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Measuring skill via player dynamics 
in football dribbling
Lukas Brink 1,9, Seung Kyun Ha 2,9*, Jack Snowdon 3,9, Ferran Vidal‑Codina 1,9, 
Bobby Rauch 3,10, Fan Wang 4,10, David Wu 5,10, Maurici A. López‑Felip 6,7, Christophe Clanet 8 & 
Anette E. Hosoi 4

Although a myriad of studies have been conducted on player behavior in football, in‑depth studies 
with structured theory are rare due to the difficulty in quantifying individual player skills and 
team strategies. We propose a physics‑based mathematical model that describes football players’ 
movements during dribbling situations, parameterized by the attacker aggressiveness, the defender 
hesitance and the top speed of both players. These player‑ and situation‑specific parameters are 
extracted by fitting the model to real player trajectories from Major League Soccer games, and enable 
the quantification of player dribbling attributes and decisions beyond classical statistics. We show 
that the model captures the essential dribbling dynamics, and analyze how differences between 
parameters in varying game situations provide valuable insights into players’ behavior. Lastly, we 
quantitatively study how changes in the player’s parameters impact dribbling performance, enabling 
the model to provide scientific guidance to player training, scouting and game strategy development.

The sport of association football, also known as “football” or “soccer”, is one of the most popular sports in the 
world, attracting over 3 billion fans globally. In this sport, the dynamics of two coupled fluid collectives of indi-
viduals (i.e., twenty-two players on two teams) and its higher-order invariants engendered lawfully by the spatial 
layout (i.e., playing area), as well as rule-based contexts, define one of the richest settings that one can encounter 
to study human behavior. The game in its natural form requires high precision both at the individual level and 
at the level of team coordination dynamics, which define a team’s playing style. A variety of different playing 
styles through which players and teams can excel have been recognized and  studied1–5. However, despite style 
peculiarities visible to the eyes of the fans, the fundamental principles of the game that allow players and teams 
with such different styles to flourish are not so apparent. Thus, looking at the principles underlying the game 
requires in-depth scientific study. Given coaches’ thorough knowledge of different playing styles, this will require, 
first and foremost, a theory of the game that allows scientific inquiry to be guided in a common framework by 
coaching insights and questions.

Traditionally, however, the wide variety of scientific studies related to football have investigated isolated 
levels of analysis of the game. These levels vary from  physiology6,7 to  biomechanics8,9 or players’ perceptual and 
cognitive  skills10–12 all the way to statistical and mathematical  methods13–18.

Although these studies provide valuable contributions towards a scientific understanding of football, they do 
not seek to understand the game from a unified scientific and coaching perspective from which research inquires 
may be guided. A unified theory-driven and practice-oriented framework, a kind of a functional (situational) 
semantics, has been previously advocated for sports in  general19 and more specifically for  football20. Indeed, a 
functional semantics approach is a hallmark of ecological  psychology21. In football, this must account for the 
innumerable and dependent interactions in the game to describe the environment “for-the-organism”22,23, namely, 
the players, and the dynamic actions of the organism commensurate with that  environment24,25.

It has been contended that, to achieve a level of analysis which unifies coaching and scientific insights—which 
is therefore dependent on “when”, “where” and “who” explaining the interdependent, relational and situational 
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game  dynamics26—should necessarily contain a common point of reference, an invariant that remains the same 
across a  game27. The ball is such an element: At any instance of the game, any slice of time representing a 
moment of the game, the ball can provide the minimum context to start building knowledge of the specific 
game situation. Independently of whether one is a football coach teaching the fundamental tactics of the game 
or a scientist trying to predict the driving parameters by which players self-organize, the ball is paramount for 
a sound theoretical framework from which one may define playing styles (as a coach) or determine predictive 
models (as a scientist). The ball’s position, thus, constitutes the fundamental predictor for the behavior of the 
players and team dynamics at large.

In this paper, we conceptualize the player in possession of the ball and an immediate defender from an eco-
logical perspective and discuss the implications for future research and applied practice. From a scientific-based 
perspective, the adoption of an ecological approach to perception and action affords the use of a ball-centric 
framework, and so allows for the unity of coaching and scientific domains. This ball-centric approach cannot 
be superficially imposed on any theoretical framework. Conversely, it requires a necessary ontological commit-
ment that allows the specification of a conceptualization (e.g., of the game), a description of the concepts and 
relationships that emerge and exist for an agent (-player) or a group of agents (-teams), so that the framework 
aids understanding of the fundamental principles of the game. This new ontology, based on Gibson’s28 discipline 
of ecological psychology, and work that builds off his seminal  arguments22,29, rejects the organism-environment 
dualism and eschews explanations that treat these in isolation from each other. Instead, an ecological approach 
treats the organism-environment as a coupled-dynamic system subject throughout to the same kind of laws, 
called laws of ecological  physics23.

