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Large deflection analysis of circular 
piezoelectric micro‑actuator 
with flexoelectric effect
Xue Ji 

At micro/nano scale, the stiffening effect and flexoelectric effect of strain gradient play important 
roles in the electromechanical coupling response of piezoelectric micro‑components. In this paper, 
the large deflection bending problem of circular piezoelectric micro‑actuator is studied based 
on the extended linear dielectric theory. In addition to the piezoelectric effect, the flexoelectric 
effect, the stiffening effect of strain gradient and the high‑order electric field effect of polarization 
gradient are introduced. According to the variational principle, a size‑dependent model of circular 
piezoelectric micro‑actuator is established to investigate its electromechanical coupling response. 
The contributions of piezoelectric effect and flexoelectric effect on large deflection behaviors of 
piezoelectric micro‑actuator are revealed. It is hoped that the research results will be helpful to further 
understand the electromechanical coupling properties of piezoelectric micro‑components and improve 
the control precision of piezoelectric micro‑actuator.

Piezoelectric micro-actuator is the core component of micro-electromechanical system (MEMS) which can con-
vert electrical energy into mechanical energy by the electromechanical coupling effect. The micro-displacement 
system composed of piezoelectric actuator has been widely used in the fields of ultra-precision machining, 
microelectronics system and even organs-on-chips for its small size, high efficiency, high displacement resolu-
tion and no noise. Up to now, the static and dynamic characteristics of piezoelectric actuators have been studied 
in great depth. Vilarinho et al.1 reported an engineering case study of piezoelectric actuators in gas microvalves 
and established the relations between applied voltages, bender displacements, gas pressure drops through the 
microvalve and associated flow rates. The static displacement of a three-layer axisymmetric circular piezoelectric 
unimorph actuator subjected to voltage and uniform pressure loads has been investigated by Dereshgi et al.2. 
Przybylski and Kuliński3 revealed the deformation and nonlinear free vibrations control of a sandwich piezo-
electric beam system under piezoelectric actuation. A nonlinear model has been proposed by Ascione et al.4 for 
buckling, postbuckling and nonlinear static response analyses of geometrically imperfect composite beams with 
piezoelectric actuators. Reddy et al.5 investigated the nonlinear dynamics and active control of smart beams using 
the shear mode and extensional mode of piezoelectric actuators. However, these studies are based on traditional 
theories. In fact, the mechanical properties of the components at the micro scale are obviously different from 
those at the macro scale.

Mcfarland and  Colton6 observed in the bending experiments of 15 and 30 micron thick polypropylene 
cantilever beams that the bending stiffness was more than 4 times of the traditional theoretical predicted value. 
Lam et al.7 observed in the bending experiment of an epoxy resin cantilever beam that the dimensionless bend-
ing stiffness of a 20 micron thick microbeam increased by about 2.3 times compared with that of a 115 micron 
microbeam. The traditional theory cannot explain the dependence of micro-component deformation behavior 
on the characteristic size, but the relevant research shows that the size effect phenomena can be described 
well by strain gradient  theory8–11. Based on the modified strain gradient theory, a microstructure-dependent 
Timoshenko piezoelectric beam model has been presented by Li and  Feng12. Jafari et al.13 analyzed the free vibra-
tion of rectangular microplates with bonded piezoelectric layers based on the modified couple stress theory. The 
nonlinear response of functionally graded piezoelectric beam actuator has been investigated by Komijani et al.14 
based on the modified couple stress theory and the Timoshenko beam theory with the von Kármán nonlinearity. 
Shahrokhi et al.15 utilized the modified couple stress theory to consider the size effect and studied the vibrational 
behaviors of sandwich piezoelectric micro-plate. Hai et al.16 investigated the vibrational behavior of a sandwich 
honeycomb rectangular microplate integrated with piezoelectric actuators and rested on the Pasternak elastic 
foundation based on the modified strain gradient theory.
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Furthermore, flexoelectric effect plays an important role in the electromechanical coupling phenomena at 
micro- and nano-scale. Flexoelectric effect is an inherent electromechanical coupling effect of all dielectrics in 
which strain gradient can induce polarization (direct flexoelectric effect) and, vice versa, polarization gradient 
can generate mechanical stress (inverse flexoelectric effect)17,18. The flexoelectricity-induced polarization can be 
significantly increased as structures are scaled down due to the scaling effect of strain  gradient19. An enhance-
ment in the piezoelectric effect of up to 70% has been revealed by Qi et al. in the local probing of the buckled 
PZT  ribbons20. A substantial piezoelectric response has been measured well above the Curie temperature in the 
reduced PZT ceramic wafers due to flexoelectric  effect21. The experimental work carried through at Penn State to 
explore the flexoelectric coefficients in ferroelectric, incipient ferroelectric and relaxor ferroelectric perovskites 
has been summarized by  Cross22. Zhang et al.23 investigated the 2312 flexoelectric coefficient component of 
polyvinylidene fluoride. In order to improve the dielectric and flexoelectric properties of the BST films, different 
concentrations of  K+ and  Mg2+ have been doped by Dong et al.24. An enhanced flexoelectricity in  Al2O3-doped 
Ba(Ti0.85Sn0.15)O3 ceramics has been reported by Shu et al.25 in which the transverse flexoelectric coefficient of 
the 0.5 wt%  Al2O3-doped ceramic is almost 2 times larger than that of pure Ba(Ti0.85Sn0.15)O3 ceramic.

