in the “novel” environment are subject to selection. The population in the “ancestral” environment is used only for
comparison and is discarded after measurement. Adaptive evolution of a population in an environment is there-
fore modeled by repeated cycles of development, selection, and reproduction under the “novel” environment.

Simulating plasticity-led evolution

To study plasticity-led evolution, we require at least two environments: the ancestral environment, to which the
population is adapted, and the novel environment, to which the population is to adapt. To let the population
adapt to an environment, we simulate adaptive evolution for 200 generations. We call this duration an epoch,
which is considered a unit of evolutionary time scale. In each epoch, the macro-environment is set constant. For
each model, we simulated adaptive evolution for 50 epochs in turn (Fig. 2). Between two consecutive epochs, we
introduce a large environmental change by randomly flipping 50% of the elements of the macro-environment
vector e (Fig. 2). The first 40 epochs serve as the “training phase,” where the randomly initialized population is
equilibrated. In addition, we expect the developmental systems to learn how to respond to large environmental
changes during this phase. We then tracked the final ten epochs to assess the properties concerning the criteria
of plasticity-led evolution. In each epoch, the last adapted and current environments are regarded as the ancestral
and the novel environments, respectively.
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Results

We first present a visualization of the trajectory of the phenotype and genotype over evolution. By looking at the
initial phase of the trajectory, we assess plastic response and the uncovering of cryptic mutations. The visualiza-
tion also lets us track adaptive change in mean value and variation of genotype and phenotype over evolution.
We compared different models in light of the Levis-Pfennig criteria of plasticity-led evolution'!. We also present
additional results closely related to plasticity-led evolution.

Visualizing evolution: the genotype-phenotype plot

To visualize evolution, we plotted the phenotypic value in the ancestral and novel environments against the geno-
typic value of the population over evolution for each epoch. We call this plot the genotype-phenotype plot (Fig. 3).
Here, the phenotypic value is computed by projecting the phenotype vector onto an axis where 0 corresponds to
the adult phenotype perfectly adapted to the ancestral environment and 1 to that perfectly adapted to the novel
environment. Similarly, the genotypic value is computed by projecting the genome matrices (construed as a
vector) onto an axis where a value of 0 corresponds to the average genotype of the first generation and a value of
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Figure 3. Trajectory of projected phenotype against projected genotype. The trajectory of one arbitrary epoch is
shown. Each point represents the population average of genotypic value (horizontal axis) and phenotypic value
(vertical axis) after development but before selection at each generation (error bars represent respective standard
deviations). Cyan and purple represent populations in novel and ancestral environments, respectively. Projected
phenotypic values of 0 and 1 correspond to perfectly fit phenotypes in ancestral and novel environments,
respectively. Projected genotypic values of 0 and 1 correspond to the population average genome at first and
200th generations, respectively. Hence, the trajectory generally proceeds from the lower left to the upper right
corner. (a) Full model; (b) NoHier; (c) NoCue; (d) NoDev. See also Supplementary Information.
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1 to the average genotype of the 200th generation (see "Methods"). Each generation’s projected phenotypes and
genotypes are those after development but before selection. The trajectory of adaptive evolution in the novel envi-
ronment generally proceeds from the lower left corner to the upper right corner in the genotype-phenotype plot.

From the genotype-phenotype plots, we observe that all discussed models are capable of adaptive evolution.
The projected value of the novel phenotype tends to increase as the projected value of the genotype increases.
The final average value of the projected phenotype for all models is about 1 in the novel environment after an
epoch, indicating adaptation.

For the Full and NoHier models (Fig. 3a,b), the phenotypes developed in the novel environment show sub-
stantially larger projected values than those developed in the ancestral environment in the first generation,
indicating an adaptive plastic response. The standard deviation in phenotype in the novel environment is much
larger than that in the ancestral environment in the first generation. This can be due to uncovered cryptic muta-
tions or amplified phenotypic response to environmental noise. However, a higher rate of change of projected
genotype observed in the Full and NoHier models during the early stages of adaptation indicates rapid purifica-
tion of heritable variation during that phase. This suggests that the large standard deviation is more likely due to
uncovered cryptic mutations (see subsection Environmental and genetic variations induce correlated phenotypic
variation below). A notable difference between the Full and NoHier models is the much larger standard deviation
in phenotype in the Full model after adaptation.