The ball-centric approach has been adopted to study how the displacements of the ball via passes change the 
local informational gradient and collective dynamics of players in a passing  drill30. In this article, the goal is to 
tackle a second form of in-game ball dynamics, dribbling, and the player-ball system that emerges during drib-
bling actions. Under the assumption that during dribbling activities, the player dribbling the ball changes other 
players’ informational gradients, and so the activities of the whole system, we aim to develop a mathematical 
model to quantify the dynamics that emerge from this player-ball system.

Previous literature on the skill of dribbling has determined that it is one of the most common technical actions 
that take place in a football  match31 and a determining factor differentiating the most talented  players32 and in the 
development of young  players33. Previous research on dribbling also relates to skill-acquisition;  biomechanics34; 
and the physiological implications of  dribbling35,36. However, these papers do not seek to explore the in-game 
dynamics of the player-ball system and its changes in a systematic way, building from a theory that illuminates 
how the system (game) works.

In this paper, we present a ball-centric mathematical model that captures the trajectories of 1v1 dribble 
segments, while preserving ecological-based principals. A 1v1 dribble scenario or segment is defined as a con-
tinuous event where a single attacker attempts to dribble a single defender, which lasts until the attacker has 
lost possession of the ball or the defender has been overtaken. For the sake of brevity, we hereafter use dribble 
to refer to a 1v1 dribble segment. The proposed model for dribbling is inspired by a mathematical model intro-
duced by Keller for short-distance competitive  running37,38, as well as the steering dynamics model from Fajen 
and  Warren39, whereby we treat the ball and the dribbler as a coupled dynamical system. The model consists of 
three key ingredients: (1) the attacker behavior is goal-directed, and depends on the success of dribbling the ball 
towards desired spots along an intended path; (2) the defender acts in relation to the active movement of the 
attacker, which in turn acts in relation to the defender activity, hence both players’ motion is mutually influenced; 
(3) in-game real tracking data of high-level professional football players is used to fit the model parameters, thus 
enabling the quantification of dribbling skills beyond traditional metrics such as dribble success rate. Hence, 
the proposed framework overcomes prior efforts to capture the dynamics of  dribbling40, in which a two-stage 
approach of kicking the ball and pursuing the kicked ball of an attacker dribbling the ball around a static defender 
to a goal was proposed.

This paper is organized as follows: in “Model development” section, we develop a mathematical model that 
quantifies the system generated by a dribbler and their immediate defender, using parameters characterizing both 
physical and behavioral aspects of footballers; in Section “Model Validation” we demonstrate the effectiveness 
of the model in predicting trajectories of elite football players in real dribbling scenarios, using data provided 
by the San Jose Earthquakes in the Major League Soccer (MLS); in  “Analysis of parameter distributions” sec-
tion we use the model parameter values that arise from fitting the model to real tracking data to conduct several 
statistical analyses depending on different game conditions; and finally in Section “Quantifying the Impact of 
Parameter Variations on Dribble Quality” we investigate how changes in the model parameters impact the qual-
ity and outcome of dribbles.

Results and discussions
Model development
Our starting point is the original one-dimensional Keller  model37 for competitive running

where v(t) is the runner velocity and the dot indicates a derivative with respect to time, f(t) is the positive force per 
unit mass exerted by the runner, assumed to be constant throughout the race, and τ > 0 is a constant modeling 
the physiological resistances felt by the runner.

The Keller model has proven to be successful in modeling straight-line running  behavior37. However, in 
order to adapt it to soccer, the model must be expanded to allow for 2D forces and trajectories. To introduce 

(1)v̇(t) = −
1

τ
v(t)+ f (t),
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directionality, we characterize dribbling situations based on three main agents: the player in control of the ball, 
referred to as attacker and represented by subscript a; the goal that this player is attacking, referred to as active 
goal and represented by subscript g; and the opposing player who is closest to the attacker, referred to as defender 
and represented by subscript d. To capture the two players’ trajectories with the model, we rewrite (1) as a set 
of two 2D ordinary differential equations—one for the attacker and one for the defender—and choose f (t) in 
terms of the attractive/repulsive interactions between the agents, as sketched in Fig. 1a. For the attacker, we 
postulate that the force per unit mass is dictated by a constant attraction to the active goal and a constant repul-
sion from the defender f a(t) = kagxag (t)− kadxad(t) , whereas the defender is modeled by a constant attraction 
to their own goal in order to stay between the goal and the attacker and the constant attraction to the attacker 
to intercept the ball f d(t) = kdgxdg (t)+ kdaxda(t) . In these expressions, xij(t) represents the unit vector from 
agent i to agent j at time t, and kij is the nonzero attraction/repulsion constant coefficient between agents i and 
j. Thus, unit vector xij(t) and constant coefficient kij respectively determine the direction and the magnitude of 
corresponding interactions between the agents.

