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Adaptive multivariate dispersion 
control chart with application 
to bimetal thermostat data
Muhammad Noor‑ul‑Amin 1, Muhammad Atif Sarwar 1, Walid Emam 2, Yusra Tashkandy 2, 
Uzma Yasmeen 3 & Muhammad Nabi 4*

Adaptive EWMA (AEWMA) control charts have gained remarkable recognition by monitoring 
productions over a wide range of shifts. The adaptation of computational statistic as per system shift 
is the main aspect behind the proficiency of these charts. In this paper, a function-based AEWMA 
multivariate control chart is suggested to monitor the stability of the variance–covariance matrix for 
normally distributed process control. Our approach involves utilizing an unbiased estimator applying 
the EWMA statistic to estimate the process shift in real-time and adapt the smoothing or weighting 
constant using a suggested continuous function. Preferably, the Monte Carlo simulation method 
is utilized to determine the characteristics of the suggested AEWMA chart in terms of proficient 
detection of process shifts. The underlying computed results are compared with existing EWMA 
and existing AEWMA charts and proved to outperform in providing quick detection for different 
sizes of shifts. To illustrate its real-life application, the authors employed the concept in the bimetal 
thermostat industry dataset. The proposed research contributes to statistical process control and 
provides a practical tool for the solution while monitoring covariance matrix changes.

Abbreviations
SPC	� Statistical process control
MC	� Monte Carlo
CUSUM	� Cumulative SUM
DCUSUM	� Dual cumulative SUM
EWMA	� Exponential weighted moving average
MEWMA	� Multivariate exponential weighted moving average
AEWMA	� Adaptive EWMA
RL	� Run length
ARL	� Average run length
SDRL	� Standard deviation of RL
ARL0	� In control/initial ARL some pre decided fixed level

Statistical process control (SPC) has been extensively studied and applied for its simplicity, effectiveness, and 
capability to detect process deviations1. An essential aspect of SPC is identifying and monitoring special cause 
variations in production processes, which contributes to enhancing process efficiency and product quality1. UM), 
utilize previous observations to enhance sensitivity2,3. The variable control charts can be primarily classified 
into two main categories: memory-less and memory-based. Memory-less control charts rely solely on recent 
sample information to monitor process parameters, without considering historical statistics. On the other hand, 
memory-based control charts utilize previous samples to improve its working1. Control charting was introduced 
by Walter A. Shewhart in 1924 which has since become an indispensable instrument in enhancing quality. These 
charts help identify the appropriate timing for corrective action when a process shift occurs4. The commonly 
used charts include X-bar, R, and S charts, which are effective in monitoring and improving processes. Alter-
natively, memory-based control charts like the EWMA and CUSUM incorporate past observations to enhance 
sensitivity2,3."

The efficiency of EWMA control charts in detecting small shifts in process parameters has attracted con-
siderable attention in the literature5–7. However, traditional control charts assume prior knowledge of the shift 
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magnitude, which is often not the case. To address this limitation, researchers have focused on developing adap-
tive charting designs that provide improved performance against shifts of various sizes. One such approach is the 
adaptive EWMA (AEWMA) chart, which combines the strengths of both Shewhart-type and EWMA-type charts 
seamlessly8. By adjusting the weight of previous observations under the error magnitude, the AEWMA chart can 
detect shifts of different sizes while mitigating the inertia issue. The literature on adaptive control charts contin-
ues to advance. For instance, Zhao et al.7 utilized adaptive algorithms to analyze dynamic monitoring systems 
in energy storage systems, specifically voltage difference faults. Arshad et al.9 suggested an AEWMA chart that 
relies on a continuous function to oversee process variance. In industrial settings, there are often scenarios that 
require the simultaneous monitoring of multiple related quality characteristics. Multivariate statistical process 
control (SPC) is employed to address these situations. Quality control charts play a crucial role in multivariate 
SPC10,11. Various control charts have been designed to detect variations in the covariance matrix of multivariate 
normally distributed processes, considering different statistical tests and assumptions about subgroup sizes and 
data dimensions. However, in practical applications, where subgroup sizes are small and individual observa-
tions are considered, additional control charts need to be developed to account for the undefined covariance 
matrix. Monitoring the variance–covariance matrix in statistical process control is not merely an incremental 
improvement; it represents a fundamental shift in our ability to ensure process efficiency and product quality. 
While traditional control charts address univariate variations, the multivariate dispersion control chart enables 
a comprehensive analysis of multivariate data. This added dimension is pivotal in modern manufacturing and 
service industries, where processes are inherently complex, interconnected, and influenced by multiple factors. 
Huang et al.12 proposed a control chart based on the trace of the covariance matrix to monitor variations in 
multivariate normally distributed processes using individual observations. This is the need to crucially design 
such a control chart that will monitor process variations while considering the multivariate design structure of 
variables. In recent years, various control charts are suggested monitoring process dispersion shifts both in uni-
variate and multivariate scenarios:13 proposed a mixed control chart using both EWMA and CUSUM statistic to 
construct an EWMA dispersion control chart, Abujiya et al.14 has introduced an improvised form of dispersion 
control chart followed by EWMA statistic only and found effective in identifying  small to moderate shifts,15,16 
has proposed an adaptive version of EWMA chart by using CUSUM accumulate error estimation scheme to 
estimate the process shift to efficiently monitor process dispersion Zaman et al.15 recommended an adaptive 
control chart using Huber and Tukey function to compute smoothing constant value to determine the proposed 
EWMA dispersion control chart statistic and found it efficient. Similar efforts are made by the researchers, a few 
are mentioned as17–23, they suggested various modifications while monitoring multivariate cases and designed 
dispersion control charts.