Environmental cues are absent in the NoCue model (Fig. 3¢). Consequently, there is no phenotypic plasticity,
and the phenotypes expressed in the ancestral and novel environments are almost identical. The slight difference
in phenotypes in the genotype-phenotype plot is purely due to the difference in mutations. The early stage of
adaptation is very slow, as seen in the cluttered distribution of points in the lower left corner. This is followed
by a rapid change in genotype, as seen in the sparse distribution of points around the center of the plot. This
observation demonstrates that evolution in novel environments without phenotypic plasticity is characterized
by an initial slow change followed by rapid adaptation once adaptive mutations appear.

We observe some adaptive plastic responses in the NoDev model (Fig. 3d). However, on average, this adap-
tive plastic response is smaller than those of the Full or NoHier models. Similarly, there is less difference in the
standard deviation in phenotypes between environments compared to the Full or NoHier models, indicating
less uncovering of cryptic mutations. These observations highlight the importance of the developmental process
in plasticity-led evolution.

We provide additional genotype-phenotype plots for different novel environments in Supplementary Infor-
mation. We observe that these behaviors are consistent over different novel environments.

Initial plastic responses tend to be adaptive

On the genotype-phenotype plots (Fig. 3), plastic responses are observed as a vertical shift between the ancestral
and novel environments in the same generation. If the projected phenotype in the novel environment is greater
than in the ancestral environment, then the plastic response is adaptive. We examined this shift in projected
phenotype to detect the adaptive plastic response (Fig. 4a). The Full and NoHier models exhibit large adaptive
plastic responses on average. The NoDev model exhibits some adaptive plastic response, but it is less significant
than those in the Full and NoHier models. As expected, the NoCue model does not show any plastic response.

Generally, the plastic response in the first generation is adaptive (except for the NoCue model), which shows
that our models can learn to respond adaptively to a new environment from the past environments experienced
in the training phase. This observation may appear surprising given that (1) the present macro-environment is
uncorrelated with past environments and (2) environmental noise is uniformly distributed over environmental
factors (i.e. no correlations between the factors, unlike “associative memory”?*2!). Nevertheless, the training
process allows the models to learn each environmental factor independently of the other factors. As a result, the
models can respond to each component of the environmental cues independently, albeit imperfectly.

To analyze the correlation between phenotype and environmental cues immediately after development but
before selection in the novel environment, we computed their cross-covariance matrix in the first generation,
which we call the Pheno-Cue cross-covariance matrix. We performed singular value decomposition (SVD) on the
Pheno-Cue cross-covariance matrix to find the principal components (see "Methods"). The left singular vectors
correspond to the principal axes of phenotypes (“phenotype singular vectors”), the right singular vectors cor-
respond to the principal axes of environmental cues, and the singular values correspond to the cross-covariance
between the corresponding left and right principal components. We performed this analysis for each model
under ancestral and novel environments.

We observed a larger total cross-covariance between phenotypes and environmental cues in novel envi-
ronments than in ancestral environments (Fig. 4b). This suggests that populations are far more susceptible to
environmental noise in novel environments than in ancestral environments. Among all models, the Full model
has the largest cross-covariance, followed by the NoHier model. This suggests that a hierarchical structure in
GRN’s exaggerates phenotypic variation due to environmental noise. NoCue has little cross-covariance because
the model itself is insensitive to environmental cues. NoDev exhibits smaller cross-covariances than the Full
and NoHier models. This demonstrates that the developmental process amplifies variation in phenotype due to
environmental noise in novel environments.