In real game situations, we expect the magnitude of those interactions to depend on the distance between 
the agents, especially between the attacker and the defender (e.g. attacker and defender may not feel the attrac-
tion if they are far away from each other). To account for this distance dependence in a simple way, we assume 
that kij ’s are zero when the attacker and the defender are far away and nonzero constants when the attacker and 
the defender are close to each other—in this work, we set a conservative criteria of attacker-defender distance 
below 10 meters and only focus on those dribbles in the downstream analysis, see also Fig. S1b and Section S1.5. 
We acknowledge that more complex models can be built to capture the delicate aspects of different interactions 
between the agents, but in this work, we focus on introducing the simplest model possible and demonstrating 
that already enables the quantification of dribbling skills.

Consequently, the Keller-inspired model for the attacker and defender can be written as follows: 

(2a)v̇a(t) = −
1

τa
va(t)+ kagxag (t)− kadxad(t) ,

(2b)v̇d(t) = −
1

τd
vd(t)+ kdgxdg (t)+ kdaxda(t) .

Figure 1.  Attacker-defender dribble model. (a) Schematic illustration of the vector components that constitute 
the model. (b–e) Comparison between tracking data and model results for four dribble events. Top: Player 
trajectories. Bottom: Goal-defender-attacker angle as a function of dribble duration. Legend is shared across 
subfigures.
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 It must be noted that the force terms f (t) are related to the players’ athletic capabilities and therefore should 
have physically-reasonable magnitudes. The equilibrium analysis for this system may be found in Section S2 of 
the SI. In order to more easily apply this physiological constraint to the magnitude of the f (t) components, we 
rearrange Eq. (2) and introduce the parameters βa = kag/kad and βd = kdg/kda , as well as αa =

kad

|kad |
τa
∥∥f a(t)

∥∥ 

and αd =
kda

|kda|
τd
∥∥f d(t)

∥∥ . Hence, the dribbling model that we propose is given by the following set of 
equations: 

 which is hereafter referred to as attacker-defender model. The β parameters model the behavior of each player 
in relation to the other agents: βa represents the attacker’s aggressiveness, computed as the ratio between the 
attraction to the active goal and the attraction to the defender; βd represents the defender’s hesitance, computed 
as the ratio between attraction to the active goal and attraction to the attacker. The remaining parameters have a 
physiological interpretation stemming from Keller’s original  work37, whereby α represents the top speed attain-
able by the player in a specific dribble situation (and can thus vary with fatigue, player’s level of effort, player/
game conditions, etc.), τ is a decay constant measuring the inner resistances felt by the player (in seconds) and 
α/τ is the force per unit mass exerted by the player in the given dribbling situation, see Keller’s  work37 for fur-
ther details. Since the underlying attraction/repulsion constants k may be positive or negative, the behavioral 
parameters β and top velocity parameters α are not constrained to be positive. The assumed player behavior 
(attacker attracted to goal and repelled from defender, defender attracted to goal and attacker) only occurs when 
(βa,βd ,αa,αd) > 0 , whereas other less frequent situations arise whenever one or more of these parameters are 
negative, which we briefly discuss in Section S8 of the Supplementary Information (SI). In this article, we choose 
a top player velocity constraint of |α| < 10.2 m/s based on the maximum value of player speed obtained from our 
dataset; τ is a positive parameter with a reasonable lower bound of 0.9 s, which is the value previously reported 
by fitting the model to short-distance track records based on Keller’s  report37; the behavioral β parameters are a 
ratio, which given the lack of existing data, for now we take as unconstrained.

To evaluate the player’s trajectories, we need the initial location of all three agents and the initial velocities 
of both players, in addition to a feasible configuration of parameter values. Then, by numerically solving Eq. (3) 
we retrieve the model-predicted player trajectories. Alternatively, we can leverage player trajectory data from 
real in-game situations and use the proposed model to extract values for the parameters β , α and τ , for which 
the discrepancy between the actual and predicted player trajectories is minimized.

Model validation
To validate that the model accurately captures dribble behavior, we test whether the trajectories predicted by the 
model are similar to those from real in-game player trajectories. The San Jose Earthquakes in the Major League 
Soccer (MLS) provided us with player tracking data (sampled at 25Hz), as well as discrete annotations (attacker, 
defender and timestamp) on dribbling situations for 17 home games of the 2019 season, both collected by Second 
Spectrum (SS). In order to convert the discrete 1v1 annotations to dribble segments, starting from the annotated 
timestamp we assume the dribble segment starts when the attacker is in control of the ball ( < 0.5m ), and ends 
when either the attacker is no longer in possession of the ball ( > 1m ) or the attacker is far from the defender 
( > 10m ), see Section S1.1 in the SI for further details.

