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Combining biophysical parameters 
with thermal and RGB indices 
using machine learning models 
for predicting yield in yellow rust 
affected wheat crop
RN Singh 1,2, P. Krishnan 1*, Vaibhav K. Singh 3, Sonam Sah 2 & B. Das 4

Evaluating crop health and forecasting yields in the early stages are crucial for effective crop and 
market management during periods of biotic stress for both farmers and policymakers. Field 
experiments were conducted during 2017–18 and 2018–19 with objective to evaluate the effect of 
yellow rust on various biophysical parameters of 24 wheat cultivars, with varying levels of resistance 
to yellow rust and to develop machine learning (ML) models with improved accuracy for predicting 
yield by integrating thermal and RGB indices with crucial plant biophysical parameters. Results 
revealed that as the level of rust increased, so did the canopy temperature and there was a significant 
decrease in crop photosynthesis, transpiration, stomatal conductance, leaf area index, membrane 
stability index, relative leaf water content, and normalized difference vegetation index due to rust, 
and the reductions were directly correlated with levels of rust severity. The yield reduction in moderate 
resistant, low resistant and susceptible cultivars as compared to resistant cultivars, varied from 
15.9–16.9%, 28.6–34.4% and 59–61.1%, respectively. The ML models were able to provide relatively 
accurate early yield estimates, with the accuracy increasing as the harvest approached. The yield 
prediction performance of the different ML models varied with the stage of the crop growth. Based 
on the validation output of different ML models, Cubist, PLS, and SpikeSlab models were found to 
be effective in predicting the wheat yield at an early stage (55-60 days after sowing) of crop growth. 
The KNN, Cubist, SLR, RF, SpikeSlab, XGB, GPR and PLS models were proved to be more useful in 
predicting the crop yield at the middle stage (70 days after sowing) of the crop, while RF, SpikeSlab, 
KNN, Cubist, ELNET, GPR, SLR, XGB and MARS models were found good to predict the crop yield at 
late stage (80 days after sowing). The study quantified the impact of different levels of rust severity 
on crop biophysical parameters and demonstrated the usefulness of remote sensing and biophysical 
parameters data integration using machine-learning models for early yield prediction under biotically 
stressed conditions.

Wheat, scientifically known as Triticum aestivum L., is a highly significant staple crop with immense global eco-
nomic value. Wheat holds the distinction of being the largest cultivated crop worldwide, occupying approximately 
225 million hectares of land with a total production of around 772.64 million metric tons and a productivity 
rate of 3.25 tons per  hectare1. Wheat plays a crucial role in providing an affordable source of protein (20%) and 
calories (19%) through consumption to majority of the world  population2. Given its status as a staple food and its 
ability to cater to the needs of a large population, particularly those in poverty, wheat carries special importance 
in ensuring global food security. With the projected increase in the world’s population, the demand for wheat is 
expected to rise by 60% by  20503. India, being the second largest wheat producer globally, contributes approxi-
mately 13.5% pf the global wheat  production1. According to an estimate 10–16% of world wheat produce is lost 
due to pest and  diseases4.Yellow rust, also called stripe rust of wheat is considered most economically important 
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disease of wheat and threat to world food  security5. The yellow rust infection most commonly occurs on the 
wheat leaves, which reduces the light interception and photosynthesis resulting lower yields. Understanding and 
quantifying the changes in plant biophysical parameters in reponse to different levels of plant disease severity is 
essential for the effective management of resources.

Wang et al.6 studied the alterations in leaf area, photosynthetic rate, stomatal conductance, transpiration 
rate of oat to understand the plant response towards leaf blight disease. Francesconi and  Balestra7 studied the 
changes in photosynthesis and stomatal conductance to describe wheat response for fusarium head blight dis-
ease. In order to comprehend how plants react to stressors, the relative leaf water content (RWC) is a significant 
parameter. Several researchers have employed RWC to examine how plants respond to various plant diseases, 
such as vascular wilt of  tomato8, fusarium canker in  almond9, root rot of  pea10, and sharp eyespot and fusarium 
head blight of  wheat11. Membrane stability index (MSI) is a widely used physiological index to evaluate plant 
stress under biotic and abiotic  stressors11. The leaf area index (LAI) is another fundamental variable that has 
a strong correlation with crop photosynthesis and the accumulation of dry matter in crops and hence it is an 
important parameter for tracking the growth status of crops and predicting their  yield12,13. Several researchers 
have used LAI as a key indicator for monitoring the growth conditions of crop like  maize14,  wheat15,  rice16 etc. 
The Normalized difference vegetation index (NDVI) is a highly effective indicator of photosynthetically active 
biomass and is proficient at precisely discerning shifts in crop  conditions17. It is also one of the most frequently 
utilized vegetation index and finds broad application in identifying nutrient deficiencies, indirect photosynthesis 
estimation, and the detection of both biotic and abiotic stress  conditions18. Additionally, the NDVI is the most 
commonly employed vegetative index for identifying diseased  tissue19. Several researcher have used NDVI for 
monitoring and evaluating impacts of yellow rust on wheat  crop3,20,21.

Though researchers have explored various biophysical parameters of wheat under diseased conditions, a 
notable gap in these assessments is that they are predominantly focused on distinguishing only between diseased 
and non-diseased conditions. To enhance wheat yield and economic returns, a crucial step is to comprehend how 
plant biophysical parameters are affected by varying degrees of disease severity. Applying a uniform approach 
to combat yellow rust frequently leads to excessive chemical use, diminishing farmers’ profits and causing envi-
ronmental  harm5. To best of our knowledge none of studies till date quantified plant biophysical responses in 
wheat cultivars under different levels of rust severity and hence there is a notable scarcity of research examining 
the effects of different yellow rust severity levels on diverse wheat cultivars under field conditions.

Predicting crop yield is another crucial task in the current scenario for policymakers and farmers in order to 
ensure food security and sustainability. Nevertheless, this task poses significant challenges due to the complex 
interrelationships among soil, plant, and environmental factors that impact crop  yield22. The major limitations 
of traditional techniques of yield prediction such as crop growth models and statistical methods lies in their 
inability to effectively account for the constantly changing biotic and abiotic factors that affect crop production. 
Furthermore, these conventional models necessitate a substantial amount of data relating to soil, climate, crop, 
and management practices, as well as significant user proficiency and expertise to fine-tune the  model23. The 
progress made in machine learning (ML) has introduced a novel and enhanced approach to overcome the above 
limitations in yield prediction of agricultural  crops24. Several researchers used machine learning as well as deep 
learning approaches to predict yield in crops like  wheat25,26, pigeon  pea27,  maize28, oil  palm29 etc. under varying 
environmental conditions. However, researchers focusing on machine learning for yield prediction primarily rely 
on remote sensing data, which offers limited accuracy in early yield prediction. Augmenting remote sensing data 
with actual plant biophysical information has the potential to enhance the accuracy of early yield prediction. An 
evident research gap exists in the integrated utilization of plant biophysical data and image-based information for 
yield prediction. No prior study has undertaken the combination of thermal and visible image-derived indices 
with biophysical parameters to forecast wheat yield under biotic stress conditions.

With this background, the current study is planned to (a) investigate and quantify the effect of yellow rust 
on the biophysical parameters of wheat cultivars under different levels of yellow rust severity (b) coupling plant 
biophysical parameters data with image-based visible and thermal indices using ML models for improving yield 
prediction under biotically stressed conditions and (c) comparing the ability of different ML models to predict 
wheat yield under biotically stressed conditions.