Previous works suggest that if the phenotypic variation is developmentally biased in line with the environ-
mental change, such developmental bias, i.e. the tendency to generate certain phenotypes more readily than
others, can facilitate evolution in novel environments?**’. To detect any developmental bias in our models, we
examined the proportion of the first singular component for each model under ancestral and novel environments.
Fig. 4c shows that the proportion of the first singular value tends to be larger in the novel environment than
in the ancestral environment. This indicates that the phenotypic variation due to environmental noise is more
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Figure 4. Adaptive plastic response in the first generation. (a) Boxplot of projected phenotype under ancestral
and novel environment. (b) Boxplot of total cross-covariance between phenotype and environmental cue. (c)
Boxplot of the percentage contribution of the first singular value of the cross-covariance matrix to the total
cross-covariance between phenotype and environmental cue. (d) Boxplot of alignment between phenotype
variation and environmental change, where the alignment is the correlation between the first phenotype singular
vector of the Pheno-Cue cross-covariance matrix and the direction of environmental change.

biased in the direction of the first principal component in the novel environment. In particular, the Full model
exhibits the greatest bias in phenotypic variation, where nearly 80% of the total cross-covariance is explained
solely by the first singular component. The NoHier model shows less bias than the Full model, where the first
singular component accounts for around 40% of the total cross-covariance. This shows that hierarchical regula-
tion enhances developmental bias. The NoCue and NoDev models exhibit little bias in the novel environment. For
the NoCue model, this is easily explained by the absence of environmental cues. For the NoDev model, the result
emphasizes that the developmental process is essential in generating developmental bias. In contrast, all models
exhibit small developmental biases in the ancestral environment. Together with the small total cross-covariances
(Fig. 4b), this implies that all models are highly robust against environmental noise in adapted environments*'.

To see if the above developmental bias is aligned with environmental change, we computed the correlation
between the first phenotype singular vector and the direction of environmental change (Fig. 4d). The Full and
NoHier models exhibit good alignment (roughly 0.7), with NoHier exhibiting a larger variance in alignment.
Given the small proportions of the first singular values, the correlations for the NoCue and NoDev models are
spurious.

Developmental process uncovers cryptic mutations
As we mentioned above (Visualizing evolution: the genotype-phenotype plot), the large phenotypic variation
in the novel environment compared to the ancestral environment during the early phase of evolution is most
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likely due to the uncovering of cryptic mutations (Fig. 3). We compared the magnitude of variance in projected
phenotypes between ancestral and novel environments (Fig. 5a). We observed a small variance in projected phe-
notype in every model in the ancestral environment. This can be explained by the evolved robustness in adapted
environments!” 2% 2%27.30.31.38 "The Full model exhibits the largest variance of projected phenotype in the novel
environment on average, followed by the NoHier model, indicating that hierarchical regulation amplifies the
effects of genetic variation. Compared to these, the NoDev model exhibits a smaller variance in projected phe-
notype in the novel environment. This indicates that the developmental process is critical in uncovering cryptic
mutations. The NoCue model does not exhibit any difference in projected phenotype because environmental
cues are necessary to uncover cryptic mutations.

To analyze the phenotypic variation due to mutations, we calculated the cross-covariance between the phe-
notype and the genome, called the Pheno-Geno cross-covariance matrix (see "Methods"). As we did for the
Pheno-Cue cross-covariance matrix in the previous subsection, we performed SVD analysis on the Pheno-Geno
cross-covariance matrix. Here, the left singular vectors still correspond to the principal axes of phenotypes
(“phenotype singular vectors”), but the right singular vectors correspond to the principal axes of mutations
instead of environmental cues.

We notice that the SVD analysis on the Pheno-Geno cross-covariance (Fig. 5b—d) is qualitatively similar
to that of the Pheno-Cue cross-covariance (Fig. 4b-d). That is, the Full and NoHier models exhibit large total

Environment — Environment
B Ancestral : B Ancestral
O Novel @ Novel
= o
o v 7
c
[
T g
T ' o
H H c |
H g o :
8 =t
e
Q
o
c
K]
=
g 24 .
H [e] o
a S —
H » 1
' (7] i
H [e] =
. =
O o4
| 3 T
i o E
— =
—_— — - —
o - =—— —_— —_—— ——
T T T T T T T T
Full NoHier NoCue NoDev Full NoHier NoCue NoDev
Environment (= Environment
B Ancestral B Ancestral
O Novel @ Novel
©
®
] — -
- : + —
f <
- Q -
©
o 8 o
(3]
T y
& :
= H
= |
T o S
= E
T c
: 2 T -
4 =z :
o - il R
s - : :
e — : ' o
- - p— e . | -
o S L RS -
S 4
T T T T T T T T
Full NoHier NoCue NoDev Full NoHier NoCue NoDev