We assess the ability of the model to reproduce real dribble trajectories by quantifying the fitting error for 
each dribble, computed by comparing the trajectories from the model and the actual player trajectories from 
the tracking data. An optimization process is performed for each dribble instance in order to extract the set 
of six parameters that minimize the fitting error, defined in Eq. (4) in Methods. We find that 80% and 86% of 
dribbles exhibit an error below 0.1 in the attacker’s and defender’s trajectory, respectively. In addition, a total of 
73% and 43% dribbles have errors for both players below 0.1 and 0.05, respectively. For reference, an error of 
0.1 represents an average of 10% frame-by-frame deviation from the actual data along the entire duration of the 
dribble. We can therefore argue that, despite the low dimensionality of the model proposed above, it is able to 
effectively capture the dynamics of the participating players, and enables the parameterization of these scenarios 
using only three parameters per player (or per trajectory): two parameters to describe physical condition (top 
speed attainable and inner resistances felt by player) and one behavioral parameter that measures either attacker 
aggressiveness or defender hesitance. Examples of accurately fitted pairs of trajectories, with both errors below 
0.02 (less than 2% frame-by-frame deviation) are shown in Fig. 1b–e, and we refer the reader to Section S4 and 
Fig. S7 in the SI, for six additional examples of dribble segments where the computed model trajectories match 
the tracking data within 1%.

It should be kept in mind that our model assumes 1v1 situations and simplifies the dribble dynamics. Thus, 
there exist several cases where our model exhibits limited accuracy, owing to e.g.: sudden change in trajectories 
of the players (since our model assumes smooth trajectories); the presence of multiple defenders (we consider 
only the closest defender labeled by SS); or the influence of pitch bounds (the model assumes the 1v1 occurs on 
an unbounded domain). Some examples of trajectories with both errors above 0.1, that correspond to the afore-
mentioned limitations, are discussed in Section S8 of the SI, along with potential avenues to circumvent those.

(3a)v̇a(t) = −
1

τa
va(t)+

αa

τa

βaxag (t)− xad(t)∥∥βaxag (t)− xad(t)
∥∥ ,

(3b)v̇d(t) = −
1

τd
vd(t)+

αd

τd

βdxdg (t)+ xda(t)∥∥βdxdg (t)+ xda(t)
∥∥ ,
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Analysis of parameter distributions
The process of fitting the dribble trajectories with the proposed model gives rise to six parameter values per drib-
ble, which along with the initial positions and velocity of the players, fully characterize the dribble. The empirical 
distributions of these six parameters have been further analyzed by slicing the dribbling dataset along different 
football-specific attributes, in order to determine whether statistically significant differences arise for different 
values of the attributes. The analysis is focused on the behavioral parameters βa, βd as well as the parameters 
modeling the force per unit mass exerted by the players αa/τa, αd/τd ; the attributes considered are the positional 
role of attacker and defender (forward, midfielder, back), whether the attacker is a top-10 MLS  dribbler42 and 
the pitch location where the dribble started.

The dribbles considered for this study are further filtered by error, parameter positivity and sensitivity. Lower 
fitting errors indicate a more accurate model representation of the dribble dynamics; positive parameter values 
confirm that the interaction factors that we assume in the model (attacker attracted to active goal and repelled 
from defender, defender attracted to active goal and attacker) primarily govern the trajectory of the players; 
sensitivity quantifies how much the predicted player trajectories change when player parameters are modified, 
hence high parameter-sensitivity ensures that the parameter value well-represents that specific dribbling situ-
ation. A more detailed explanation of these filtering criteria can be found in the "Methods" section, as well as 
Sections S1.4 and S3 of the SI.

For each parameter, we categorize all filtered dribbles according to one of the above attributes (player posi-
tional role, elite dribbler and dribble location), and then perform all possible pairwise comparisons of the 
parameter empirical distribution using a Kolmogorov–Smirnov (KS) two-sided test. The null hypothesis of the 
test is that both empirical distributions are drawn from the same underlying distribution, hence if the p-value 
is lower than p we may reject the null hypothesis with a significance of 1− p . In order to ensure the analysis is 
statistically valid, a minimum of 25 dribbles per category is prescribed to apply the KS test. For each parameter, 
we report the amount of pairwise categories where the null hypothesis may be rejected at 1% and 5% significance. 
In the following subsections, we explore in detail six examples of parameter distributions that exhibit significant 
differences for distinct values of the attributes. The observed differences between attributes for these examples 
are consistent with football intuition, see Fig. 2.

Figure 2.  Normalized histograms of empirical distributions for selected parameters and categories, with the 
median of each distribution shown as upward triangle. Attacker/defender refers to whether the player is in 
possession of the ball when dribbling, whereas back/midfielder/forward refers to the player positional role 
within the team’s lineup: (a) attacker aggressiveness βa comparing when the player in possession is either a 
forward or a midfielder;  (b) defender hesitance βd comparing when the player in possession is either a forward 
or a midfielder;  (c) attacker aggressiveness βa when the player not in possession is either a forward or a back 
;  (d) defender physical exertion αd/τd comparing dribbles executed by forwards when the player not in 
possession is either a back player or another forward;  (e) defender hesitance βd comparing when the dribble 
started from either the flanks or the center of the attacking third;  (f) defender hesitance βd slicing the player in 
possession between elite and non-elite dribblers.
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Player positional role
The goal of this analysis is to quantify potential differences in parameter distributions between different player 
types, based on their natural/preferred playing position. We divide the players in three groups (back/midfielder/
forward) based on their position in the  lineup43. We use this nomenclature to distinguish the positional role of a 
player within the team’s lineup from whether the player is in possession of the ball (attacker) or not in possession 
of the ball (defender) during the dribble.