In response to the constraints observed in current dispersion multivariate control charts, Haq and Khoo24 
introduced a novel AEWMA control chart known as AEWMA-II. This chart is designed for the surveillance of 
the covariance matrix in processes that follow a normal distribution. The AEWMA-II chart utilizes an EWMA 
statistic with an unbiased estimator to estimate the covariance matrix shift and determines the smoothing con-
stant using a proposed continuous function. In this study, a more sophisticated AEWMA multivariate dispersion 
control chart is suggested to give sensitive detection over a wide range of shifts, named as proposed AEWMA-I. 
The motivation behind the efficacy of the proposal is the adaptation of smoothing constant value as per shift 
in the covariance matrix. The suggested control chart plotting statistic uses the smoothing constant as per the 
estimated shift size and quickly rings the alarm. The proposed AEWMA-I chart overcame the limitations of a 
high false alarm rate which was due to the higher SDRL than the ARL. The authors addressed this issue by sug-
gesting the new AEWMA-I multivariate dispersion control chart. The suggested design improved the high SDRL 
issue as well as improved the ARL.

The efficacy is analyzed in terms of smaller run length (RL) profile values like average RL (ARL), standard 
deviation RL (SDRL), and percentiles at 5th, 10th, 25th, 50th,75th,90th, and 95th in extensive tables through 
Monte Carlo Simulations. The rest of the paper is structured as: in section "The existing charts" existing control 
charts are presented, and section "Proposed AEWMA-I control chart" was comprised of the proposed AEWMA 
I control chart design. Section "Run-length computation" explains the RL computational procedure and per-
formance evaluation is provided in section "Performance comparisons". Real life data set is used in section 
"Illustrative example" to elaborate on the implementation of the suggested design. At the end of the manuscript, 
the discussion is wrapped up conclusively in section "Conclusions and further recommendations" with further 
recommendations along with theoretical contributions and practical implications.

The existing charts
Suppose we have p variable y =

(
y1, y2, y3, . . . , yp

)
′ with mean vector µ and the covariance matrix � , such 

that,y ∼ Np(µ,�). Suppose we have the target covariance matrix �0 that can vary because of the shifts in the 
process. This study focused on adapting the value of the smoothing constant with a continuous function. Let 
the independent, identically distributed (i.i.d.) sequence 

{
yt
}
∀t > 0 , is taken from Np(µ0,�0) . Both µ0 and �0 

are the mean vector and covariance matrix, respectively. Assuming that the process remains in-control state for 
some unknown time t0, that is yt ∼ Np(µ0,�0)∀t ≤ t0 . After that, the process becomes out-of-control because 
of an unknown shift 

(
δ2
)
 occurs in �0 , that is yt ∼ Np(µ0,�1)∀t > t0 , where �1 = δ2�0 and δ > 0 . δ=1, ∀t ≤ t0 

and ∀t > t0 , δ  = 1.
Khoo and Quah25 proposed a Shewhart control chart to observe the covariance matrix �0 based on the suc-

cessive differences between multivariate observations. That is

Mt =
1

2

(
yt − yt−1

)
′�0

−1
(
yt − yt−1

)
∀t > 1
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It can be shown that Mt ∼ χp
2, ∀1 < t ≤ t0 , a positively skewed distribution. Experiencing the same thing a 

control chart with plotting statistic Mt gives biased ARL results on account of its non-normal approach regardless 
of that yt has the normal distribution. In the field of SPC, it is a widely adopted practice that numerous researchers 
have followed, which involves transforming an asymmetrically distributed statistic into a random variable that 
follows a normal distribution. In what follows, we first transform Mt into a standard normal random variable 
and then construct an proposed AEWMA-I control chart using this transformed standard normal variable. In 
the proposed AEWMA-I control chart, a transformation proposed by Quesenberry26 is used to normalize the 
Mt , as follows:

where G(.) is the cumulative distribution function (CDF) of the χ2 distribution with p degree of freedom and 
the �−1(.) is the inverse CDF of the normal distribution. As Zt ∼ N(0, 1) gives unbiased ARL values for ∀t ≤ t0 . 
Let E(Zt)  = 0 when ∀t > t0 . Thus, it becomes feasible to prepare the conventional mean control chart using {Zt}  
to monitor the erratic fluctuations in the covariance matrix of a multivariate normally distributed process. Let 
identically dependent distributed {Zt} , ∀t > 0 be a sequence of variables based on 

{
yt
}

 . Note that the control 
charts considered here trigger out-of-control signal only when t > 1 and Z1 = �−1

(
Gχ2

p

(
y1′�0

−1y1
2

))
.

The existing EWMA chart
Roberts3 proposed EWMA control chart for observing shifts in the mean of a normally distributed process. Haq 
and Khoo24 proposed multivariate EWMA control chart. This chart is helpful to monitor the covariance matrix. 
Let an EWMA sequence {At} based on {Zt} , given by

where the smoothing parameter ψ ∈ (0, 1] . The EWMA chart reduces to the Shewhart chart when ψ = 1. At 
is normally distributed with the mean 0 and variance

The term (1− ψ)2t converges to zero, As the time t increases. The EWMA chart triggers an out-of-control 
signal when |At | exceeds the control limit L (> 0), i.e., At <  − L or At > L to indicate a downward or an upward 
shift in the covariance matrix of the process. The in-control ARL of the EWMA control chart is controlled by L.