Figure 5. Uncovering of cryptic mutations. (a) Boxplot of variance in projected phenotype in ancestral and
novel environments. (b) Boxplot of total cross-covariance (square of Frobenius norm) between phenotype and
genome. (c) Boxplot of the percentage contribution of the first singular value of the cross-covariance matrix to
total cross-covariance between phenotype and genome. (d) Boxplot of alignment between phenotype variation
and environmental change, where the alignment is the correlation between the first phenotype singular vector of
the Pheno-Geno cross-covariance matrix and the direction of environmental change. Variation due to mutations
and environmental noise is qualitatively similar (c.f. Fig. 4).
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Figure 6. Environmental variation and genetic variation induce correlated phenotypic variation. (a) Boxplot
of first singular values of Pheno-Cue and Pheno-Geno cross-covariance matrices in ancestral and novel
environments. (b) Boxplot of (Pheno-Cue)-(Pheno-Geno) alignment; calculated as the correlation between

the first phenotype singular vector of the Pheno-Cue cross-covariance matrix and the first phenotype singular
vector of the Pheno-Geno cross-covariance matrix. These quantities were computed in the first generation after
development but before selection in the novel environment.

cross-covariances between phenotype and mutation (Fig. 5b), their phenotypic variation due to mutations are
highly biased in novel environments (Fig. 5¢), and phenotypic variations are biased in the direction of envi-
ronmental change (Fig. 5d). On the other hand, NoDev and NoCue models have smaller total cross-covariance
(Fig. 5b) and lack developmental bias (Fig. 5¢,d).

Environmental and genetic variations induce correlated phenotypic variation

We observed that the results from SVD analysis of the Pheno-Cue cross-covariance matrix are qualitatively
similar to that of the Pheno-Geno cross-covariance matrix, leading to similar conclusions (c.f. Figs. 4 and 5). To
examine the correlation between the phenotypic variation due to environmental noise and that due to mutations,
we compared the first singular values of the Pheno-Cue and Pheno-Geno cross-covariance matrices (Fig. 6a).
The distribution of the first singular values over different models is qualitatively similar between the Pheno-
Cue and Pheno-Geno cross-covariances. That is, the first singular values decrease in the order of Full, NoHier,
NoDev, and NoCue models in the novel environments. In contrast, all models exhibit minimal first singular
values in the ancestral environment. Quantitatively, the first singular values of the Pheno-Geno cross-covariance
matrices (right vertical axis of Fig. 6a) are much greater than those of the Pheno-Cue cross-covariance matrices
(left vertical axis of Fig. 6a). This is because the number of elements of the genome vector is much larger than
that of the environmental cue vector.

We next calculated the correlation between the first singular vector of the Pheno-Cue cross-covariance matrix
and that of the Pheno-Geno cross-covariance matrix to see the alignment between them (Fig. 6b). These axes are
highly correlated, especially in the novel environment. In particular, the Full and NoHier models have almost
perfect alignment in the novel environment. We remark that the apparent high correlations in all other cases are
spurious because the phenotypic distributions of these populations are unbiased (c.f. low percentage of first sin-
gular values from Figs. 4c and 5¢), and the spurious correlation is due to the idiosyncrasies of the SVD algorithm
used rather than actual good alignment. These observations indicate the interchangeability of environmental and
mutational perturbations in producing phenotypes, consistent with the existing literature® 3% 3% 40,

Full model exhibits fastest change in regulation

To study the change in regulation or the reorganization of the genome, we track the genetic variance (i.e. the
sum of the variance in each element of the genome matrices) over evolution (Fig. 7a). A rapid decrease in genetic
variance implies strong purifying selection. A gradual increase in genetic variance means the accumulation of
neutral or beneficial mutations. The Full and NoHier models immediately experience strong selection in the
novel environment, with the Full model experiencing the most stringent selection (largest decrease in the shortest
time). The NoDev model experiences weaker selection than the Full and NoHier models. In contrast to the other
models, the genetic variance of the NoCue model initially increases slightly and then decreases rapidly before
gradually increasing again. The initial increase in genetic variation in the NoCue model may be attributed to the
random search for adaptive mutations in the novel environment.