Materials and methods
Thermal and visible images were collected for two years at different crop growth stages, along with biophysical 
parameters of the crop, including the LAI, RWC, MSI, photosynthesis, stomatal conductance, transpiration, 
and intercellular  CO2 concentration. These measurements were taken alongside the NDVI. To compare the 
impact of yellow rust on different cultivar categories, we used a one-way ANOVA with a post hoc Tukey test at 
a significance level of 5%. The crop yields were predicted using ML models at 3 different growth stages by using 
image based indices and biophysical parameters as model inputs. The performances of ML models were evaluated 
using coefficient of determination  (R2), d-index, root mean square error (RMSE), normalized root mean square 
error (n-RMSE) and mean bias error (MBE). Standardized ranking performance index (sRPI) derived from  R2, 
d-index, RMSE and MBE of calibration and validation was utilized to finally rank models for their ability of 
yield prediction. A flow chart describing the methodology is presented in Fig. 1 and detailed methodology is 
elaborated in the subsequent sections.

Study site, treatment details and recording yellow rust severity
Field experiments were conducted over a two-year period (2017–2018 and 2018–2019) at the Indian Agricultural 
Research Institute’s research farm in New Delhi, which has a semi-arid climate with hot, dry summers and dry 
winters. The crop was grown from the middle of November to the first week of April. The soil at the experimental 
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site is non-calcareous and slightly alkaline, classified as Indo-Gangetic alluvium (Typic Haplustepts). Twenty-
four different wheat cultivars with varying levels of resistance and susceptibility were planted in plots measuring 
2.5 × 2.5 m with a row spacing of 25 cm. The planting occurred on November 24th in the first year and November 
25th in the second year. In order to create an artificial epiphytotic in field conditions, a mixture of six virulent 
and most predominant pathotypes of P. striiformis tritici were used as urediospore inoculum. Disease severity 
was recorded on a weekly basis after when susceptible checks reached 25–30% severity according to the modified 
Cobb’s  scale30, and the final disease severity (FDS) was taken for yellow rust on March 8th during the first year 
and March 4th during the second year. The cultivars were divided and classified into four different categories viz. 
High (Highly resistant, < 20% FDS), Moderate (moderately resistant, 20–40% FDS), Low (low resistant, 40–60% 
FDS) and Susceptible (> 60% FDS) based on FDS as described by Singh et al.31.

Measurement of biophysical parameters
LAI: Plant Canopy Analyzer (LAI-2000, Li-COR Ltd, Nebraska, USA) was utilized to determine the LAI of the 
plants. To obtain the LAI of the plot, three internal subsamples were taken for each plot for each cultivar and the 
results were  averaged32. The observations were taken at 1700 h IST, when the diffused radiation was maximum, 
with a quarter view cap on the sensor to exclude the operator and the other part of the hemispherical view. A 
detailed protocol for LAI measurement is given in Liu et al.33. In the 2017–18, measurements were taken at 55, 
70, 80, 95, and 110 days after sowing (DAS), while during the 2018–19, LAI readings were recorded at 60, 70, 
80, 92, and 105 DAS.

NDVI: NDVI data was collected using a handheld NDVI sensor (Green-Seeker™, N-Tech Industries, Inc., 
USA) between 1300 and 1400 h IST to minimize sun angle  effects34. The Green-Seeker sensor estimates the 
NDVI values using of reflectance data in the red and near infrared regions of the electromagnetic spectrum. The 
sensor was swept over the middle section of the wheat plots of each cultivar and three readings were taken. The 
average NDVI value was then calculated for each wheat cultivar. In the 2017–18, measurements were taken at 
55, 70, 80, and 95 DAS, while during the 2018–19 the NDVI readings were recorded at 60, 70, 80 and 92 DAS.

RWC: The RWC was determined using the method described by Barrs and  Weatherley35. The second leaflet 
from top of the plants were collected carefully to avoid any damage. To prevent loss of any moisture from the 
leaves, the samples were kept in icebox and the fresh weight (F) of the leaves were taken as quickly as possible. 
Subsequently, the leaves were saturated by adding enough water and kept for 6 h for attaining a constant weight 
by absorbing water and the weight of the saturated leaf or the turgid weight (S) was recorded. Then the leaves 
were dried in hot air oven at 65 °C until constant dry weight (D) was obtained. Subsequently, using the F, D and S, 

Figure 1.  Flow chart describing overview of the methodology. WYR  Wheat yellow rust, ML models Machine 
learning models, DAS Days after sowing, sRPI Standardized ranking performance index.
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RWC was calculated with the following formula: RWC = (F − D)/(S − D) × 100. To get the average RWC value 
of a wheat cultivar, three internal replications were taken and averaged. In 2017–18, RWC measurements were 
taken at 55, 70, 80, and 95 DAS, while during 2018–19 the RWC readings were recorded at 60, 70, 80 and 92 DAS.

MSI: The measurement of MSI was conducted by taking 0.2 g of cut leaf samples and placing them in test 
tubes containing 20 ml of double-distilled water. These test tubes were then incubated at 30 °C overnight, and 
the electrical conductivity (EC) reading of the water containing the leaf samples was recorded as  C1. Subse-
quently, the test tubes were subjected to boiling in a water bath at 100 °C for 15 min, followed by cooling to 
room temperature. The EC was again recorded for the solution containing the leaf samples as  C2

36. The MSI 
was then calculated using the equation : MSI (%) = (1 −  (C1/C2)) × 100. As in the previous cases, three internal 
replications were taken for each cultivar and the values were averaged to obtain the average MSI values. In the 
2017–18, MSI measurements were taken at 55, 70, 80, and 95 DAS, while during the 2018–19 the MSI readings 
were recorded at 60, 70, 80 and 92 DAS.

Leaf photosynthesis, stomatal conductance, transpiration and intercellular CO2 concentration: Leaf photo-
synthesis rate, stomatal conductance, transpiration rate and intercellular  CO2 concentration were measured 
using Infrared Gas Analyzer (IRGA, model LI-6400XT, Li-COR Ltd, Nebraska, USA). Mature leaflets of wheat 
were analyzed using an Infrared Gas Analyzer (IRGA, LI-6400XT, Li-COR Ltd, USA) under a constant light of 
1000 µmol  m-2  s-1. The IRGA was set to operate in closed method to measure leaf photosynthesis rate, stomatal 
conductance, transpiration rate, and intercellular  CO2  concentration37. Three observations were taken for each 
cultivar on the uppermost completely extended leaves during the optimum period of photosynthetic active 
radiation from 1000 to 1230 h IST. The observations were recorded at 55, 70, 80, and 95 DAS in 2017–18, while 
during 2018–19 the readings were recorded at 60, 70, 80 and 92 DAS.

Yield: When the crops reached maturity, a manual harvest of 1 square meter was conducted. The grains were 
separated from the rest of the plant through threshing and beating and the yield was calculated based on the 
dry weight.

Image acquisition and derived parameters
The thermal and visible images were acquired simultaneously using the Testo (890-1) handheld camera. This 
camera is equipped with thermal detector of resolution of 640 × 480 pixels and a high-quality wide-angle lens 
that covers a field of view of 42° × 32°. With a thermal sensitivity of less than 40 mK at 86 °F, the camera can 
detect even subtle temperature variations. It has a minimum focusing distance of 0.1 m. The camera’s geometric 
resolution is 1.13 mrad when the emissivity is set at 0.95, and it operates within a spectral range of 8–14 µm. 
The temperature estimation capability of the camera ranges from − 20 to 100 °C, with an accuracy of ± 2%. The 
thermal and visible images were taken each year at four different dates between stem elongation to flowering 
period of the crop viz. 55, 70, 80 and 95 DAS in 2017–18 and 60, 70, 80 and 92 DAS in 2018–19. Images were 
captured from a nadir view angle at peak daytime temperatures and low wind conditions between 1330 and 
1430 h  IST38. Thermal and visible images were taken at three different locations in each plot from 1 m above the 
crop canopy, during various stages of crop growth. In the 2017–18, the images were taken at 55, 70, 80, and 95 
DAS, while during the 2018–19 the images were captured at 60, 70, 80 and 92 DAS.