The existing AEWMA‑II chart
Haq and Khoo24 have suggested an AEWMA-II chart to observe the irregular variations in the covariance matrix 
of a normally distributed process. The AEWMA-II chart updates the smoothing parameter of plotting statistic 
according to the estimated size of the shift.

Let δ̃t be a biased free estimator of shift δ at time t. Now

where

and the smoothing constant ψ ranges from 0 to 1 such as ψ ∈ (0, 1] . The plotting statistic of the AEWMA-II 
chart is

where K0 = 0 and f
(
δ̃t

)
∈ (0, 1] such that

Zt = �−1
(
G
(
Mt; p

))

At = ψzt + (1− ψ)At−1,A0 = 0,

�At =
ψ

2− ψ

[
1− (1− ψ)2t

]
∀t ≤ t0

δ̃t =
δ̂t

1− (1− ψ)t
,

δ̂t = ψzt + (1− ψ)δ̂t−1, δ̂t = 0,

Kt = Kt−1 + f
(
δ̃t

)
(zt − Kt−1),

f
�
�δt
�
=





0.015∀�δt ∈ (0.00, 0.25]

0.10∀�δt ∈ (0.25, 0.75]

0.20∀�δt ∈ (0.75, 1.00]

0.25∀�δt ∈ (1.00, 1.50]

0.50∀�δt ∈ (1.50, 2.50]

0.80∀�δt ∈ (2.50, 3.50]

1.00∀�δt ∈ (3.50,∞)



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18137  | https://doi.org/10.1038/s41598-023-45399-3

www.nature.com/scientificreports/

The AEWMA-II chart triggers an out-of-control signal when |Kt | exceeds the control limit L (> 0), i.e., Kt <  − L 
or Kt > L to indicate a downward or an upward shift in the covariance matrix of the process.

Proposed AEWMA‑I control chart
In this section, we examined the suggested AEWMA-I control chart. This control chart is useful for detecting 
irregular variations in the covariance matrix of a p-dimensional multivariate process. The proposed AEWMA-
I chart is designed to overcome the limitations of the existing AEWMA-II chart, which exhibits a high false 
alarm rate due to the SDRL being greater than the ARL. To address this issue, we propose the new AEWMA-I 
multivariate dispersion control chart, which is based on a continuous function. This mitigates the problem of 
a high false alarm rate and improves the performance of shift detection. In adaptive control charts, different 
methods have been suggested for selecting the value of the smoothing constant. Since the size of the shift is gen-
erally unknown in advance and varies, it is advisable to consider it as a random variable and estimate it using an 
appropriate estimator. In our method, we evaluate the magnitude of the shift using an impartial estimator and 
ascertain the smoothing constant for the proposed AEWMA-I multivariate dispersion control chart through 
a continuous function. This enhances the design effectiveness in detecting shifts of a diverse magnitude in the 
covariance matrix.

Let 
⌣

δ t be the shift estimate at time t. Following27, we have

where

where δ̂∗0 = 0 and ψ ∈ (0, 1] . The δ̂t =
∣∣∣δ̂∗∗t

∣∣∣ to find an estimate of δ . Thus, the plotting statistic of the offered 
control chart is

where St = 0 and g
(
δ̂t

)
∈ (0, 1] such that

Drawing inspiration from the logistic function, where the response function lies within the range of 0–1, we 
employed a systematic trial-and-error approach. This involved experimenting with various functions, such as 
logarithmic and exponential functions, along with different constants. We aimed to find an appropriate smooth-
ing constant, denoted as g

(
δ̂t

)
 , that would render the classical EWMA scheme effective in detecting shifts in the 

covariance matrix within predefined δ̂t ranges. The continuous function g
(
δ̂t

)
 is used for determining the value 

of the smoothing constant that improves the efficiency of the proposed control chart. The provided text seems 
to describe the recommended values of constants for a proposed continuous function in the context of an 
AEWMA-I chart. The purpose of this function is to improve the ARLs and SDRLs of the AEWMA-I control 
chart, specifically in the early recognition of shifts in the process. The function g

(
δ̂t

)
 plays a crucial role in 

determining the value of the random variable S_t, which is used as the plotting statistic for the proposed 
AEWMA-I control chart. The authors have conducted experiments and analysis, and based on their findings, 
they suggest that specific values for the constant in the function g

(
δ̂t

)
  (i.e., 24 and 19) are optimal over certain 

ranges of δ ̂_t ( 0.0 < δ̂t ≤ 1.0 and 1.0 < δ̂t ≤ 2.7 , respectively). These recommended constant values (24 and 19) 
have resulted in the proposed control chart functioning as a roughly optimized system, achieving smaller and 
improved ARLs and SDRLs compared to existing control charts.

The AEWMA-I control chart’s working methodology is similar to that of the existing AEWMA-II control 
chart, as recommended by Haq and Khoo24. However, the proposed control chart shows a significant improve-
ment in the Run Length (RL) profiles, indicating that it performs better in detecting shifts in the covariance 
matrix of the process.

Decision rule. Whenever |St | > L, the AEWMA-I control chart gives an out-of-control signal.

The process parameter is unknown
The underlying process parameter covariance matrix might not be understood in advance in real-world situ-
ations. Then, using this dataset, we may estimate the covariance matrix, assuming that trustworthy historical 
data is available from an in-control process. All n observation vectors y1, y2, y3, . . . , yn can be transposed to row 
vectors and listed in the data matrix Y of order (n x p) as follows:

δ̂∗∗t =
δ̂∗t

1− (1− ψ)t
,

δ̂∗t = ψzt + (1− ψ)δ̂∗t−1

St = St−1 + g(δ̂t)(zt − St−1),

g(�δt) =





1

24

�
1+

�
�δt
�−2

�∀�δt ∈ (0.0, 1.0]

1

19

�
1+

�
�δt
�−1

�∀�δt ∈ (1.0, 2.7]

1∀�δt ∈ (2.7,∞)
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Then, the unbiased estimator of covariance matrix � is, given by

where I is the identity matrix of order n and J is (n x n) matrix of one’s.