The genetic variance of the NoDev model is consistently greater than those of all the other models. Due to
the lack of development, the NoDev model cannot fully express genetic variation in phenotype. Hence, selection
cannot effectively purify the genetic variation. The genetic variance of the NoCue model is slightly smaller than
that of the NoDev model but consistently greater than those of the Full and NoHier models. This suggests that
most mutations remain latent in the NoCue model, highlighting the role of environmental cues in uncovering
cryptic mutations.
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Figure 7. Change in regulation. (a) Trajectory of genetic variance over evolution. (b) Boxplot of the number
of generations to genetic bottleneck, where the genetic bottleneck is the generation when the genetic variance is
minimal (c.f. panel a). (c) Boxplot of drop in genetic variance between generation 1 and the genetic bottleneck.
(d) Trajectory of projected genotype over evolution.

We define the genetic bottleneck as the generation when the genetic variance is minimal (c.f. Fig. 7a). To track
the rate of adaptation, we examined the number of generations to the genetic bottleneck measured from the first
generation (Fig. 7b). The Full model has the lowest time, followed by the NoHier model. The NoDev and NoCue
models reach the genetic bottleneck later than the Full and NoHier models.

We next examined the effectiveness of purifying selection by comparing the decrease in genetic variance from
the first generation to the genetic bottleneck (Fig. 7c). The Full model exhibits the largest decrease in genetic
variance among all models. The NoCue model exhibits a slightly larger decrease in genetic variance than the
NoHier and NoDev models. This suggests that hierarchical developmental regulation enhances selection.

We also present the trajectory of projected genotypic value (c.f. Fig. 3) over evolution in the novel environ-
ment (Fig. 7d). The genotypic value generally increases rapidly when the genetic variance decreases rapidly,
indicating strong purifying selection. On the other hand, the genotypic value generally increases slowly when
the genetic variance increases slowly, indicating a gradual accumulation of neutral or adaptive mutations. These
correlations indicate that the trajectory of the genetic variance is a suitable proxy for studying the change in
regulation. Consistent with Fig. 7a, we observe that the Full model exhibits the fastest increase (largest gradient)
in genotypic value during the initial phase of evolution, indicating the fastest adaptation. For the NoCue model,
the slow increase in genotypic value during the initial phase corresponds to the search for adaptive mutations
via genetic drift.
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Full model exhibits greatest adaptive refinement

We now compare the effectiveness of adaptive refinement, or the increase in fitness in novel environments,
between different models. To do so, we examined the trajectories of the mismatch between the adult phenotype
and the selective environment for different models in the novel environments (Fig. 8a). All models exhibit a
decrease in mismatch over evolution, trivially demonstrating that all models undergo adaptive refinement. All
models, except for the NoCue model, exhibit a rapid decrease in mismatch immediately during the initial phase
of evolution. In contrast, the mismatch of the NoCue model remains constant for around 25 generations before
rapidly decreasing. This delay corresponds to the time required to find adaptive mutations in the novel envi-
ronment (c.f. Fig. 7). This observation highlights the roles of environmental cues in inducing adaptive plastic
phenotype and uncovering cryptic mutations to the selection, thereby accelerating evolution.

When we compared the total decrease in mismatch among all models from Generation 1 to Generation
200, the Full and NoCue models exhibited greater decreases in mismatch than the NoHier and NoDev models
on average (Fig. 8b). The decrease in mismatch for the NoCue model is the most consistent, while that for the
NoHier model is the least consistent. For the NoHier model, the small decrease in mismatch could be attributed
to low initial mismatch from the large adaptive plastic response (c.f. Fig. 4a).