We first look at the positional role of the attacker only (3 categories, 
(
3

2

)
 = 3 possible comparisons), then 

only the positional role of the defender (3 categories, 3 possible comparisons), and finally the combined positional 
role of attacker and defender (9 categories, 36 possible comparisons). Out of the total 42 comparisons, the per-
centage of pairwise comparisons where the null hypothesis can be rejected at 5% significance is 19% for βa , 5% 
for βd , 2% for αa/τa and 14% for αd/τd.

Fig. 2a–d shows four statistically significant comparisons, which we select based on their football-specific 
interpretation. Focusing only on the positional role of the attacker, in Fig. 2a we show the empirical distributions 
of attacker aggressiveness βa for forwards vs midfielders when attacking (p-value 5e−3 ). We see that forwards 
exhibit 50% higher aggressiveness values (in median) than midfielders when handling the ball in the dribble, and 
are therefore less mindful of the opponent. This agrees with forwards’ primary task of getting past the defender 
to score, which could lead to an increased willingness to take the potential risk of losing the ball. Furthermore, 
forward players generally dribble closer to the opposing goal, reducing the risk of a dangerous situation in 
which they lose the ball. Next, in Fig 2b, we analyze the distributions of the defender hesitance βd when the 
player handling the ball is either a forward or a midfielder (p-value 1.8e−2 ). We see that when defenders are 
facing a forward, they are 40% more hesitant (in median) than when facing a midfielder, which is explained by 
the generally higher dribbling skill level of forward players compared to midfielders, posing more danger to the 
defenders. In Fig. 2c, we slice the attacker aggressiveness data βa based on the positional role of the defender. 
We observe that the attacker exhibits 46% higher aggressiveness towards the active goal (in median) when fac-
ing a forward than when facing a back player (p-value 8.2e−3 ), implying a lower perceived defensive skill level 
of forwards compared to back players. Finally, in Fig. 2d, we compare the distributions of the physical exertion 
parameter αd/τd for a forward–forward dribble vs a forward–back dribble, where the first player represents the 
attacker and the second the defender (p-value of 3.1e−3 ). The data shows that when facing a forward player in a 
dribble, the defender exhibits 50% lower levels of physical exertion (in median) if they are themselves a forward 
compared to them being a back player, which is explained by the perceived lower defensive skill level of forwards 
compared to back players.

Dribble start location
Next, we analyze differences in parameter values based on the start location of the dribble. We divide the pitch 
into three zones along its length: attacking, central, and defending (after proper normalization to ensure a 
unique attacking direction), and two zones along its width: side and central, hence we are left with 6 categories 
(15 pairwise comparisons). The percentage of pairwise comparisons where the null hypothesis can be rejected 
at 5% significance is 7% for βa, βd , 0% for αa and 27% for αd . Amongst the pairwise comparisons that exhibit 
statistical significance, we depict in Fig. 2e the one with the lowest p-value ( 2.1e−2 ), namely the distributions 
of defender hesitance for dribbles starting in either the flanks or the center of the attacking third. For the latter 
case, the defender exhibits 27% more hesitance (in median), showing that defenders are less aggressive and more 
mindful of their goal when defending a dribble that starts in the center of the attacking third compared to the 
flanks of the attacking third, where the downside of being surpassed by the attacker is inferior.

Top‑10 dribblers
Finally, we aim to quantify differences in parameter distributions between players classified as top-10 dribblers 
of the MLS and other players. In order to make this classification, we use the list of top-10 MLS dribblers in 2019 
and 2020 according to the MLS  website42. In the dataset considered, 21.5% of dribbles featured one of these elite 
MLS dribblers as the attacker.

Since there are only two categories (top-10 dribbler or not), there is only one possible pairwise comparison 
per parameter. We find that the null hypothesis can only be rejected for βd , with a p-value of 5.6e−3 . The dis-
tribution of βd for each of the two categories is shown in Fig. 2f. Defenders facing an elite dribbler exhibit 27% 
more hesitance than when facing a non-elite dribbler (in median). Indeed, defenders are more reluctant of being 
overtaken by the highly-skilled opponent if actively going towards them, choosing to be more mindful of their 
own goal instead.

Quantifying the impact of parameter variations on dribble quality
The next step after analyzing the distribution of parameters coming from the model optimization is to quantify 
how dribble trajectories change when the model parameters vary. This allows for predicting changes in dribble 
quality based on potential changes in either behavior ( βa, βd ) or improvement of physical condition ( αa, αd ), 
and could thus help identify and compare options for player development and developing game plans.