Run‑length computation
In this research, we opted the Monte Carlo (MC) simulation approach to asses the efficiency of the AEWMA-I 
control chart. The MC simulation method is a well-established and widely acknowledged approach for assessing 
the run-length characteristics of control charts.

To examine the run-length characteristics, including averages, standard deviations, and percentiles, we per-
formed MC simulations with 50,000 iterations. In each iteration, the AEWMA-I control chart was simulated to 
observe its performance under different scenarios or conditions. By repeating this process 50,000 times, a robust 
estimate of the control chart’s performance characteristics is obtained. During each iteration, we sampled from 
a multivariate normal distribution to obtain the necessary data for the control chart. By analyzing the results of 
these simulations, we were able to calculate the average run length (ARL) and the standard deviation of run length 
(SDRL) for the AEWMA-I chart. The in-control ARL ( ARL0 = 370) and  ψ = 0.15. The same is performed for 
the ( ARL0 = 500) by taking and  ψ = 0.15 and p = 2 in Table 1. The respective Table 1 is a comparative picture 
of existing EWMA multivariate dispersion control chart and existing AEWMA-II multivariate dispersion con-
trol chart with the proposed AEWMA-I multivariate dispersion control chart. it is found that for all respective 
increasing and decreasing dispersion shifts the proposed chart gives outstanding effects with improved ARL and 
controlled SDRL along with the quantiles at 5th, 10th, 25th, 50th,75th,90th, and 95th. One more performance 
measure is determined in Table 1 as E(ARL), expected ARL to analyze the picture in a broader spectrum.

The values of L (threshold) of all three charts EWMA, AEWMA-I, and AEWMA-II are given in Table 2. The 
run-length characteristics of the AEWMA-I chart with different p are given in Table 3 when δ of any magnitude 
enters the process covariance matrix. Additionally, to depict the overall conduct of the outcomes a short discus-
sion is given by

•	 When ψ and δ are fixed, with an increase in the value of p, both ARL and SDRL show a tendency to decrease, 
and vice versa. For instance, from Table 3 with fixed ψ = 0.15, δ = 0.95, and p = 2, 3, 4, 5 the respective 
ARL = (237.34, 188.16, 157.01, 134.43) and SDRL = (213.39, 163.58, 134.59, 114.47) at ARL0 = 370. This shows 
that the sensitivity of the control chart increases with an increase in the value of the p.

•	 Table 2 presents the values of threshold (L) when ARL0 = 370, ψ = 0.15, one can observe an increasing pattern 
in the value of L with an increase in the p. This shows a wider control limit with the increase in the p.

•	 When δ decreases or increases, both the ARL and SDRL values decrease due to the heightened magnitude of 
δ in the process dispersion, elucidating the sensitivity of the suggested chart. For instance, from Table 3 shifts 
like δ = (0.95, 0.90) with ψ = 0.15 gives the ARL = (237.34, 117.22) and SDRL = (213.39, 86.90), whereas the 
shifts like δ = (1.05, 1.10) with ψ = 0.15 gives the ARL = (207.36, 112.37) and SDRL = (177.60, 85.06) for the 
p = 2 and ARL0 = 370. The same pattern is observed at p = 3, 4, and 5.

Performance comparisons
In the field of SPC, the performance of a control chart is commonly assessed by analyzing its run-length pro-
files, ARL, SDRL, and percentiles. In this study, we follow the same approach and utilize run-length profiles as a 
benchmark for comparison. To evaluate the effectiveness of the suggested AEWMA-I control chart, we compare it 
with the existing EWMA and AEWMA-II control charts proposed by Haq and Khoo24. The existing AEWMA-II 
chart was designed to monitor the covariance matrix of a multivariate process that follows a normal distribution. 
In order to assess the proposed AEWMA-I multivariate dispersion chart, we analyze its RL profiles alongside 
the EWMA and AEWMA-II charts, considering various magnitudes of shift sizes. In our evaluation, we set the 
initial ARL (ARL0) to 370 and the smoothing constant (ψ) to 0.15. To calculate the run-length profiles of the 
AEWMA-I, AEWMA-II, and EWMA control charts, we conducted 50,000 iterations using the MC simulations 
method. This enables us to compare the performance of these control charts under different shift sizes.

Comparison of proposed AEWMA‑I and existing EWMA charts
The presentation of the AEWMA-I multivariate dispersion control chart with the EWMA chart is given at p = 2, 
3, and 5 for δ in Tables 4, 5 and 6. The proposed one is efficient than the EWMA chart for detection of shifts in 
the covariance matrix. Furthermore, the out-of-control run-length profiles of the AEWMA-I control chart are 
are notably shorter compared to those of the EWMA control chart for all considered δ s, in other words, the 
AEWMA-I consistently enhances the run-length profiles compare to EWMA chart. The comparison between the 

Y =

(
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′

, y2
′

, y3
′
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′
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.
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1
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Table 1.   Comparative analysis of existing EWMA and AEWMA-II with AEWMA-I ARL0 = 500 and p = 5. 
Significant values are in bold.