We dissected the decrease in mismatch into the contributions before and after the genetic bottleneck (Fig. 8¢;
see also Fig. 7a). The Full model exhibits similar amounts of decrease in mismatch before and after the genetic
bottleneck. In contrast, the decrease in mismatch before the genetic bottleneck tends to be significantly greater
than after the genetic bottleneck for all other models. The implications of this behavior are unclear and could
be an interesting topic for future studies.
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Figure 8. Adaptive refinement. (a) Trajectory of mismatch between phenotype expressed in a novel
environment and selective environment over evolution. (b) Boxplot of the total decrease in a mismatch from
Generation 1 up to Generation 200. (c) Boxplots of decrease in the mismatch before and after the genetic
bottleneck. (d) Boxplot of the mismatch at generation 200.
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To compare the quality of phenotypes after evolution, we examined the mismatch of the models at Generation
200 (Fig. 8d). The Full and NoCue models attain a significantly lower mismatch value at Generation 200 than
the NoHier and NoDev models. This suggests that hierarchical developmental regulation is essential in refining
phenotype quality. However, the lower mismatch for the NoCue model may also be explained by the absence of
environmental noise in developmental regulation.

Full model accumulates the most mutations after the genetic bottleneck

The uncovering of cryptic genetic variation through plastic response under large environmental changes is one of
the core criteria of plasticity-led evolution''. This criterion assumes that cryptic genetic variation has accumulated
in the ancestral environment. We compare the accumulation of cryptic mutations between different models by
measuring the increase in genetic variance after the genetic bottleneck in the novel environments (Fig. 9). The
Full model exhibits a significantly larger increase in genetic variance than all the other models. In contrast, the
NoHier and NoDev models exhibit the smallest increase in genetic variance on average.

We also observe that the gain in genetic variance after the genetic bottleneck correlates to the drop in
genetic variance before the genetic bottleneck (see Fig. 7a,b). This can be explained by the fact that the length
of each epoch is kept constant at 200 generations, so the same amount of cryptic mutations are accumulated in
every epoch. Since the accumulation of cryptic mutations is made possible by the robustness of developmental
systems'” 313841 we may deduce that the Full model is the most robust of all the discussed models.

Discussion

We have shown that the Full and NoHier models can satisfy all the Levis-Pfennig criteria of plasticity-led evolu-
tion under large environmental change. In particular, the Full model has additional favorable properties, such
as amplifying the uncovering and the accumulation of cryptic mutations, accelerating change in regulation, and
undergoing better adaptive refinement compared to the NoHier model. These observations suggest that environ-
mental cues and the developmental process are essential for plasticity-led evolution, and hierarchical regulation
enhances the desirable properties of plasticity-led evolution. These models consistently exhibit plasticity-led
evolution over different environments, suggesting that plasticity-led evolution is an intrinsic behavior of these
systems. This is not in line with the view that plasticity is explained by genetic variation'. We discuss the impli-
cations of this conflict below.