In order to be able to compare different output trajectories from the model, we first define a simple metric, 
hereafter referred to as dribble score, that allows us to quantitatively rate dribbles. We define the dribble score 
z ∈ [0, 1] as the weighted sum of three terms: the change in angle of the attacker-defender-active goal from start 
( t = 0 ) to end ( t = T ) of dribble (change in positional advantage as a result of the dribble), the relative distance 
traveled to the goal by the attacker (how closer to the goal the attacker could advance by dribbling), and the final 
distance between attacker and defender (how effectively the attacker avoided the defender and reliably maintained 
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the possession of the ball). A visual representation of the score is shown in Fig. 3, and we also refer the reader 
to “Dribble Score” section in Methods for extensive details on how the score is evaluated for individual dribble 
segments. Although we demonstrate our analysis with this relatively simple score metric, we acknowledge that 
this is not the only way to evaluate dribbles and more complex dribble scores (e.g. different weights for those 
three elements, incorporating temporal aspects of the elements such as θ̇ ) can be introduced depending on the 
objective of the analysis.

The analysis in this section is split into two parts. First, we demonstrate how combining the attacker-defender 
model with the dribble score can be useful to examine the impact of parameter changes, by focusing on two 
individual exemplary dribbles. For each of the two dribble segments, we re-run the model (3) with the same 
initial conditions while prescribing parameter variations (up to ±50% ), though ensuring the parameter con-
straints are not violated, and for each variation we obtain a new pair of attacker-defender trajectories. We depict 
the impact of the parameter variations as a heatmap, where each cell is colored according to the dribble score 
achieved with the corresponding parameter variations (the center cell corresponds to the dribble score without 
parameter variations), see Fig. 4a,c. Moreover, for each dribble we examine the effect of five parameter variations 
in the actual player trajectories, in addition to the baseline trajectories without modifications, see Fig. 4b,d sorted 
in descending score. For the first dribble, as in Fig. 4a,b, we quantify the effects of variations in the behavioral 
parameters of both the attacker and the defender ( βa, βd ), and we see that the baseline parameter configuration 
is the one rendering the lowest scores. For the second dribble, see Fig. 4c,d, we explore changes in the top speed 
parameters αa, αd for both players. Additional examples of scores and predicted trajectories when modifying 
the parameters for other dribbles may be found in Sections S6 and S7 of the SI.

After looking at the individual dribble level, we shift the focus to aggregate score metrics across players. This 
allows us to evaluate the average impacts of changing the player’s behavior and physical condition. In this analysis, 
we only focus on quantifying the impacts of variations of the attacker, namely αa and/or βa , although changes 
on the parameters of the defender may be analyzed analogously. To that end, we choose four different players in 
our dataset for who we observe distinct impact of the parameter variations. The mean dribble score values for 
these four different players under parameter variations is shown in Fig. 5. More specifically, Fig. 5a1,b1,c1,d1) 
show the impact of changing either αa or βa on the mean dribble score, along with the 95% confidence interval, 
whereas Fig. 5a2,b2,c2,d2 show the impact of simultaneous changes in both αa, βa as a mean score heatmap. 
The remaining players in our dataset (for which we have at least 10 dribbles) are analyzed in Fig. S13 in the SI.

For all four players, increasing top speed α translates into higher scores, e.g. a 25% increase in top speed leads 
to a 8% increase in dribble score for player (c), 5% for player (b), 3% for player (a) and 2% for player (d). This is in 
agreement with the football intuition that the ability to run faster increases the likelihood of beating a defender 
in 1v1 interactions. Similarly, a decrease in speed is followed by a decrease in scores, for instance a 25% decrease 
in top speed results into an 8% reduction in dribble score for players (a,b), 4% for player (b), 7% for player (d) 
and 3% for player (c). Conversely, the effects of changing βa attacker aggressivenesses are different across the 
four players. For players (a) and (c), a 50% increase in βa leads to increases of 2% and 8% in the dribble score, 
respectively. However, for players (b) and (d), a 50% increase in βa causes a decrease of 1% and 2% in the dribble 
score, respectively. From Fig. 5b1,d1, we see that player b seems to be operating at an optimum βa whereas player 
(d) is operating beyond its optimal βa value. Finally, player (a) experiences a 9% reduction in dribble score when 
for a 50% decrease in aggressiveness, compared to a 6% for the other players.

Moreover, we also show the combined effects of changing βa − αa as heatmaps in Fig. 5a2,b2,c2,d2. For 
instance, a decrease of 50% in top speed for all players negates further effect on the scores from changes in 
aggressiveness. The analogous observation may be made for a 50% reduction in aggressiveness, whereby top 
speed changes become far less relevant. Hence, when inspecting how the dribbling skills of a given player may 
be enhanced, it is paramount to account for both the player aggressiveness and top speed simultaneously.

We believe that these analyses demonstrate the possibility of using the proposed attacker-defender model 
to quantify player attributes that have not been quantifiable before. These differences in score sensitivity to βa 
suggest potential opportunities for personalized player development and scouting. An example of the former 
would be that for player (a) it is beneficial to work on both taking more risks and increasing top speed, while 
for player (d) it is more beneficial to improve their top speed and reduce their aggressiveness in taking risks. 