δ ARL SDRL E (ARL) P5th P10th P25th P50th P75th P90th

0.25

EWMA 5.26 1.27 5.06 4 4 5 6 7 8

AEWMA-II 2.35 0.86 2.85 2 2 2 2 3 4

AEWMA-I (proposed) 4.44 1.31 4.64 2 4 4 5 6 6

0.50

EWMA 13.63 7.27 13.03 6 9 12 17 23 28

AEWMA-II 7.84 6.9 7.04 2 2 6 11 17 22

AEWMA-I (proposed) 10.6 5.13 9.66 5 7 10 13 18 21

0.75

EWMA 82.5 74.19 80.25 16 30 60 111 179 231

AEWMA-II 58.22 63.31 57.52 2 11 39 83 141 185

AEWMA-I (proposed) 39.9 23.58 40.39 12 22 37 54 72 83

0.80

EWMA 137.96 129.97 138.9 22 46 99 188 307 398

AEWMA-II 97.07 107.12 96.57 3 18 64 139 237 311

AEWMA-I (proposed) 55.94 33.58 54.34 16 31 51 75 101 118

0.85

EWMA 237.03 229.11 237.93 32 74 167 325 534 697

AEWMA-II 168.77 185.2 168.07 3 34 111 241 411 541

AEWMA-I (proposed) 82.65 51.66 82.05 23 45 75 111 151 179

0.92

EWMA 480.14 473.16 481.24 57 144 337 663 1090 1430

AEWMA-II 398.23 445.19 399.03 6 76 258 567 975 1286.05

AEWMA-I (proposed) 178.44 136.5 179.04 41 82 146 239 354 442

1.00

EWMA 500.81 497.3 500.01 58 147 346 690 1149 1499.05

AEWMA-II 502.14 553.11 500.40 7 102 331 713 1224 1610.05

AEWMA-I (proposed) 500.41 483.03 500.44 69 165 360 686 1128 1461

1.03

EWMA 379.47 372.48 378.57 46 113 263 525 864 1131

AEWMA-II 358.99 395.71 359.89 7 74 236 509 870.1 1147

AEWMA-I (proposed) 345.97 303.52 347.09 61 132 262 470 738 941

1.05

EWMA 302.74 295.79 301.54 38 91 213 420 684 888.05

AEWMA-II 272.41 298.34 272.31 6 57 178 385 667 878

AEWMA-I (proposed) 250.18 205.43 251.08 51 106 197 338 520 653

1.08

EWMA 213.01 206.48 212.61 29 66 150 293 482 622

AEWMA-II 180.11 193.38 180.01 6 40 120 255 435 565.05

AEWMA-I (proposed) 163.28 124.75 163.07 37 75 135 219 324 405

1.10

EWMA 170.31 162.61 170.39 24 55 120 233 382 496

AEWMA-II 140.36 150.01 140.76 5 32 94 198 336 441

AEWMA-I (proposed) 129.79 94.77 129.76 31 62 109 175 254 314

1.15

EWMA 103.68 97.88 103.55 17 35 73 141 230 301

AEWMA-II 80.98 84.08 80.66 4 20 56 114 192 249

AEWMA-I (proposed) 81.57 55.87 81.33 20 41 71 110 156 188

1.30

EWMA 36.15 30.28 36.25 9 15 27 48 75 96

AEWMA-II 26.92 26.16 26.99 2 8 19 38 62 79

AEWMA-I (proposed) 33.62 22.51 33.65 9 16 29 46 64 76

1.75

EWMA 9.83 6.09 9.86 4 6 8 13 18 22

AEWMA-II 6.73 5.55 6.79 2 2 5 9 14 18

AEWMA-I (proposed) 9.86 6.2 9.85 3 5 8 13 18 22

3.50

EWMA 3.16 1.33 3.18 2 2 3 4 5 6

AEWMA-II 2.37 0.89 2.35 2 2 2 2 3 4

AEWMA-I (proposed) 2.9 1.37 2.99 2 2 2 4 5 6

Table 2.   Values of L for all control charts for ARL0 = 370, ψ = 0.15.

p

2 3 4 5

EWMA 0.9165 0.9215 0.9249 0.9269

AEWMA-II 0.9823 0.9928 0.9978 1.0026

AEWMA-I 0.2148 0.2181 0.2203 0.2217
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proposed AEWMA-I multivariate dispersion control chart and the conventional EWMA chart was conducted for 
various values of p. The results are presented in Tables 4, 5 and 6 for different values of shifts. The results shows 
that the proposed control chart is efficient to detect the shifts in the covariance matrix as compared to the exist-
ing control chart. For example, at p = 2, the ARLs for δ = (0.80, 0.92, 1.05, 1.08) of the EWMA and AEWMA-I 
charts are (108.66, 351.54, 236.42, 170.77) and (48.14, 151.91, 207.36, 140.57), respectively. Similarly, at p = 2, the 
SDRLs for δ = (0.80, 0.92, 1.05, 1.08) of the EWMA and AEWMA-I charts are (101.03, 347.76, 231.21, 162.78) 
and (30.73, 121.29, 177.60, 111.18), correspondingly. One can infer from these observations that AEWMA-I 
chart is more reliable as compare to the EWMA control chart. The visually presented results in Figs. 1, 2, 3 and 
4 also alines with the same findings.