Contrary to our results, studies with natural populations suggest that plastic response is not always adaptive.
For instance, spadefoot toad populations subjected to a dry condition during their larval stage express stunted
development, potentially reducing fitness*2. Another example is observed in populations of blue tits that use
temperature cues to determine egg-laying periods: due to climate change, adult blue tits now prematurely lay their
eggs, therefore, missing out on the optimal period when the caterpillar population (food source) is abundant®.
In these studies, however, the “environment-as-inducer” does not match the “environment-as-selector;” so it is
natural that the induced phenotypes are not adaptive. Ghalambor et al.* introduced a population of guppies
previously adapted to a high-predation (HP) environment to a low-predation (Intro) environment and com-
pared the transcript abundance of the introduction populations with that of a population already adapted to a
low-predation environment (LP). They claimed that transcription factors associated with initial plasticity are
opposite to the direction of adaptive evolution, suggesting that non-adaptive plasticity can enhance evolution.
However, the “non-adaptive plasticity” by Ghalambor et al.* simply means that the genes responsible for the
initial plastic response do not coincide with those responsible for later change of regulation, not that the plastic
response is non-adaptive concerning the environmental change. In fact, Fig. 1 of Ghalambor et al.** suggests that
the plastic response of the Intro populations is indeed in the same direction as the LP population, hence adaptive.
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Figure 9. Accumulation of cryptic mutations. Boxplot of increase in genetic variance from genetic bottleneck
up to generation 200.
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Developmental bias, the tendency to generate certain phenotypes more readily than others, has been sug-
gested as a critical mechanism for directing and thereby facilitating evolution***”4>. We observed that phenotypic
variation due to environmental cues is unbiased in adapted environments but is highly biased in novel environ-
ments for the Full and NoHier models (Fig. 4c). This biased phenotypic variation was consistently aligned with
the direction of environmental changes (Fig. 4d). Furthermore, we observe the same behavior for phenotypic
variation due to mutations (Figs. 5¢,d, and 6). These results imply that phenotypic variation due to uncovered
mutations is aligned with environmental change, which, in turn, enhances the selection of adaptive mutations
(and elimination of maladaptive mutations) in the novel environment. The exact causes of this behavior are
unclear, it arises from the interplay between environmental cues and the developmental process since the NoCue
and NoDev models do not exhibit this behavior.

Most studies on plasticity-led evolution observe the change in regulation through the changes in reaction
norms'" 1624647 However, reaction norms assume that phenotypic plasticity in the studied traits arises from
particular genes that produce particular responses to particular environmental cues. Although reaction norms
are helpful for studying the evolution of phenotypic plasticity*, this kind of phenotypic plasticity does not
resolve the problem of gradualism implied by the Modern Evolutionary Synthesis. The problem may be resolved
if, as proposed above, plasticity-led evolution is an emergent, collective property of the developmental system
as a whole, independent of particular genetic variation. To validate this hypothesis, it may be helpful to study
populations over many different novel environments and measure all traits subject to natural selection instead
of some specific traits'?.

Methods

Activation functions

We use modified arctangent or hyperbolic tangent activation functions where the input, output, or both are
scaled. For of, 0y and oy, we use the following modified arctangent function:

o(x) = E arctan (L) 8
= Fa 8)

where the factors g and % were derived in the same spirit as LeCun’s tanh function®. This maximizes the rate

of change of o' (x) at around 2 = =1, hence facilitating selection in the later stages of evolution. The constant @
is introduced so that the estimated variance of 2 is 1 (See Table 1). For o), we use the following hyperbolic tangent
function:

0p(x) = tanh (u)ip) 9)

where wj is a constant introduced so that the estimated variance of wip is 1 (See Table 1).

Convergence of developmental process

To check the convergence of the developmental process of an individual, we used the limit of the exponential
moving average (EMA) of the phenotype vector p(s). Denote the EMA of the phenotype as the vector p(s) and
its variance as the vector v(s). Let 0 < o < 1be given as the “step size” of the exponential moving average. In our
work, we used & = 1/3. The values of p(s) and v(s) are recursively updated as follows:

pi(s) = api(s) + (1 — a)pi(s — 1),
vi(s) = (1 — o) {v(s — 1) + a[pi(s — 1) — pi()1}.

We say that the phenotype has converged when _; v;(s) < 107 for s < 200 and take the adult phenotype as
Di(s), otherwise, we say that the phenotype does not converge.

(10)

Mutation

To randomly introduce mutations during reproduction, we let the mutation rate and matrix density be y and p,
respectively, between 0 and 1. The mutation rate y represents the proportion of the genome matrix elements to
be mutated per reproduction. We mutate the genome of each offspring as follows:

1. [Initializen = 0.
Sample the number of mutations N from a Poisson distribution where the mean is the product between y
and the genome size. (In our work, we used y = 0.005, so we sampled from a Poisson distribution with mean
A =0.005 x 200 x 200 x 6 = 1200.)

3. Uniformly select an element in the genome matrix ensemble. The selected element is set to 0 with probability
1 — p, +1with probability p/2, and —1 with probability p/2. Increase n by 1.