In order to capture the flexoelectric effect, the extended linear theory for dielectrics has been presented, in 
which strain gradient and polarization gradient are also considered in addition to the traditional strain and 
 polarization26–28. Based on the higher-order theory, Chen et al.29 analyzed the dynamic response of piezoelectric 
and flexoelectric Euler–Bernoulli beam. Wang and  Li30 studied the electromechanical coupling responses of nano-
plates with the piezoelectric and flexoelectric effects and found that the flexoelectric effect is thickness-dependent. 
Zeng et al.31 investigated the nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded 
porous core by considering piezoelectric effect, flexoelectric effect and von Karman type large deformation. 
Chen and  Yan32 proposed a nonlinear electromechanical model for energy harvester based on axially preloaded 
piezoelectric beam incorporating flexoelectric effect. Deng et al.33 examined flexoelectric energy harvesting 
under harmonic mechanical excitation and found the output power density and conversion efficiency increase 
significantly when the beam thickness reduces from micro to nanoscale. The nonlinear vibration of a functionally 
graded flexoelectric energy harvesting nanobeams has been analyzed by Chu et al.34. In addition, PN heterojunc-
tions associated bending coupling in flexoelectric semiconductor composites have also been studied by Li et al.35.

In this work, the nonlinear bending behavior of piezoelectric micro-actuator with flexoelectric effect is inves-
tigated. A size-dependent model of piezoelectric micro-actuator of axisymmetric circular plate with flexoelectric 
effect is presented in section “Model of a piezoelectric micro-actuator of axisymmetric circular plate with flexo-
electric effect”. The corresponding governing equations and boundary conditions are derived based on variational 
principle. The differential quadrature method (DQM) is applied to solve the nonlinear bending questions of 
micro-actuator under simply supported boundary condition and clamped boundary condition and the large 
deflection bending behaviors of piezoelectric micro-actuator is revealed in section “Large deflection bending 
behaviors of circular piezoelectric micro-actuator with flexoelectric effect”, respectively. Finally, conclusions are 
summarized in section “Conclusions”.

Model of a piezoelectric micro‑actuator of axisymmetric circular plate 
with flexoelectric effect
Consider a piezoelectric micro-actuator of axisymmetric circular plate, as shown in Fig. 1, which consists of 
a substrate and a piezoelectric layer bonded on the surface of the substrate. The thicknesses of substrate and 
piezoelectric layer are hs and hp, and it should be noted here that the subscripts s and p represent the substrate 
and piezoelectric layer, respectively. The radius of the circular plate is R. A cylindrical coordinate is adopted 
to model the piezoelectric micro-actuator, in which the r–θ plane coincides with the interface of the substrate 
and piezoelectric layer. The driving voltage applied to the upper and lower surfaces of the piezoelectric layer is 
denoted as V.

Figure 1.  Sketch of piezoelectric micro-actuator of axisymmetric circular plate.
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According to the Kirchhoff hypothesis, the deformation displacements of the present circular plate can be 
described as

where ur, uθ and uz are displacement components along the r-, θ- and z- directions respectively and u represents 
the radial displacement at the interface of the substrate and piezoelectric layer. According to the Von Kármán’s 
strain theory, the large strain components are

Then the corresponding strain gradient are given by

where a comma denotes differentiation with respect to the coordinates. It should be noted here that the strain 
gradients along the radial direction are neglected compared to that along the thickness direction for the current 
thin circular plate due to the much smaller thickness than its radius. Thus, for the flexoelectric effect, only that 
induced by the strain gradient along the thickness direction is considered in this work. In addition, the polariza-
tion is assumed to be along the thickness direction only, expressed as