Comparison of proposed AEWMA‑I and existing AEWMA‑II charts
In Tables 7, 8 and 9, we presented th comparison of AEWMA-I and AEWMA-II charts. The AEWMA-I performs 
better than AEWMA-II at the various shift sizes δ ∈[0.75, 1.10]. It’s important to highlight that the AEWMA-II 
chart exhibits a notably poor performance in terms of SDRLs.The SDRLs of the AEWMA-II chart are greater 
than those of ARLs. That’s why when δ ∈ ([0.25, 0.50] ∧ [1.15, 1.75]) AEWMA-II chart seems a bit better than the 
AEWMA-I chart and otherwise, the effectiveness of both charts is the same. For example, at p = 2, the ARLs for 
δ = (1.05, 1.15, 3.50) of the AEWMA-II and AEWMA-I charts are (215.76, 68.86, 2.36) and (207.36, 72.92, 2.81), 
respectively. Similarly, at p = 2, the SDRLs for δ = (1.05, 1.15, 3.50) of the existing AEWMA-II and AEWMA-I 
charts are (236.20, 71.47, 0.87) and (177.60, 52.63, 1.25), respectively. Overall, the results from Tables 7, 8 and 
9 suggest that the AEWMA-I control chart is generally superior to the AEWMA-II control chart in terms of 

Table 3.   The proposed AEWMA-I RL for ARL0 = 370 and ψ = 0.15 at diverse dimensions.

δ

 2  3  4  5

L = 0.2148 L = 0.2181 L = 0.2203 L = 0.2217

ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.05 2.05 0.21 2.00 0.00 2.00 0.00 2.00 0.00

0.10 2.47 0.55 2.01 0.09 2.00 0.00 2.00 0.00

0.15 2.95 0.76 2.15 0.37 2.00 0.05 2.00 0.01

0.20 3.46 0.94 2.45 0.61 2.06 0.25 2.00 0.05

0.30 4.60 1.44 3.26 1.02 2.53 0.73 2.17 0.43

0.40 6.32 2.51 4.38 1.55 3.40 1.21 2.76 0.94

0.50 9.33 4.69 6.16 2.69 4.69 1.92 3.81 1.56

0.60 14.92 8.65 9.55 5.22 7.05 3.66 5.62 2.79

0.70 25.56 15.68 16.65 10.39 12.21 7.60 9.58 5.87

0.80 48.14 30.73 33.40 21.89 25.15 16.91 20.05 13.80

0.85 71.97 48.03 50.82 34.21 39.51 26.96 32.09 22.47

0.90 117.22 86.90 86.13 62.99 68.91 50.07 57.20 41.89

0.92 151.91 121.29 113.31 87.33 90.75 69.43 76.24 57.90

0.95 237.34 213.39 188.16 163.58 157.01 134.59 134.43 114.47

0.97 317.89 302.00 276.88 260.64 246.13 232.69 219.94 206.33

1.00 370.25 352.14 370.37 358.69 370.01 360.90 370.21 363.32

1.03 273.53 246.38 252.80 222.24 237.23 202.39 222.06 187.51

1.05 207.36 177.60 179.51 146.03 161.49 126.83 147.86 112.34

1.08 140.57 111.18 116.82 86.65 101.42 72.60 90.42 62.92

1.10 112.37 85.06 92.22 66.20 78.41 54.05 69.65 46.95

1.15 72.92 52.63 57.17 39.31 48.12 32.08 42.16 27.39

1.20 51.12 35.74 39.53 26.75 33.04 21.75 28.45 18.28

1.30 30.44 21.22 22.94 15.24 18.86 12.15 16.14 10.03

1.40 20.73 14.36 15.42 10.01 12.61 7.79 10.90 6.41

1.50 15.33 10.40 11.48 7.24 9.43 5.55 8.13 4.50

1.75 9.04 5.90 6.87 3.96 5.73 3.03 5.03 2.48

2.00 6.46 3.98 4.96 2.69 4.20 2.07 3.73 1.70

2.50 4.24 2.36 3.36 1.60 2.91 1.21 2.64 0.97

3.00 3.30 1.67 2.70 1.09 2.42 0.78 2.25 0.59

3.50 2.81 1.25 2.39 0.78 2.20 0.52 2.10 0.36

4.00 2.55 1.00 2.22 0.57 2.10 0.36 2.04 0.23

5.00 2.27 0.65 2.08 0.33 2.03 0.18 2.01 0.10

6.00 2.14 0.47 2.04 0.21 2.01 0.10 2.00 0.05

7.00 2.09 0.35 2.02 0.14 2.00 0.06 2.00 0.03
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percentiles, indicating better early detection of process shifts. However, the AEWMA-II control chart may have 
a slight advantage in terms of ARLs for moderate and large shifts, though its results might be less stable than 
those of the AEWMA-I control chart. Also, it can be seen that P10 = (5, 5) and P95 = (1326, 886) in AEWMA-II 
control chart whereas P10 = (43, 42) and P95 = (921, 759) in AEWMA-I control chart at δ = (0.97, 1.03). These 
observations aligns with our findings in the run-length profile results, particularly at p = 3 and 5. Additionally, 
these findings are visually reinforced in Figs. 1, 2, 3 and 4.

Illustrative example
The real dataset used in the study is taken from Santos-Fernández28. The dataset pertains to a bimetal thermo-
stat, a device commonly used for various practical applications. Bimetal thermostats utilize a bimetallic strip 
composed of two different metallic strips. This bimetallic strip converts temperature changes into mechanical 
displacement due to the varying thermal expansion properties of the two metals. In this study, the bimetallic 
strip, made by combining steel and brass metals, is subjected to quality testing in a laboratory. The bimetallic 
strip, got by joining steel and brass metals, is investigated in a quality testing lab by testing five quality attributes, 
including, the redirection (V1), curvature (V2), resistivity (V3), hardness in the low expansion side (V4) and 
hardness in high expansion side (V5). The quality control division takes 28 samples from the assembling process 
for both Phase-I and Phase-II datasets. The Phase-I dataset is used to estimate the parameter of the process, as 
the parameter of the process is unknown, and the twenty-eight samples of Phase-II are considered to observe 
the covariance matrix of the process.