4. Ifn < N, return to step 3. Otherwise, terminate the process.

Visualizing evolutionary trajectory on genotype-phenotype space
To visualize the evolutionary trajectory of a population, we project the phenotype and genotype of individuals
in the population at each generation onto a 2-dimensional genotype-phenotype space. First, the phenotype axis

is defined as ”:" _:“”2 where e, is the first 40 elements of the novel macro-environment, e, is the first 40 elements
n—€ally
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of the ancestral macro-environment and ||e,, — e, ||, is the Euclidean (L2) distance between e, and e,. We consider
only the first 40 out of 200 elements because they correspond to the traits subject to selection. We project the
phenotype p of an individual as:
(p ) € — €
p=p—e) ——.
D New — eal} ()
This way, the projected phenotypic values p of 0 and 1 correspond to phenotypes perfectly adapted to the ancestral
and novel environments, respectively.
Next, the genotype axis is deﬁned as follows. Let Gjj be the vectorized genotype matrix of the i-th individual
of the j-th generation. Let Gj = Zl_l Gijj be the population average genotype vector on the j-th generation.

The genotype axis is deﬁned as HE'LZOO _G 1” . We project the genotype of the i-th individual of the j-th generation
200—G1 |5

onto a genotype axis as:

—= G0 — G
8ij = (Gij -G - (12)
[Gooo — G
This way, projected genotypic values gj; of 0 and 1 correspond to the average genotypes before and after one

epoch of evolution in a novel environment, respectively.

Singular value decomposition (SVD) analysis of cross-covariance matrix

We use cross-covariance matrices to study the correlation between selected phenotypes and environmental noise
or mutations. Hence, we only consider the phenotype vector’s first 40 out of 200 elements, which comprise the
traits subject to selection. We define the Pheno-Cue cross-covariance matrix as

N
1 _ _
Cgheno-Cue =3 § (Pik — Py (ejk — &) (13)
k=1

where pjy is the i-th trait of the phenotype vector of the k-th individual, ej is the j-th factor of the environmental
cue vector of the k-th individual, and p; and e; are the population averages of pix and ejk, respectively. We use all
200 elements of the environmental cue vector.

We define the Pheno-Geno cross-covariance matrix as

N
1 _ _
Crenoene = =3 (pik = P)(Gjk — G)) (14)
k=1

where pj and p; are as defined previously, Gj is the j-th element of the vectorized genome of the k-th individual,
and G; is its population average.
If Cijis the Pheno-Cue or Pheno-Geno cross-covariance matrix, then the total cross-covariance is defined as

Total cross-covariance = Z Z Ci (15)

This is used in Figs. 4b and 5b.

Just as we apply eigenvalue decomposition to a variance-covariance matrix to find principal components that
maximize the variance (principal component analysis, PCA), we can apply singular value decomposition (SVD)*>*
to a cross-covariance matrix to find pairs of principal components that maximize the cross-covariance®!. We may
apply SVD to any matrix C to obtain orthonormal components as follows.

C=UxV' = Zoiuiv; (16)

where the superscript T indicates transpose. In Eq. (16), u; and v; are the i-th columns of U and V, respectively,
called the i-th left and right singular vectors. ¥ is a diagonal matrix where the diagonal elements o; are singular
values arranged in decreasing order. In the case where C is a Pheno-Cue (or Pheno-Geno) cross-covariance
matrix, the left singular vectors correspond to the principal axes of phenotypic variation in response to the
corresponding principal axes (the right singular vectors) of environmental noises (or mutations). The singular
values correspond to the cross-covariance between the left and right singular components.

To quantify developmental bias, we used the proportion of the first singular value

2
9]

5
2.0

(17)

This is used in Figs. 4c and 5c.
The alignment between the principal axis of phenotypic variation and environmental change is measured by
the magnitude of the normalized dot product
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luy - (en — €4)]

18
len — el (18)

where e, is the novel macro-environment and e, is the ancestral macro-environment. This is used in Figs. 4d
and 5d.

Data availability
Computer code is provided in the GitHub repository: https://github.com/arkinjo/evodevo/tree/Ng23.
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