And, similarly, only the polarization gradient along the thickness direction is considered in this work.
In order to incorporate the flexoelectric effect, an extended linear theory of dielectrics is applied in this paper, 

which also includes the coupling of strain gradient to strain gradient, the coupling of polarization gradient to 
polarization gradient, the coupling of strain gradient to polarization and the coupling of polarization gradient 
to strain in comparison with the piezoelectric theory. The internal energy U is expressed  as28

in which εij and Pi are the strain tensor and polarization vector, respectively. cijkl, aij and dijk are the elastic constant, 
reciprocal dielectric susceptibility and piezoelectric constant tensors, respectively. The material property tensors 
gijklmn and bijkl stand for the higher-order elastic effect and electric field effect, respectively, and fijkl represents the 
flexocoupling coefficient tensor. The present theory considers the piezoelectric effect, the flexoelectric effect, the 
stiffening effect of strain gradient and the high-order electric field effect of polarization gradient, and can reduce 
to other simplified theory by deleting certain effects. For example, when the terms associated with strain gradi-
ent and polarization gradient are ignored, the present theory will reduce to the traditional piezoelectric theory. 
If the stiffening effect of strain gradient is preserved, the piezoelectric strain gradient theory can be obtained. 
The present theory can also reduce to the flexoelectric theory of centrosymmetric materials by deleting the 
piezoelectric effect. When the terms associated with polarization are neglected, the strain gradient theory can 
be obtained and the internal energy U in Eq. (5) will reduce  to10

Moreover, the contracted notation for the subscripts of the material property tensors is adopted for simplicity, 
i.e., c11 = c1111, c12 = c1122, g11 = g311311, g12 = g311322, d311 = d31, f31 = f3311, b33 = b3333.

For a transversely isotropic piezoelectric circular plate, the internal energy of piezoelectric layer, Up, can be 
obtained by substituting Eqs. (2)–(4) into Eq. (5), given by

and the internal energy of elastic substrate, Us, from Eq. (6) is expressed as

in which the superscripts s and p in elastic constants and higher-order elastic constants represent the substrate 
and piezoelectric layer, respectively. Furthermore, the total electric enthalpy H is given by
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where φ is the potential of the Maxwell self-field, ε0 is the permittivity of a vacuum and S(r) is shown as Eq. (A.1) 
in Appendix A.

Consider the work done by a transverse load q(r), W = 2π
∫ R
0
qwrdr , and further according to the variational 

principle, δ(−H +W) = 0 , the electrical governing equations can be derived as

and the electrical boundary conditions are written as

For the piezoelectric micro-actuator subjected to a driving voltage V between its upper and lower surfaces, 
the electrical boundary conditions are

Combining the electrical governing equations Eqs. (10) and (11) and boundary conditions Eq. (14), the 
polarization and electric potential can be solved, respectively, as

in which the parameter λ is defined as

The mechanical governing equation can be further derived by considering the solution of polarization and 
electric potential as
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and the mechanical boundary conditions are
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The present model is a general model which includes piezoelectric effect, flexoelectric effect, the mechani-
cal effect of strain gradient and the electrical effect of polarization gradient. When the piezoelectric effect is 
neglected by letting d31 = 0, the present model will reduce to that of flexoelectric theory. When the flexoelectric 
effect is neglected by letting f31 = 0, the present model will reduce to that of piezoelectric strain gradient theory.

Furthermore, the present model can be normalized by introducing dimensionless parameters,
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and the dimensionless boundary conditions are given by

in which the dimensionless coefficients ki(i = 1, 2, …, 8) are shown as Eq. (A.2)–(A.9) in Appendix A.

Large deflection bending behaviors of circular piezoelectric micro‑actuator 
with flexoelectric effect
Simply supported boundary condition
For the piezoelectric micro-actuator of axisymmetric circular plate with simply supported boundary conditions, 
the governing equations are shown as Eqs. (27) and (28). The boundary conditions are

And the regularity conditions are written as

The nonlinear governing equations Eqs. (27) and (28) and boundary conditions Eqs. (32) and (33) can be 
solved by the differential quadrature method (DQM)9. The k-order partial derivatives with respect to ξ of a 
function f(ξ) at any sample point can be approximated by a weighted linear sum of the function values at all 
discrete points, shown as

in which N is the total number of discrete points and A(k)
ij  is the k-order weighting coefficients matrix. According 

to the differential quadrature method, the governing equations are discretized as
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And the boundary conditions are

The discrete governing equations and boundary conditions Eqs. (35)–(37) can be written in matrix form

where KNL and KL are equivalent nonlinear and linear stiffness matrices, F is the external force vector, 
d = {{ui}, {wi}}

T (i = 1, 2, . . . ,N) is the displacement vector. Finally, Eq. (38) can be soved by the iteration 
method.