Here, the understudy quality characteristics variables are V1, V4, and V5 which is p = 3. The proposed 
AEWMA-I, AEWMA-II, and EWMA control charts are applied to this dataset using in-control ARL as 370. The 
parametric choice for proposed AEWMA-I, AEWMA-II, and EWMA control charts are (L = 0.2181, ψ=0.15), 

Table 4.   Comparative analysis of control charts based on run length profile. Significant values are in bold.

δ ARL SDRL P5th P10th P25th P50th P75th P90th P95th

0.25
EWMA 4.98 1.20 3 4 4 5 6 7 7

AEWMA-I 3.98 1.15 2 2 3 4 5 5 6

0.50
EWMA 12.37 6.41 5 6 8 11 15 21 25

AEWMA-I 9.33 4.69 4 4 6 8 12 16 18

0.75
EWMA 67.14 59.83 10 14 25 49 90 144 186

AEWMA-I 34.43 21.57 6 9 18 31 47 64 75

0.80
EWMA 108.66 101.03 12 18 37 78 149 240 310

AEWMA-I 48.14 30.73 8 12 25 44 66 90 105

0.85
EWMA 180.11 172.48 16 26 57 127 248 405 525

AEWMA-I 71.97 48.03 10 18 37 64 97 136 163

0.92
EWMA 351.54 347.76 23 42 104 245 483 802 1051

AEWMA-I 151.91 121.29 15 31 66 122 205 311 390

0.95
EWMA 407.42 399.80 26 48 122 285 562 933 1206

AEWMA-I 237.34 213.39 18 38 88 177 322 515 658

0.97
EWMA 420.31 414.69 27 49 124 292 581 962 1251

AEWMA-I 317.89 302.00 19 43 106 228 434 709 921

1.00
EWMA 369.81 361.77 24 45 112 260 510 845 1094

AEWMA-I 370.25 352.14 21 48 121 265 510 829 1073

1.03
EWMA 289.22 283.24 21 37 89 202 396 656 855

AEWMA-I 273.53 246.38 19 42 100 205 373 592 759

1.05
EWMA 236.42 231.21 18 31 72 165 325 538 701

AEWMA-I 207.36 177.60 17 36 82 160 281 438 558

1.08
EWMA 170.77 162.78 15 24 54 120 236 387 496

AEWMA-I 140.57 111.18 14 28 61 115 190 284 358

1.10
EWMA 139.25 133.78 13 21 44 98 191 313 407

AEWMA-I 112.37 85.06 12 24 51 94 153 223 276

1.15
EWMA 86.90 80.42 10 15 30 62 118 192 246

AEWMA-I 72.92 52.63 9 16 34 62 99 143 173

1.30
EWMA 32.59 27.00 6 8 14 25 43 67 86

AEWMA-I 30.44 21.22 5 8 14 26 42 60 71

1.75
EWMA 9.36 5.77 3 4 5 8 12 17 21

AEWMA-I 9.04 5.80 3 3 5 8 12 17 21

3.50
EWMA 3.09 1.29 2 2 2 3 4 5 6

AEWMA-I 2.81 1.25 2 2 2 2 3 5 5
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(L = 0.9908, ψ=0.15) and (L = 0.9215, ψ=0.15) respectively. Figs. 5, 6 and 7 display the proposed AEWMA-I, 
AEWMA-II, and EWMA control charts. The process parameter estimation is as follows

Figures 5, 6 and 7 make it clear that all three control charts have remained stable for the first 28 samples, 
indicating that the process is currently under control. Nevertheless, all three charts in the subsequent 28 samples 
demonstrate an ascending change in the process covariance matrix. The EWMA, AEWMA-II, and AEWMA-I 
control charts create out-of-control signals at the 40th, 39th, and 34th observations, respectively. An intrigu-
ing observation is that the AEWMA-I control chart provides an out-of-control signal earlier compared to the 
EWMA and AEWMA-II control charts. This illustrates the superiority of the proposed control chart over the 
multivariate control charts under consideration.

The proposed AEWMA-I control chart offers the advantage of early detection of shifts in the covariance 
matrix of the process compared to existing control charts. This early detection enables the identification of process 
variations at an earlier stage, resulting in fewer defective items being produced. Consequently, this leads to cost 
savings by reducing the expenses associated with discarding faulty products and the cost of reworking them. 
Moreover, when monitoring correlated multivariate data, using a single multivariate control chart is more appro-
priate and cost-effective compared to employing multiple univariate charts for each quality characteristic. This 
becomes particularly relevant when there are numerous related quality characteristics to be monitored. Overall, 
the proposed AEWMA-I control chart demonstrates higher efficiency than its counterparts in promptly generat-
ing out-of-control signals, allowing for timely intervention and quality improvement in the production process.

�̂0 =

[
0.030018386 0.011894709 0.008731614

0.011894709 0.039277249 0.009142328

0.008731614 0.009142328 0.021699868

]

Table 5.   Comparative analysis based on run length profile for p = 3. Significant values are in bold.