Canopy temperature: The average temperature of the canopy at various crop growth stages was derived using 
the thermal images. Testo IR soft analysis software was used to calculate the average temperature of the canopy 
by averaging the temperature values of each pixel in the  image39.

Visible and thermal indices: Visible indices were calculated by extracting RGB tristimulus values using R 
software version 4.1.2. The RGB values were normalized in order to minimize the impact of illumination and 
variations in  color40. Thermal indices were computed by utilizing temperature values extracted from the pixel 
data of thermal images using Testo IR software, in conjunction with the concurrent measurement of wet and dry 
leaf temperatures taken while capturing the thermal  image41,42. We generated 45 visible and 3 thermal indices 
for each of the three stages for yield prediction. These indices along with their respective formulas are provided 
in Supplementary Table 1.

ML models for predicting yield
The biophysical parameters and the image based indices of first three dates of observations of each year were 
used to develop 12 ML models, which include Elastic Net (ELNET), Support Vector Machine (SVM), Gaussian 
Process Regression (GPR), Generalized Linear Model (GLM), Spike and Slab Regression (SpikeSlab), Multivari-
ate Adaptive Regression Spline (MARS), Partial Least Square Regression (PLS), Random Forest (RF), K-Nearest 
Neighbours (KNN), Stepwise Linear Regression (SLR), eXtreme Gradient Boosting (XGB), and Cubist. Details 
on the ML models used in this study is also described in Singh et al.42. For yield prediction, we utilized dataset 
generated from collecting data of 24 cultivars at three growth stages resulting 48 data points for calibration and 
validation at each stage. The predictor variables for yield included RGB and thermal image indices, LAI, RWC, 
NDVI, MSI, photosynthesis rate, stomatal conductance, transpiration rate, intercellular  CO2 concentration and 
image derived canopy temperature. Out of the total data at available at each stage, 70% of the data points were 
used in calibration and the remaining 30% were used for validation. The parameters of the ML models were 
fine-tuned and adjusted through tenfold cross-validation with five repetitions, employing the ’caret’  package43 
in R software version 4.1.244. To evaluate the predictive capability of the models several statistical parameters 
including the  R2, d-index, MBE, RMSE and n-RMSE were calculated. n-RMSE (%) values within the range of 
0–10% are considered “excellent”, those between 10–20% are classified as “good”, values from 20–30% fall into 
the “fair” category, and any values exceeding 30% are deemed “poor”45,46. To rank the models by combining the 
results of calibration and validation of multiple statistical criteria, standardized Ranking Performance Index 
(sRPI) was  calculated47. The sRPI ranges between 0 and 1, where the worst-performing model gets 0, while the 
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best model gets value of 1. The yield predictions were made at three different stages before crop harvest viz, Stage 
1: 55–60 DAS, Stage 2: 70 DAS, and Stage 3: 80 DAS.

Ethical approval
The planting material used in this study was procured from the Division of Plant Pathology, ICAR-Indian 
Agricultural Research Institute, New Delhi, India. We confirm that the current study complies with relevant 
institutional, national, and international guidelines and legislation for experimental research and field studies 
on plants (either cultivated or wild), including the collection of plant materials.

Results
FDS in wheat cultivars
The FDS in twelve wheat cultivars ( PDW 314, WH 1124, DBW 90, HD 3086, PDW 291, HS 507, VL 907, VL 
829, HI 1563, HD 3043, PBW 644 and, Raj 4083) remained below 20% which are categorized as highly resistant 
cultivars. Six wheat cultivars (HPW 349, HD 2932, WH 1105, DBW 88, HS 375 and HD 3059) have FDS between 
21 and 40% and these are categorized as moderate resistant cultivars. Similarly, three cultivars (HPW 251, HD 
2967 and PBW 590) have FDS between 41 and 60%, and are categorized as low resistance cultivars. Finally, in 
three cultivars (HS 240, PBW 343 and A-9-30-1) the FDS was more than 80% during both years and they are 
categorized as susceptible cultivars (Supplementary Table 2).

Variations in wheat biophysical parameters under different levels of yellow rust severity
As rust severity levels increase, there is a consistent decrease in all biophysical parameters, such as LAI, NDVI, 
MSI, RWC, leaf photosynthesis rate, stomatal conductance, transpiration rate, and yield, with the exception of 
canopy temperature. At all growth stages, the average values of these parameters were highest for cultivars cat-
egorized as high resistant, followed by moderate resistant and low resistant, while the least values were observed 
in susceptible cultivars. The mean values of biophysical parameters of each group of cultivars is presented in 
Table 1. The graphical representations were also provided in Supplementary Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9. The 
individual parameters were discussed briefly in the following sections.

LAI: The LAI of the wheat cultivars decreases as the level of yellow rust severity increases and differs sig-
nificantly at all growth stages in both years. The category wise highest average values of LAI achieved in high, 
moderate, low and susceptible cultivars were 5.57, 4.64, 3.93 and 3.09, respectively, at 95 DAS in 2017–18, 
whereas in 2018–19 the maximum values of LAI for high, moderate, low and susceptible category cultivars 
were 5.01, 4.47, 3.76 and 2.95, respectively at 92 DAS in 2018–19. The trend of LAI variation in the order of 
High > Moderate > Low > Susceptible remained consistent in both years across all growth stages. Considering 
the average of reductions as compared to resistant category in both years, the LAI at 55–60 DAS decreased by 
15.52%, 23.99%, and 33.30% for moderate, low, and susceptible category cultivars, respectively. Similarly, at 70 
DAS, these reductions averaged 13.51%, 22.57%, and 34.73%, and by 80 DAS, they were 11.93%, 24.23%, and 
37.49%, respectively. Moving forward to 92–95 DAS, the average LAI reductions were 14.02%, 27.14%, and 
42.84%, while at 105–110 DAS, the reductions were around 30.35%, 45.12%, and 65.82% for moderate, low, and 
susceptible category cultivars, respectively (Table 1).

NDVI: The NDVI of the wheat cultivars also decreases as the level of yellow rust severity increases and differs 
significantly at all growth stages in both years. The maximum values of NDVI achieved in high, moderate, low 
and susceptible category cultivars were 0.93,0.85, 0.74 and 0.61, respectively, at 70 DAS in 2017–18, whereas 
in 2018–19 the maximum values of NDVI for high, moderate, low and susceptible category cultivars were 
0.85, 0.76, 0.69 and 0.65, respectively at 70 DAS. The trend of NDVI variation in the order of High > Moder-
ate > Low > Susceptible in both years was same at all growth stages. Considering the average of reductions as 
compared to resistant category in both years, the NDVI at 55–60 DAS decreased by 10.47%, 13.22%, and 19.63% 
for moderate, low, and susceptible category cultivars, respectively. Likewise, at 70 DAS, these reductions aver-
aged 9.84%, 24.66%, and 39.82%, and by 80 DAS, they amounted to 12.46%, 26.92%, and 38.13%. Progressing to 
92–95 DAS, the average NDVI reductions were 21.80%, 40.79%, and 46.86% for moderate, low, and susceptible 
category cultivars, respectively (Table 1).