Figure 3.  Representation of the start ( t = 0 ) and end ( t = T ) of a dribble segment with attacker, defender 
and active goal, highlighting the relevant quantities required define the score: attacker-defender-goal angle θ , 
attacker-goal distance AG and attacker-defender distance AD.
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Figure 4.  Impact of behavioral parameter variation (a,b) on dribble 1 and top speed variation (c,d) on dribble 
2: (a) heatmap of predicted scores for simultaneous ±25,±50% variations in attacker aggressiveness βa and 
defender hesitance βd (heatmap generated using seaborn  library44 in python 3.7); (b) simulated trajectories 
and predicted score for prescribed percent change in behavioral parameters; (c) heatmap of predicted scores 
for simultaneous ±25,±50% variations in attacker (resp. defender) top speed αa (resp. αd ) (heatmap generated 
using seaborn  library44 in python 3.7); (d) simulated trajectories and predicted score for prescribed percent 
change in top speed parameters.

Figure 5.  Is it more beneficial to improve top speed and/or aggressiveness when dribbling? (a1,b1,c1,d1) 
Predicted mean score with 95% confidence interval for four different players when changing βa, αa 
independently up to ±50% ; (a2,b2,c2,d2) predicted mean score for four different players when changing βa and 
αa simultaneously. Results suggest all players benefit from increase in top speed, which is more advantageous 
than the same amount of increase in aggressiveness; players (a,c) exhibit an increase in mean score when 
increasing aggressiveness, although much more pronounced for player (c); player (b) is operating at optimal 
aggressiveness; player (d) should decrease their aggressiveness to improve their scores.
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Regarding player scouting, this methodology can be used to assess player potential beyond traditional statistics 
(such as dribbles attempted or completed) and establish a baseline to compare players.

Conclusion
We have presented a mathematical attacker-defender model to capture the dynamics of 1v1 dribbling in football. 
The model consists of a system of two ordinary differential equations, which can be solved to obtain attacker 
and defender’s trajectories. Each equation is described by a behavioral parameter, measuring either attacker’s 
aggressiveness towards the goal or defender’s hesitance in chasing the attacker, and two physical parameters 
measuring the top speed and the inner resistances felt by the player. We use real in-game tracking data from elite 
MLS footballers to fit the parameters of the attacker-defender model, showcasing the model’s ability to accurately 
capture the player trajectories while dribbling. Additionally, this fitting process with real data enables the extrac-
tion of the aforementioned player-specific dribbling parameters. The parameter distribution analysis enables us 
to ascertain that there are statistically significant differences between the parameters depending on the positional 
role of the player, the dribble location or dribbling record of the player, and hence that these parameters constitute 
novel metrics to characterize the dribbling skills of professional football players, which can potentially be used 
in player development and scouting. By analyzing the impact of parameter changes on the player’s trajectories 
we are able to identify player-specific potential training and performance strategies. Moreover, the framework 
presented here can be used to construct game plans such as which defender to target, which attacker should be the 
dribbling focal point, where on the pitch should the dribble start, etc. and provide a quantitative metric to assist 
scouting by assessing the dribbling skills of any player in terms of measurable behavioral and physical parameters.

In terms of future work, two categories may be identified: (1) model improvement requires extending the 
model beyond 1v1 dribbles by including additional equations/terms for other players and the sidelines, see Sec-
tion S8. Furthermore, the model equations could be extended to include a skill-related parameter, which would 
allow for extending the model beyond physical and behavioral parameters; (2) player-player and player-positional 
role analyses that are specific to an individual player, with the objective of tailoring line-ups or in-game strategies 
to certain opponents or game situations. The current limitation is the lack of sufficient dribble data to perform 
these studies.

Methods
Dataset
For this study, we have used data provided by the San Jose (SJ) Earthquakes collected by Second Spectrum (SS). 
The data, which comprises 17 games SJ played at home in the 2019 season, consists for each game of ball and 
(x, y)-player position data sampled at 25Hz (tracking data), as well as a log of all 1v1 situations that occurred 
indexed by the minute and second (cents of second not available), specifying the attacking and defending players 
(event data). The pre-processing step is detailed in Section S1.1, resulting in a dataset of 2714 dribbles, where 
1691 of those are executed by SJ players.

We have received permission from San Jose Earthquakes, who owns the player tracking data provided by 
Second Spectrum, to use the data for this research. Second Spectrum was authorized to collect the data under 
a partnership with San Jose Earthquakes. Informed consent was obtained from all subjects. All methods were 
carried out in accordance with relevant guidelines and regulations, and the authors received human research 
ethics approval to conduct this work from the Committee on the Use of Humans as Experimental Subjects 
(COUHES-MIT).