Consider a polyvinylidene difluoride (PVDF) piezoelectric actuator in which PVDF is chosen as the piezoelec-
tric layer and Polydimethylsiloxane (PDMS) is chosen as the substrate. The thickness of piezoelectric layer is set 
as 1.5 times the thickness of the substrate (hp = 1.5 hs) and the radius of the actuator is 25 times of the actuator 
thickness (R = 25 h). For PVDF, cp11 = 3.7 GPa , cp12 = 0.38 · c

p
11 , a33 = 1.38 × 1010  Nm2/C2, ε0 = 8.854 ×  10−12 F/m, 

d31 = − 1.0212 × 109 N/C, f31 = − 179 N m/C and, in addition, 
√

g
p
11

/

c
p
12 is assumed to be 1 μm which is known 

as the material length scale parameter. For PDMS, cs11 = 2MPa , cs12 = 0.38 · cs11 and its material length scale 
parameter is also assumed to be 1 μm. Therefore, the nonlinear bending of the present PVDF piezoelectric actua-
tor subjected to a drive voltage V = 80 V are solved by applying DQM in which the normalized Gauss–Cheby-
shev–Lobatto points ξ(i) = 1

2
[1− cos( i−1

N−1
π)] ( i = 1, 2, . . . ,N  ) are used to generate the DQM point system 

with setting N = 30.
As shown in Fig. 2, a piezoelectric layer is driven by a voltage with positive potential being applied to its lower 

surface and negative potential being applied to its upper surface. It is well known as Fig. 2a,b that the deforma-
tion of the piezoelectric layer will be reversed if we turn the piezoelectric layer over. And when an elastic layer 
is bonded to the lower surface of the piezoelectric layer, the reversed bending deformation and strain gradient 
will be generated by turning the piezoelectric layer over, as shown Fig. 2c,d. However, the flexoelectric effect is 
independent of whether the piezoelectric layer is turned over or not. This means that the flexoelectric effect can 
both enhance and weaken the electro-mechanical coupling response of the piezoelectric layer by adjusting the 
orientation of the piezoelectric layer.

The electro-mechanical coupling superposition of piezoelectric effect and flexoelectric effect is shown in 
Fig. 3. The bending direction of micro-actuator induced by flexoelectric effect depends on the driving volage. 
When the driving voltage remains constant, the direction of bending deformation of the actuator is constant, 
independent of the flip of the piezoelectric layer. Therefore, in one case the flexoelectric effect weakens the 
electro-mechanical coupling response of the piezoelectric layer (d31 < 0), then the flexoelectric effect will enhance 
the electro-mechanical coupling response when the piezoelectric layer is turned over (d31 > 0) since the direction 
of bending deformation induced by piezoelectric effect will reverse.

Under the driving voltage of 80 V, the dimensionless deformation deflection of the piezoelectric micro-
actuator of different thicknesses is shown in Fig. 4. It can be found from Fig. 4 that the difference of induced 
dimensionless deflection by piezoelectric effect, flexoelectric effect and the superimposed effect of these two 
effects is obvious when the thickness of the actuator is 1 μm. However, with the increase of thickness, the flexo-
electric effect gradually weakens and the gap of dimensionless deflection induced by piezoelectric effect and 
superposition effect gradually shrinks. The flexoelectric effect is size-dependent and can be almost negligible 
when the actuator thickness is 20 μm or larger. But when the actuator thickness is close to 1 micron or smaller, 
the contribution of flexoelectric effect is too large to be ignored.

From Eq. (2), the strain on the substrate surface is expressed as
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Based on Eq. (39), the strain distribution is shown in Fig. 5. The deformation of the whole actuator plate is 
the upward convex bending deformation. The circumferential strain is compressive strain. The axial strain near 
the actuator plate center is compressive strain, and the axial strain near the actuator plate edge is tensile strain. 
Understanding the strain distribution of actuator on surface will be of great interest for those applications which 
need stretching stress stimulation.