MSI: The MSI of the wheat cultivars also decreases as the level of yellow rust severity increases and differs sig-
nificantly at all growth stages in both years. The MSI values were higher during  disease initiation and decreased 
gradually with the progress of the yellow rust and crop maturity. The maximum values of MSI achieved in high, 
moderate, low and susceptible category cultivars were 75.94, 69.94, 66.91, and 64.45%, respectively, at 55 DAS 
in 2017–18. In the second year (2018–19), the maximum values of MSI for high and moderate category cultivars 
were 79.72 and 72.76%, respectively at 60 DAS, while for low and susceptible category cultivars the maximum 
values of MSI were 67.50 and 61.56%, respectively at 70 DAS. The trend of MSI variation in both years was same 
at all growth stages viz. High > Moderate > Low > Susceptible. In both years, when comparing with the resistant 
category cultivars, the MSI also displayed significant reductions across various growth stages.

Considering the average of reductions in both years, at 55–60 DAS, the MSI declined by 8.63%, 14.24%, and 
21.18% for moderate, low, and susceptible category cultivars, respectively. Similarly, at 70 DAS, these reductions 
averaged 7.95%, 14.12%, and 23.84%, and by 80 DAS, the reductions were 15.37%, 32.14%, and 54.11%, respec-
tively. Progressing to 92–95 DAS, the average MSI reductions were 36.78%, 54.58%, and 74.47% for moderate, 
low, and susceptible category cultivars, respectively (Table 1).

Photosynthesis rate: The photosynthesis rate in the wheat cultivars was found to be decreasing with increas-
ing level of yellow rust severity and differs significantly at all growth stages in both years. During 2017–18, 
the maximum values of photosynthesis rate achieved in high resistant cultivars was 19.89 µmol  CO2  m−2  s−1 
at 95 DAS, while for moderate, low and susceptible category cultivars the maximum values of photosynthesis 
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rate were 16.72, 14.11 and 10.58 µmol  CO2  m−2  s−1, respectively at 80 DAS. In 2018–19, the maximum values 
of photosynthesis rate for high, moderate, low and susceptible category cultivars were 21.20, 19.46, 16.26 and 
13.43 µmol  CO2  m−2  s−1, respectively at 80 DAS. The trend of photosynthesis rate in both years was same at all 

Table 1.  Effect of different levels of wheat yellow rust severity on different categories of wheat cultivars. *Letters 
indicates statistically significant differences between groups, with shared letters implying similarity and different 
letters indicating dissimilarity in means.

2017-18 2018-19
Cul�var Categories based on FDS Cul�var Categories based on FDS

DAS High Moderate Low Suscep�ble DAS High Moderate Low Suscep�ble
LAI

55 2.90a 2.43b 2.18b 2.04b 60 2.35a 2.00ab 1.80ab 1.48b

70 4.20a 3.62b 3.43bc 2.85c 70 3.63a 3.16b 2.66bc 2.28c

80 5.00a 4.46b 3.76c 3.00d 80 4.20a 3.65b 3.21bc 2.73c

95 5.58a 4.61b 3.94c 3.09d 92 5.01a 4.47b 3.77c 2.95d

110 2.86a 1.95b 1.51bc 1.09c 105 3.05a 2.18b 1.74b 0.92c

MSI (%)
55 75.95a 69.94ab 66.91b 64.46b 60 79.72a 72.26b 66.50bc 58.01c

70 74.03a 68.68ab 62.19bc 53.52c 70 76.92a 70.25b 67.50bc 61.56c

80 64.72a 56.31b 40.30c 27.19d 80 66.41a 54.63b 48.79b 33.05c

95 58.96a 34.71b 24.60c 13.49d 92 64.13a 43.34b 31.49c 18.07d

NDVI
55 0.60a 0.53b 0.49bc 0.45c 60 0.76a 0.69ab 0.69ab 0.65b

70 0.92a 0.85b 0.74c 0.61d 70 0.86a 0.76b 0.60c 0.48d

80 0.78a 0.70b 0.62c 0.56d 80 0.83a 0.71b 0.55c 0.43d

95 0.56a 0.47b 0.38c 0.33c 92 0.54a 0.40b 0.28c 0.25c

RWC (%)
55 72.38a 70.30a 67.42ab 61.80b 60 76.01a 72.80ab 71.42ab 67.63b

70 84.05a 76.32b 69.68c 61.62d 70 89.96a 81.32b 75.11bc 67.87c

80 77.24a 69.64b 63.04c 55.43d 80 85.64a 77.14b 70.04c 59.74d

95 73.01a 66.23b 57.92c 47.95d 92 79.01a 70.13b 63.58c 54.60d

Photosynthesis rate (µmol CO2   m-2 s-1)
55 14.95a 11.86b 9.82bc 7.96c 60 16.12a 13.16b 10.72c 8.66c

70 18.61a 15.39b 12.97b 9.16c 70 17.99a 14.68b 11.00c 8.83c

80 19.15a 16.73b 14.12b 10.58c 80 21.20a 19.47b 16.27c 13.43d

95 19.89a 15.40b 12.13c 8.70d 92 18.85a 15.05b 12.70c 9.49d

Stomatal Conductance (mol H2O m-2 s-1)
55 0.30a 0.25b 0.22b 0.22b 60 0.36a 0.31ab 0.25bc 0.21c

70 0.38a 0.34b 0.28c 0.24c 70 0.47a 0.39b 0.36b 0.32b

80 0.46a 0.41b 0.35c 0.26d 80 0.61a 0.44b 0.35c 0.23d

95 0.45a 0.37b 0.30c 0.21d 92 0.54a 0.41b 0.31c 0.21d

Transpira�on rate  (mmol H2O m-2 s-1)
55 4.21a 3.44b 2.84bc 2.13c 60 4.02a 3.35b 2.87b 1.91c

70 4.61a 3.97b 3.29c 2.69c 70 4.61a 3.93b 3.24bc 2.48c

80 5.98a 5.09b 4.43bc 3.68c 80 5.41a 4.54b 3.68c 2.71d

95 7.05a 5.93b 5.17c 4.19d 92 6.53a 5.30b 3.99c 2.94d

Intercellular CO2 concentra�on (µmol CO2   mol-1)
55 274.92a 282.17a 280.00a 289.33a 60 286.67a 301.83a 325.33a 322.67a

70 286.49b 311.63ab 321.64a 339.31a 70 309.17b 340.50a 345.00ab 341.00ab

80 310.57c 330.78bc 353.77ab 374.02a 80 321.88b 317.50b 357.00ab 381.33a

95 361.67a 353.83a 362.33a 380.33a 92 319.25b 293.75b 325.00ab 359.67a

Canopy temperature  (°C)
55 17.12b 17.70b 18.10ab 19.30a 60 17.32c 17.80bc 18.70ab 19.23a

70 18.15c 18.58bc 19.27ab 20.41a 70 17.23c 18.25b 18.70ab 19.50a

80 19.86d 20.80c 22.73b 24.30a 80 17.45c 18.43b 19.30ab 20.47a

95 22.54c 23.27bc 24.23b 26.77a 92 18.68c 18.88bc 19.97b 21.77a
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growth stages viz., High > Moderate > Low > Susceptible. Considering the average of reductions as compared to 
resistant category in both years the photosynthesis rate at 55–60 DAS decreased by 19.49%, 33.90%, and 46.54% 
for moderate, low, and susceptible category cultivars, respectively. Likewise, at 70 DAS, these reductions aver-
aged 17.87%, 34.60%, and 50.84%, and by 80 DAS, they amounted to 10.42%, 24.78%, and 40.68%. Progressing 
to 92–95 DAS, the average photosynthesis rate reductions were 21.37%, 35.82%, and 52.97% for moderate, low, 
and susceptible category cultivars, respectively (Table 1).