Parameter fitting
In order to fit the proposed model to a given dribble, an optimization step is performed to compute a set of 
parameters that minimize the combined error of attacker and defender trajectories, (see Section S1.2). An error 
metric is introduced to quantitatively assess how accurately the model is able to predict the trajectories of both 
players during the dribbling event. The distance-normalized error metric for an arbitrary dribble is defined as

where p ∈ {a, d} refers to either the attacker or the defender, T is the dribble duration in data frames, rp(t) (resp. 
r̃p(t) ) is the (x, y) tracking data (resp. model trajectory) position of player p at instant t. The physical meaning of 
this error metric is the average fractional deviation of player position at each frame (average positional deviation 
divided by player travel distance). An exploratory analysis of dribble duration and distance after pre-processing, 
as well as fitting errors, for the entire dataset may be found in Section S1.3 and Fig. S1(a) of the SI.

Dribble filtering
Since one of the objectives of this work is to extract meaningful physical and decision-making insights from 
players regarding dribbling situations, we need to carefully select the dribbles that will be analyzed. To that end, 
we filter the dribbles based on the following criteria: minimum distance of 2 m traveled, model error below 0.1 
for both players and parameter positivity (reduced the dataset to 1573, 1153 and 623 dribbles in turn). Further 
details on those filtering criteria can be found in Sections S1.4 and S3. The 623 filtered dribbles are uniformly 
distributed with respect to game time and first/second half of the match (53%/47%). The proportion of dribbles 
carried out in the opposing half of the pitch was slightly higher than in the own half of the pitch (60%/40%). The 
home players were the ball handlers in 64% of the filtered dribbles, while 60% of the dribbles were performed 
by the team that ended up winning the match.

(4)εp =

∑T
t=0

∥∥rp(t)− r̃p(t)
∥∥

∑T
t=1

∥∥rp(t)− rp(t − 1)
∥∥
1

T
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Parameter sensitivity
We need to consider only dribbles where the quality of the model fit is directly impacted by the value of the 
parameters. In other words, for each parameter under consideration we filter out dribbles where significant vari-
ations on the value of that parameter did not translate into significant variations in the model error.

Sensitivity study is performed by perturbing one of the parameters (say βa ) by a given percent value ±ρ while 
leaving the others fixed, then simulating the new attacker and defender trajectory using these new set of param-
eters with our model, and evaluating the new error. We then deem this dribble to be sensitive with respect to βa 
if the relative change in error is at least |ρ| . The results derived in “Analysis of parameter distributions” section are 
evaluated with ρ = ±25% , for a grand total of (293, 274, 535, 522) dribbles for (βa, βd , αa/τa, αd/τd) (since for 
each parameter analysis we only use dribbles that are sensitive to that parameter). Similarly, the results in Section 
“Quantifying the Impact of Parameter Variations on Dribble Quality” are evaluated with dribbles that are sensitive 
to at least one of the ρ = ±10%, ±25%, ±50% , leaving us with (377, 359, 541, 531) dribbles for (βa, βd , αa, αd).

Dribble score
To evaluate dribbles, we propose the following scoring metric. The score z is defined as

and the three terms are individually defined between 0 and 1, hence z ∈ [0, 1] , involving the angle, the attacker-
goal distance and the attacker-defender distance, see Fig. 3. The first term zθ accounts for the change in attacker-
defender-goal angle θ ∈ [0,π ] , namely �θ = θt=0 − θt=T (where θ = 0 corresponds to dribbles with the 
attacker in front of the defender and both aligned with the goal and θ = π to the attacker behind the defender), 
and represents how well the attacker can see the route to the goal without the interruption of the defender 
in between. The second term zAG accounts for the relative change in attacker’s distance to the goal (referred 
to as AG) and may be evaluated as the empirical cumulative distribution function (ECDF) of the variable 
�AG = (AGt=0 − AGt=T )/AGt=0 , thus higher scores are awarded to dribbles where the attacker gets closer to 
the goal. Since the construction of the scoring system is independent of the dribble fitting, the dribbles considered 
to construct the ECDFs (for �θ and �AG ) have only been filtered by traveled distance (1573 dribbles). Once the 
ECDFs have been computed, they are queried for each individual dribble’s �θ (resp. �AG ) to obtain zθ (resp. zAG).

The third term zAD accounts for the distance between the attacker and defender at the end of the dribble 
ADt=T . For this term, data-driven approach is not optimal since the final attacker-defender distance has already 
been used as a pre-processing criterion. So instead, we leverage football knowledge that high scores should be 
awarded to dribbles finishing far from the defender, while the pressure felt by the attacker from the defender is 
generally proportional to the distance between them only when the defender is close by, and model it with using 
a piecewise linear unit with a 2 m cutoff, whereby dribbles where the distance is greater than 2 m the score zAD is 
1 and between 0 and 2 m the score zAD is linearly interpolated between 0 and 1. Further details and analyses on 
this score, as well as other possible scoring criteria, are extensively discussed in Section S5 of the SI.

Data availability
The data used for this study was collected by the San Jose Earthquakes in the MLS 2019 season. Due to media and 
data rights, the datasets are not publicly available, but can be requested from the corresponding author together 
with a viable research proposal and with permission of the San Jose Earthquakes.
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