Clamped boundary condition
For the clamped circular plate piezoelectric micro-actuator, the governing equations are the same with those 
of simply supported circular plate piezoelectric micro-actuator and have been discretized as Eqs. (35) and (36). 
The boundary conditions are

(39)εrr |z=hs = ϑ
∂u

∂ξ
+

1

2

(

ϑ
∂w

∂ξ

)2

− (1− α)ϑ2 ∂
2w

∂ξ2
εθθ |z=hs = ϑ

u

ξ
− (1− α)ϑ2 ∂w

ξ∂ξ

(40)u|ξ=1 = 0, w|ξ=1 = 0, w,ξ |ξ=1 = 0

Figure 2.  Direction of deformation of piezoelectric layer.

Figure 3.  Superposition of piezoelectric effect and flexoelectric effect.
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Figure 4.  The distribution of induced dimensionless deflection of piezoelectric actuator subjected to a voltage 
V = 80 V with different thicknesses (a) h = 1 μm (b) h = 5 μm (c) h = 10 μm (d) h = 20 μm.

Figure 5.  Strain distribution on the substrate surface.
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and the regularity conditions are the same with Eq. (33). According to DQM, the boundary conditions are 
discretized as

The dimensionless bending deflection of actuator plate subjected to transverse load q = − 0.3 μN/μm2 and 
different driving voltages under clamped boundary condition are shown as Fig. 6. By comparing the case of V = 0 
and the case without considering the piezoelectric and flexoelectric effects, it can be found that the piezoelectric 
and flexoelectric effects will reduce the deformation of the plate but the change is small. The bending deflection 
induced by the driving voltage increases with the increase of the voltage, but reversed deformation deflection 
can be induced by a same driving voltage when the piezoelectric layer is turned over. Therefore, the driving 
voltage-induced deformation increases or decreases the bending deflection generated by the transverse load.

The contribution of piezoelectric effect and flexoelectric effect on the bending deflection of actuator under 
clamped boundary condition is investigated in Fig. 7. The contribution of flexoelectric effect on bending deflec-
tion is small in comparison with that of piezoelectric effect. Governing equations and boundary conditions, 
Eq. (27)–(31), show that the driving voltage which induces deformation through flexoelectric effect acts on the 
boundary of actuator plate, while the driving voltage which induces deformation through piezoelectric effect acts 
on the whole actuator plate. For clamped actuator plate, the driving voltage cannot work through flexoelectric 
effect.

The strain distribution on the substrate surface of actuator plate under clamped boundary condition is shown 
in Fig. 8. Compared Fig. 8 with Fig. 5, it can be found that the distribution of circumferential strain and axial 
strain on the substrate surface of actuator plate under simply supported and clamped boundary conditions is 
similar, but the clamped actuator plate has greater strain because of the transverse load.

Conclusions
In this paper, the large deflection bending of circular piezoelectric micro-actuator including flexoelectric effect 
is analyzed based on the extended linear theory for dielectrics and Von Kármán strain theory. A size-dependent 
model of circular piezoelectric actuator is established by considering the effects of strain gradient and polariza-
tion gradient. The corresponding governing equations and boundary conditions are derived based on the vari-
ational principle. Boundary value problems of simply supported plate and clamped plate are solved by using the 
differential quadrature method. The coupling of piezoelectric effect and flexoelectric effect is investigated by the 
generated large deflection for both cases.

Results show that the orientation of piezoelectric layer affects the superposition of piezoelectric effect and 
flexoelectric effect. If the flexoelectric effect weakens the electromechanical coupling response of the piezoelec-
tric layer in one case, then the flexoelectric effect will enhance the electromechanical coupling response when 
the piezoelectric layer is turned over since the direction of bending deformation induced by piezoelectric effect 

(41)u1 = 0, uN = 0,

N
∑

j=1

A
(1)
1j wj = 0, wN = 0,

N
∑

j=1

A
(1)
Nj wj = 0

Figure 6.  The dimensionless bending deflection of actuator plate subjected to different driving voltage under 
clamped boundary condition.
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will reverse. Furthermore, the flexoelectric effect is size-dependent. When the actuator thickness is close to 1 
micron or smaller, the contribution of flexoelectric effect is too large to be ignored. However, the flexoelectric 
effect gradually weakens with the increase of thickness and can be almost negligible when the actuator thickness 
is 20 μm or larger.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 24 July 2023; Accepted: 26 October 2023

Figure 7.  Superposition of piezoelectric effect and flexoelectric effect in actuator plate subjected to q = − 0.3 μN/
μm2 and V = 80 V under clamped boundary condition.

Figure 8.  Strain distribution on the substrate surface of actuator plate under clamped boundary condition.
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