Stomatal conductance: The stomatal conductance in the wheat cultivars was found to be decreasing with 
increasing level of yellow rust severity. At initial stage of observations (55–70 DAS), the adjacent categories were 
somewhat similar statistically, however after 80 DAS all the categories were significantly different at 5% level 
of significance in both years. During 2017–18, the maximum values of stomatal conductance achieved in high, 
moderate, low and susceptible category cultivars were 0.456, 0.408, 0.346 and 0.262 mol  H2O  m−2  s−1, respectively 
at 80 DAS. Similarly, in 2018–19, the maximum values of photosynthesis rate for high and moderate category 
cultivars were 0.609 and 0.435 mol  H2O  m−2  s−1, respectively at 80 DAS, while for low and susceptible category 
the maximum values were 0.363 and 0.316 mol  H2O  m−2  s−1, respectively at 70 DAS. The trend of stomatal con-
ductance in both years was same at all growth stages viz., High > Moderate > Low > Susceptible. The maximum 
difference in stomatal conductance of high resistance and susceptible cultivars was observed at 95 DAS and at 
80 DAS in 2017–18 and 2018–19, respectively (Table 1). Considering the average of reductions as compared 
to resistant category in both years the stomatal conductance at 55–60 DAS decreased by 14.80%, 28.04%, and 
34.60% for moderate, low, and susceptible category cultivars, respectively. Similarly, at 70 DAS, these reductions 
averaged 14.96%, 25.77%, and 34.87%, and by 80 DAS, they were 19.49%, 33.28%, and 52.07%. Moving forward 
to 105–110 DAS, reductions were around 21.67%, 38.95%, and 57.87% for moderate, low, and susceptible cat-
egory cultivars, respectively.

Transpiration rate: The transpiration rate in the wheat cultivars was found to be decreasing with increasing 
level of yellow rust severity and differs significantly at all growth stages in both years. During 2017–18, the maxi-
mum values of transpiration rates in high, moderate, low and susceptible category cultivars were 7.045, 5.932, 
5.167, and 4.193 mmol  H2O  m−2  s−1, respectively at 95 DAS. In 2018–19, the maximum values of transpiration 
rate for high, moderate, low and susceptible category cultivars were 6.527, 5.295, 3.990, and 2.943 mmol  H2O 
 m−2  s−1, respectively at 92 DAS. The trend of stomatal conductance in both years was same at all growth stages 
viz., High > Moderate > Low > Susceptible. Considering the average of reductions as compared to resistant cat-
egory in both years, the transpiration rate at 55–60 DAS declined by 17.47%, 30.59%, and 50.97% for moderate, 
low, and susceptible category cultivars, respectively. Similarly, at 70 DAS, these reductions averaged 14.37%, 
29.13%, and 43.88%, and by 80 DAS, the reductions were 15.49%, 28.87%, and 44.15%, respectively. Progressing 
to 92–95 DAS, the average reductions in transpiration rate were 17.34%, 32.76%, and 47.69% for moderate, low, 
and susceptible category cultivars, respectively. (Table 1).

Intercellular CO2 concentration: The intercellular  CO2 concentration was found to be increasing as the level of 
rust severity increases. However, in most of the cases the differences are not statistically significant and the trend 
is also irregular. During 2017–18, the maximum values of intercellular  CO2 concentration in high, moderate, 
low and susceptible category cultivars were 361, 353, 362 and 380 µmol  CO2  mol−1, respectively at 95 DAS. In 
2018–19, the maximum values of intercellular  CO2 concentration for high, low and susceptible category cultivars 
were 321, 357 and 381 µmol  CO2  mol−1, respectively at 80 DAS, while for moderate resistant cultivar group the 
intercellular  CO2 concentration had maximum value of 340 µmol  CO2  mol−1 at 70 DAS. Considering the aver-
age of reductions as compared to resistant category in both years the intercellular  CO2 concentrations at 55–60 
DAS increased by 3.96%, 7.67%, and 8.90% for moderate, low, and susceptible category cultivars, respectively. 
Likewise, at 70 DAS, these increments averaged 9.46%, 11.93%, and 14.37%, and by 80 DAS, they amounted to 
2.57%, 12.41%, and 19.45% for moderate, low, and susceptible category cultivars, respectively. (Table 1).

RWC: The RWC of the wheat cultivars decreases as the level of yellow rust severity increases and differs 
significantly at all growth stages in both years. In 2017–18, the maximum values of RWC observed in high, 
moderate and low category cultivars were 84.50, 76.32, and 69.68%, respectively, at 70DAS, while in the sus-
ceptible category cultivars the maximum RWC was 61.80%, which was observed on 55 DAS. In the second year 
(2018–19) the maximum values of RWC for high, moderate, low and susceptible category cultivars were 89.55, 
81.31, 75.11 and 67.86%, respectively at 70 DAS. The trend of RWC variation in both years was same at all growth 
stages viz. High > Moderate > Low > Susceptible. Considering the average of reductions as compared to resist-
ant category in both years the RWC at 55–60 DAS decreased by 3.56%, 6.45%, and 12.82% for moderate, low, 
and susceptible category cultivars, respectively. Likewise, at 70 DAS, these reductions averaged 9.40%, 16.80%, 
and 25.62%, and by 80 DAS, they amounted to 9.88%, 18.3%, and 29.23%, respectively. Progressing to 92–95 
DAS, the average RWC reductions were 10.27%, 20.1%, and 32.61% for moderate, low, and susceptible category 
cultivars, respectively (Table 1).

Variations in average canopy temperature of wheat under different levels of yellow rust 
severity
The average canopy temperature increases with yellow rust severity levels and differs significantly among cul-
tivars of all categories in both years. In both years, the trend of average canopy temperature in high, moderate, 
low and susceptible category cultivars was same at all growth stages viz., High < Moderate < Low < Susceptible. 
The maximum difference in average canopy temperature of high resistance and susceptible cultivars was 4.4 °C 
at 80 DAS and 3.1 °C at 92 DAS in 2017–18 and 2018–19, respectively. Considering the average of reductions 
as compared to resistant category in both years the average canopy temperature at 55–60 DAS, was higher by 
3.1%, 6.87%, and 11.91% for moderate, low, and susceptible category cultivars, respectively. Similarly, at 70 DAS, 
the canopy temperature were higher by 4.14%, 7.33%, and 12.8%, while at 80 DAS they registered an increase 



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18814  | https://doi.org/10.1038/s41598-023-45682-3

www.nature.com/scientificreports/

of 5.19%, 12.54%, and 19.83%, respectively. Progressing to 92–95 DAS, the average canopy temperatures were 
higher by 2.17%, 7.21%, and 17.65% for moderate, low, and susceptible category cultivars, respectively (Table 1).

Variations in wheat yield under different levels of yellow rust severity
The average group wise yield data indicated that the wheat yellow rust caused significant reduction in crop 
yield. In 2017–18, the average yields of high, moderate and low category cultivars were 5.25, 4.36, 3.75 and 
2.04 t/ha, respectively. The yield of moderate resistant and low resistant category cultivars was statistically at 
par. However, significant differences are observed in rest of the cases. The yield reduction in the moderate, low 
and susceptible category cultivars were 16.96, 28.57, and 61.14%, respectively as compared to the high resistant 
cultivars. In 2018–19, the average yields of high, moderate and low category cultivars were 5.54, 4.66, 3.63 and 
2.27 t/ha, respectively. The yield of all four-category cultivars were significantly different. The yield reduction in 
the moderate, low and susceptible category cultivars were 15.94, 34.42, and 59.09%, respectively as compared 
to the high resistant cultivars (Fig. 2).

Performances of ML models to predict yield under different levels of yellow rust severity
Yield prediction using stage 1 data (55–60 DAS)
Using the data collected at 55 DAS in 2017–18 and at 60 DAS in 2018–19, some of the ML models were able to 
predict the wheat yield with acceptable accuracies (Table 2 and Fig. 3a,b). The calibration output indicated that 

Figure 2.  Yield variations in wheat cultivars under different levels of wheat yellow rust. Letters indicates 
statistically significant differences between groups, with shared letters implying similarity and different letters 
indicating dissimilarity in means.

Table 2.  Performance of different ML models for prediction of crop yield after calibration and validation 
using different biophysical parameters along with RGB and thermal image derived indices at 55–60 DAS.

Calibration Validation

Models R2 MBE RMSE (q/ha) n-RMSE (%) d-index R2 MBE RMSE (q/ha) n-RMSE (%) d-index

ELNET 0.43 − 0.61 7.91 16.91 0.66 0.44 1.52 10.59 24.41 0.67

RF 0.85 − 0.36 4.85 10.37 0.91 0.59 − 0.13 9.21 21.25 0.77

GPR 0.83 − 0.10 4.91 10.49 0.91 0.40 1.59 10.49 24.20 0.71

MARS 0.21 1.51 9.51 20.32 0.69 0.39 − 2.26 11.96 27.58 0.79

PLS 0.12 0.00 9.40 20.09 0.45 0.64 0.11 8.28 19.09 0.84

SVM 0.63 − 2.71 6.75 14.43 0.84 0.54 − 4.66 10.36 23.90 0.82

SpikeSlab 0.44 − 0.61 7.86 16.80 0.67 0.62 − 0.11 8.56 19.73 0.82

GLM 0.97 0.00 1.77 3.78 0.99 0.26 2.15 16.30 37.58 0.67

SLR 0.41 − 0.61 7.85 16.78 0.78 0.46 0.41 10.40 23.97 0.82

KNN 0.49 − 0.10 7.22 15.44 0.78 0.71 3.11 9.97 22.98 0.70

XGB 0.96 0.63 2.76 5.89 0.98 0.55 − 5.11 10.33 23.82 0.78

Cubist 0.92 0.87 3.54 7.57 0.96 0.65 − 0.07 8.14 18.76 0.84
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among the different ML models, the GLM model was found to be more accurate in prediction of the crop yield 
with the highest coefficient of determination  (R2) of 0.97, the maximum model agreement index (d-index) of 0.99 
and the lowest RMSE of 1.77 q/ha. Based on the n-RMSE value (3.78%), the prediction accuracy of this model 
comes under the category of excellent prediction (0–10%). The PLS model was found to be the poorest among 
all in terms of crop yield prediction with the lowest coefficient of determination  (R2) of 0.12, the least model 
agreement index (d-index) of 0.45, and a maximum RMSE of 9.40 q/ha. Based on the n-RMSE value (20.09%), 
the prediction accuracy of this model comes under the category of fair prediction (20–30%). Considering the 
prediction accuracy indicator (n-RMSE), the models GLM, XGB, and Cubist come under excellent prediction 
class (0–10%), ELNET, RF, GPR, SVM, SpikeSlab, SLR and KNN models come under good prediction class 
(10–20%) and MARS and PLS models come under fair prediction class (20–30%). 

The validation output of different ML models in terms of the prediction of crop yields is presented in Table 2. 
Based on the model prediction error indicator (n-RMSE), the Cubist (18.76%), PLS (19.09%), and SpikeSlab 

Figure 3.  Performances of ML models to predict wheat yield under different yellow rust severity levels at 55–60 
DAS after (a) calibration and (b) validation.
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(19.73%) models are categorized under the excellent prediction class (0–10%). The RMSE of these models 
ranged from 8.14 to 8.56 q/ha and the model agreement index (d-index) ranged from 0.82 to 0.84. Further, the 
GLM model was found to be the poorest among all with the highest percent of model prediction error (n-RMSE) 
of 37.58% and RMSE of 16.30 q/ha comes under the poor prediction category (n-RMSE > 30%). The rest of the 
models were categorized as fair prediction classes (n-RMSE between 20 and 30%).

Yield prediction using stage 2 data (70 DAS)
Using the data collected at 70 DAS in 2017–18 and 2018–19, the ML models were able to predict the wheat 
yield with higher accuracies as compared to the yield predictions using stage 1 (55–60 DAS) data. The model 
calibration output using stage 2 data was presented in Table 3 and depicted in Fig. 4a,b. The calibration output 
indicated that, among the different ML models, the GLM model was found to be more accurate in prediction of 
the crop yield with the highest coefficient of determination  (R2) of 1.00, the maximum model agreement index 
(d-index) of 1.00 and the lowest RMSE of 0.59 q/ha. Based on the n-RMSE value (1.27%), the prediction accuracy 
of this model comes under the category of excellent prediction (0–10%). The MARS model was found to be the 
poorest among all in terms of crop yield prediction with the lowest coefficient of determination  (R2) of 0.37, and 
a maximum RMSE of 7.95 q/ha. Considering the prediction accuracy indicator (n-RMSE), the models GLM, 
XGB, RF, and Cubist come under the excellent prediction class (0–10%) and the rest of the models come under 
the good prediction class (10–20%). 

The validation output of different ML models in terms of the prediction of crop yields using the stage 2 data 
set is presented in Table 3. Based on the model prediction error indicator (n-RMSE), the RF, GPR, SpikeSlab, SLR, 
KNN and XGB models are categorized under the excellent prediction class (0–10%). The RMSE of these models 
ranged from 7.52 to 8.12 q/ha and the model agreement index (d-index) ranged from 0.86 to 0.91. Further, the 
models SVM and GLM were found to be the poorest among all with the highest percent of model prediction 
error (n-RMSE) of 42.33% and 36.79% and RMSE of 18.36 q/ha and 15.96 q/ha, respectively. The rest of the 
models were categorized as fair prediction class (n-RMSE between 20 and 30%).

Yield prediction using stage 3 data (80 DAS)
Using the data collected at 80 DAS in 2017–18 and 2018–19, the prediction accuracies of ML models were further 
improved as compared to the yield predictions made using data of 55–60 and 70 DAS. The model calibration 
output using stage 3 data was presented in Table 4 and depicted in Fig. 5a,b. The calibration output using stage 3 
crop data revealed that, among the different ML models, the GLM model consistently proved to be more accurate 
in prediction of the crop yield with the highest coefficient of determination  (R2) of 0.99, the maximum model 
agreement index (d-index) of 1.00 and the lowest RMSE of 1.22 q/ha. Based on the n-RMSE value (2.62%), the 
prediction accuracy of this model comes under the category of excellent prediction (0–10%). Considering the pre-
diction accuracy indicator (n-RMSE), the models GLM, ELNET, RF, SVM,XGB, and Cubist can be categorized as 
the excellent prediction class (0–10%) and the rest of the models come under the good prediction class (10–20%). 

The validation output of different ML models in terms of the prediction of crop yields using the stage 3 data 
set is presented in Table 4. Based on the model prediction error indicator (n-RMSE), the RF, ELNT, GPR, GPR, 
MARS, SpikeSlab, SLR, KNN, XGB, and Cubist models are categorized under the good prediction class (10–20%). 
The RMSE of these models ranged from 5.31 to 8.51 q/ha and the model agreement index (d-index) ranged from 
0.83 to 0.95. Further, the model GLM was found to be the poorest among all with the highest percent of model 
prediction error (n-RMSE) of 35.49% and RMSE of 15.39 q/ha. The models PLS and SVM were categorized as 
fair prediction class (n-RMSE between 20 and 30%). The detailed ranks of all the model at different stages using 
the validation sRPI values are presented in Fig. 6.

Table 3.  Performance of different ML models in prediction of wheat yield after calibration and validation 
using different biophysical parameters along with RGB and thermal image derived indices at 70 DAS.

Models

Calibration Validation

R2 MBE RMSE (q/ha) n-RMSE (%) d-index R2 MBE RMSE (q/ha) n-RMSE (%) d-index

ELNET 0.47 − 0.61 7.68 16.42 0.69 0.71 1.47 10.35 23.87 0.62

RF 0.93 0.01 3.13 6.69 0.97 0.69 1.11 7.59 17.51 0.88

GPR 0.75 − 0.26 5.46 11.66 0.89 0.74 1.26 8.03 18.50 0.84

MARS 0.37 0.00 7.95 16.98 0.74 0.39 − 1.66 10.61 24.46 0.76

PLS 0.58 − 0.58 6.56 14.01 0.86 0.55 0.76 9.37 21.59 0.86

SVM 0.72 − 3.02 6.23 13.31 0.87 0.15 − 2.34 18.36 42.33 0.58

SpikeSlab 0.45 − 0.61 7.45 15.92 0.78 0.71 − 1.46 7.52 17.33 0.88

GLM 1.00 0.00 0.59 1.27 1.00 0.29 1.63 15.96 36.79 0.70

SLR 0.48 − 0.61 7.29 15.57 0.82 0.73 − 1.04 7.67 17.68 0.86

KNN 0.58 0.73 6.61 14.14 0.83 0.75 0.62 6.72 15.50 0.91

XGB 0.97 0.01 2.16 4.61 0.99 0.63 0.38 8.12 18.72 0.88

Cubist 0.95 0.36 3.43 7.33 0.96 0.71 0.92 7.51 17.31 0.88
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Discussion
This research set out to investigate the effects of different intensities of wheat yellow rust on crop biophysical 
parameters, and to estimate yield through the integration of thermal and visual imaging with machine learning 
algorithms. Wheat yellow rust has a significant negative influences on crop growth and physiology, and these 
negative impacts are in direct proportion to the degree of rust severity. As the disease severity increased, the 
biophysical parameters such as photosynthesis rate, transpiration rate, stomatal conductance, LAI, MSI and RWC 
were significantly reduced. The discussion has been structured into subsections to improve the understanding 
of the findings.

Photosynthesis, transpiration, stomatal conductance and intercellular  CO2
Stressful environmental conditions have long been known to cause significant harm to the photosynthetic pig-
ments of  plants48. In wheat, the yellow rust fungus causes damage to the plant by growing in the leaves and 

Figure 4.  Performances of ML models to predict wheat yield under different yellow rust severity levels at 70 
DAS after (a) calibration and (b) validation.
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producing spores that erupt through the leaf  surface49, which reduces the effective green leaf area of the crop 
resulting in reduced photosynthesis rate in the plants. The reduced photosynthesis due to yellow rust is also attrib-
uted to the reduced chlorophyll content in the  crop50,51. Abdulbagiyeva et al.52 also studied the effect of yellow 
rust in six bread wheat cultivars of Peninsula, they reported that the yellow rust resulted significant reduction in 
the photosynthesis rate, mainly due to reduction in the net assimilating area of the plant. The reduced stomatal 
conductance in wheat might be attributed to the damaged stomata due to the eruption of pathogen through the 
 stomata49. According to findings of Smith et al.53, the transpiration rate of wheat affected by yellow rust of wheat 
decreased by 10%. Their study also noted an initial surge in the transpiration rate due to the disruption of the 
leaf epidermis by the rust pathogen, which hindered stomatal closure, however, as the disease progresses the 
effect is reversed owing to the decrease in effectively transpiring leaf area.

The intercellular  CO2 concentration went up in the susceptible cultivars due to reduced stomatal conduct-
ance, which is slightly compensated by the reduced photosynthesis with disease progress, resulting higher or 
equivalent concentrations in some cases where no significant differences in adjacent categories cultivars were 
observed. However, numerically the intercellular  CO2 concentration of the susceptible cultivars always remained 
significantly higher than the resistant cultivars. Mandal et al.54, in their research revealed that psyllium’s downy 
mildew decreased plant photosynthesis and stomatal conductance, while increasing the intercellular  CO2 con-
centration. Additionally, Zhao et al.55 also observed a similar increase in intercellular  CO2 concentration in 
sugarcane leaves affected by orange rust.

Canopy temperature
As per our findings, yellow rust disease severity is linked with an increased canopy temperature and a negative 
correlation with the transpiration rate. Smith et al.53 noted a temperature rise of 0.2–1.0 °C in foliage due to 
yellow rust lesions ten days after infection. This temperature increase was caused by rupturing of the epidermis, 
which prevented stomatal closure. Likewise, Wang et al.56 observed a similar trend in cucumber plants affected 
by wilt pathogen, where reduced stomatal conductance and transpiration led to an increase in temperature.

Our findings of temperature increase with reduced transpiration and stomatal conductance are supported 
by other researchers, such as Lindenthal et al.57 and Oerke et al.58. In addition, several studies have reported 
similar trends of higher canopy temperature after pathogen infection, which were used to identify diseases in 
various crops. For example, verticillium in  Olive59, powdery mildew of  tomato60, head blight of  wheat61, downy 
mildew of  grapes62 etc.

LAI and NDVI
The LAI followed trend of decreasing values with increasing disease severity, which is due to the poor crop growth 
and canopy development due to yellow rust  infection51. The LAI is key parameter linked with photosynthesis and 
transpiration rate of the  canopy63 and as we have already mentioned the reduction of these basic physiological 
parameters of the crop due to the disease incidence, it was expected to observe LAI reduction with increasing 
disease severity. The reduced photosynthesis and green leaf area are responsible for poor and stunted growth of 
the crop. This reduces the leaf area per unit ground area which is captured in the LAI measurements, that showed 
a continuous decline with increasing levels of disease severity. The yellow rust reduces the green leaf area of the 
crop, induces chlorosis and necrosis. These changes in plants induces foliar shrinkage and senescence which 
results in poor LAI of the crop under diseased  conditions64. The NDVI also showed a decreasing value as the 
disease severity increases. The NDVI measures the reflectance of the crop in NIR and Red wavelengths and the 
yellowing of crops tend to reduce the  NDVI65. Su et al.3 discovered that the yellow rust of wheat increases the 
Red and decreases the NIR reflectance, due to chlorophyll reduction, which makes NDVI as a useful index for 
monitoring yellow rust in wheat. Several researchers have reported reduced NDVI due to yellow rust and used 
it for monitoring rust field using aerial images of the  field20,66.

Table 4.  Performance of different ML models for prediction of crop yield after calibration and validation 
using different biophysical parameters along with RGB and thermal image derived indices at 80 DAS.

Models

Calibration Validation

R2 MBE RMSE (q/ha) n-RMSE (%) d-index R2 MBE RMSE (q/ha) n-RMSE (%) d– index

ELNET 0.81 − 0.18 4.41 9.43 0.94 0.72 − 0.18 6.98 16.09 0.92

RF 0.94 − 0.10 3.84 8.21 0.95 0.87 − 1.82 5.31 12.23 0.95

GPR 0.85 0.01 5.60 11.97 0.86 0.79 − 0.03 7.27 16.77 0.87

MARS 0.37 − 0.30 7.96 17.01 0.75 0.62 − 2.26 8.51 19.62 0.86

PLS 0.70 0.00 5.47 11.70 0.91 0.52 1.23 9.27 21.38 0.80

SVM 0.84 − 1.45 4.32 9.23 0.94 0.58 − 3.44 9.80 22.60 0.86

SpikeSlab 0.75 − 0.30 5.10 10.90 0.91 0.81 0.24 6.56 15.12 0.91

GLM 0.99 0.35 1.22 2.62 1.00 0.35 − 6.68 15.39 35.49 0.73

SLR 0.66 − 0.30 5.90 12.60 0.90 0.72 0.26 7.19 16.59 0.89

KNN 0.72 − 0.36 5.93 12.66 0.85 0.79 − 0.41 6.34 14.62 0.92

XGB 0.97 0.02 1.87 4.00 0.99 0.66 1.70 8.38 19.31 0.83

Cubist 0.96 − 0.37 2.36 5.03 0.98 0.76 − 0.01 6.80 15.68 0.91
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MSI and RWC 
The MSI is linked with cell membrane damage due to stress that results in change in membrane permeability and 
leakage of  electrolytes67. Recently, researchers have reported increased electrolyte leakage due to yellow rust in 
wheat cultivars, which might have resulted in low MSI of the crops with increasing disease  severity51. The wheat 
yellow rust pathogen directly damages the cell while erupting from the leaf to the surface, which might have 
attributed to low MSI of wheat cultivars. Sabir et al.68 also reported reduced MSI of wheat cultivars due to yellow 
rust. The RWC showed decreasing trends as the disease severity increases. Chen et al.51 in their study reported 
a lower value of RWC in yellow rust susceptible cultivar as compared to the resistant wheat cultivars, however 
the differences were not statistically significant in their study.

Figure 5.  Performances of ML models to predict wheat yield under different yellow rust severity levels at 80 
DAS after (a) calibration and (b) validation.
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Crop yield
The crop yield was significantly reduced with increasing disease severity. The yield reduction is attributed to 
several factors. The reduced green leaf area has reduced the total photosynthesis, light interception as well as its 
use efficiency, which is one of the primary reasons behind the reduced crop  yield49. The yellow rust on wheat 
reduces the sugar supply to the developing seed resulting in smaller seeds. The flag leaf and the upper second 
leaf are considered most important for producing sugars for the developing grain and as soon as these are 
affected from the rust, the yield of wheat crop falls  substantially69. The yield loss due to the yellow rust infection 
is attributed to the reduced kernels per spike and low-test  weight70, which is due to the serious destruction of 
the photosynthetic function of the leaves affecting the assimilation of the  products71. Smith et al.53 reported a 
yield reduction of 46–51% due to yellow rust of wheat. Park et al.72 reported a yield loss of 15–25% in plants 
with some level of resistance to yellow rust, whereas in susceptible cultivars the yield loss reported was 45–50%. 
Jindal et al.73 assessed the losses due to yellow rust in some common wheat varieties of India, out of  which few 
are also part of our study, and reported a loss ranging from 4.2–68.3%. All the above findings on wheat yield loss 
due to yellow rust is in line with our findings.

Yield prediction using ML models
The ML models used in our study were able to make good predictions of yield under yellow rust affected condi-
tions using the image indices and biophysical parameters as training dataset.

As evident from our results, following the rust infections, cell membranes become more damaged, resulting 
in water loss, causing dehydration, and wilting in plants. This situation also leads to the closure of stomata, alter-
ing heat loss from the leaf surface and affecting leaf surface temperature. When crop diseases begin, the shifts 
in heat radiation due to increased plant water loss, stomata closure, and heightened respiration can be observed 
in thermal image derived canopy temperature. These alterations along with changes in plant pigmentation due 
to yellow  rust49,74,75 were effectively captured by RGB and thermal image indices. The variations in the values of 
these indices were utilized to quantify crop yield through machine learning models. In comparison to similar 
studies, our results show better values for  R2, d-index, RMSE, n-RMSE and MBE. This may be due to the inclusion 
of biophysical parameters of the crop that are strongly correlated with plant health. We also observed that, while 
prediction accuracy improves as we move closer to harvesting, the initial predictions made during first stage are 
more crucial for decision making, despite having acceptable but lower accuracies, compared to the predictions 
made closer to harvesting. The validation output of different models indicated that Cubist, PLS, and SpikeSlab 
models were found to be the effective models to predict the wheat yield at an early stage of the crop. The KNN, 
Cubist, SLR, RF, SpikeSlab, XGB, GPR and PLS models proved to be more useful in predicting crop yield at mid-
dle stage of the crop. Further, this research also demonstrated that at late stage of the crop, the RF, SpikeSlab, 
KNN, Cubist, ELNET, GPR, SLR, XGB and MARS models were found good to predict the crop yield. As there are 
no comparable studies to ours, we have instead compared our research to similar work on yield prediction that 
used machine learning. Ruan et al.26 recently employed several ML algorithms, such as ELNET, SVM, KNN, RF, 
and XGB, in combination with proximal sensing and weather data to predict wheat yield. Their findings indicate 

Figure 6.  Stage wise ranking of ML models using the validation sRPI values for predicting wheat yield under 
different yellow rust severity level.
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that RF and XGB were the top two models for predicting wheat yield, with  R2 of over 0.70 and RMSE ranging 
from 0.75–0.85 t/ha. Li et al.76 used remote sensing-based vegetation indices to predict wheat yield in China 
with reasonable accuracy using RF and SVM. Han et al.77 tested KNN, SVM, GPR, ANN and DT (decision tree) 
methods for predicting wheat yield in China. Their results suggested that the models were able to predict yield 
with good accuracy with  R2 > 0.75 and n-RMSE value less than 10%. SVM, GPR and RF were top three models 
for yield prediction in their study. Fei et al.78 used UAV based multi-sensor data to predict wheat yield using 
ML algorithms. They tested Cubist, SVM, DNN, ridge regression and RF methods with RGB, multispectral and 
thermal camera data. Results of their study revealed that the model performance improves using muti-sensor 
data as compared to the single sensor. Using single sensor data, they achieved  R2 values of 0.527–0.670, while in 
the ensemble approach the  R2 up to 0.692 were observed. This falls in line with results of our study, though we 
do not test the single sensor approach, however from the literature we observed that using the thermal and vis-
ible images with actual biophysical parameters of the crop improved the prediction accuracy considerably. Kang 
et al.79 tested the Lasso, SVM, RF XGB and CNN models to predict maize yield in United States. They found that 
the XGB outperforms all the models in terms of accuracy and stability. Going forward, the prediction of yield 
could be expanded to include satellite-level data, and the inclusion of additional agroclimatic and soil variables 
could enhance the accuracy of the results by utilizing machine learning and deep learning models.

Conclusions
This study investigated the influence of yellow rust on the biophysical parameters of wheat cultivars with varying 
degrees of rust resistance. Using thermal and RGB image indices in combination with biophysical parameters, 
ML models were constructed to estimate yield under diseased conditions. The biophysical parameters, including 
photosynthesis rate, transpiration rate, stomatal conductance, LAI, MSI and RWC were dropped significantly due 
to rust, and the reductions were directly correlated with levels of rust severity. The yield reduction in moderate 
resistant, low resistant and susceptible cultivars as compared to resistant cultivars, varied from 15.9 to 16.9%, 
28.6 to 34.4% and 59.0 to 61.1%, respectively. The ML models were able to predict the yield of rust-affected 
wheat crop before harvest with reasonable accuracy. The Cubist, PLS, and SpikeSlab models were found to be 
effective models for predicting the wheat yield at an early stage of crop growth (55–60 DAS). The KNN, Cubist, 
SLR, RF, SpikeSlab, XGB, GPR and PLS models were proved to be more useful in predicting crop yield at middle 
stage of crop growth (70 DAS) and at late stage of crop growth (80 DAS) RF, SpikeSlab, KNN, Cubist, ELNET, 
GPR, SLR, XGB and MARS models were found good to predict the crop yield. This study quantifies the changes 
in biophysical parameters in wheat cultivars with different rust resistant levels and suggests the potential of ML 
models developed using biophysical parameters and image-based indices to assess the crop yield, which can be 
used for sustainable management of resources.

Data availability
Data supporting the findings of this study are available from the corresponding author on reasonable request.
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