δ ARL SDRL P5th P10th P25th P50th P75th P90th P95th

0.25
EWMA 3.70 0.73 3 3 3 4 4 5 5

AEWMA-I 2.82 0.82 2 2 2 3 3 4 4

0.50
EWMA 8.03 3.31 4 5 6 7 10 12 14

AEWMA-I 6.16 2.69 2 3 4 6 7 10 11

0.75
EWMA 38.51 31.40 8 10 16 29 51 79 100

AEWMA-I 23.19 14.94 5 7 11 20 32 44 51

0.80
EWMA 63.14 56.44 9 13 24 46 85 136 174

AEWMA-I 33.40 21.89 6 8 16 30 46 63 75

0.85
EWMA 113.56 106.91 12 18 38 81 155 253 327

AEWMA-I 50.82 34.21 7 11 25 45 70 97 115

0.92
EWMA 269.94 262.35 19 34 82 190 373 611 797

AEWMA-I 113.31 87.33 10 21 50 94 155 228 282

0.95
EWMA 363.10 356.22 23 43 108 254 501 831 1077

AEWMA-I 188.16 163.58 14 31 73 144 255 399 513

0.97
EWMA 400.82 396.42 26 27 119 280 550 919 1189

AEWMA-I 276.88 260.64 16 38 94 200 379 618 795

1.00
EWMA 370.72 362.45 24 44 111 260 514 845 1095

AEWMA-I 370.37 358.69 19 46 117 262 511 838 1084

1.03
EWMA 276.17 269.44 20 35 85 194 379 629 817

AEWMA-I 252.80 222.24 18 40 95 193 346 541 689

1.05
EWMA 215.87 209.42 17 29 67 152 295 491 631

AEWMA-I 179.51 146.03 16 33 75 144 243 371 467

1.08
EWMA 145.53 138.30 14 21 47 103 199 325 420

AEWMA-I 116.82 86.65 13 25 54 98 159 232 284

1.10
EWMA 115.24 107.31 12 19 38 83 157 257 329

AEWMA-I 92.22 66.20 11 21 44 79 126 180 219

1.15
EWMA 67.53 60.38 9 13 25 49 91 147 188

AEWMA-I 57.17 39.31 8 14 28 50 78 110 132

1.30
EWMA 23.52 17.99 5 7 11 18 31 47 59

AEWMA-I 22.94 15.24 5 7 11 20 31 44 52

1.75
EWMA 7.14 3.86 3 3 4 6 9 12 15

AEWMA-I 6.87 3.91 3 3 4 6 9 12 15

3.50
EWMA 2.59 0.85 2 2 2 2 3 4 4

AEWMA-I 2.39 0.78 2 2 2 2 3 3 4
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Conclusions and further recommendations
Recently, adaptive control charts have gained significant attention due to their increased sensitivity compared to 
non-adaptive control charts. They are particularly useful in providing better protection when the process shift is 
expected to occur within a certain range. We proposed the AEWMA-I multivariate dispersion control chart as a 
method to monitor irregular variations in the covariance matrix of a process following a normal distribution. The 
MC simulation method is used to compute the average run length (ARL) for performance evaluation. Through 
comprehensive analysis of ARL properties, we find that the AEWMA-I control chart consistently outperforms 
other memory-based control charts in detecting variations in the covariance matrix of the process. Furthermore, 
the AEWMA-I control chart exhibits a smaller standard deviation of run length (SDRL) values, making it more 
reliable for real-life applications. To illustrate its application, we provide a numerical example using real-life data. 
Thus, we recommend using the AEWMA-I control chart for monitoring irregular variations in the covariance 
matrix of multivariate processes following a normal distribution.

Table 6.   Comparative analysis based on run length profile for p = 5. Significant values are in bold.

δ ARL SDRL P5th P10th P25th P50th P75th P90th P95th

0.25
EWMA 2.70 0.51 2 2 2 3 3 3 3

AEWMA-I 2.04 0.21 2 2 2 2 2 2 2

0.50
EWMA 5.11 1.64 3 3 4 5 6 7 8

AEWMA-I 3.81 1.56 2 2 2 4 5 6 6

0.75
EWMA 19.91 14.14 5 7 10 16 26 38 48

AEWMA-I 13.50 8.92 2 4 7 11 18 26 31

0.80
EWMA 32.99 26.53 7 9 14 25 44 68 87

AEWMA-I 20.05 13.80 3 5 9 17 28 39 46

0.85
EWMA 62.20 56.07 9 12 22 45 84 135 174

AEWMA-I 32.09 22.47 4 7 14 28 45 63 74

0.92
EWMA 182.72 176.31 15 24 57 129 252 413 536

AEWMA-I 76.24 57.90 6 13 34 65 105 152 186

0.95
EWMA 293.04 289.29 19 35 87 204 407 671 870

AEWMA-I 134.43 114.47 8 19 52 106 184 285 360

0.97
EWMA 362.89 359.34 23 42 106 250 504 830 1082

AEWMA-I 219.94 206.33 10 27 75 162 302 487 625

1.00
EWMA 369.30 363.54 24 44 110 258 511 838 1090

AEWMA-I 370.21 363.32 14 40 112 261 514 843 1084

1.03
EWMA 258.03 250.42 20 33 79 180 356 588 756

AEWMA-I 222.06 187.51 15 38 90 174 303 466 589

1.05
EWMA 186.20 179.75 17 27 59 131 254 418 545

AEWMA-I 147.86 112.34 14 30 67 123 201 296 364

1.08
EWMA 115.32 108.31 13 19 39 82 157 254 331

AEWMA-I 90.42 62.92 12 21 45 78 122 173 209

1.10
EWMA 85.47 77.86 11 16 30 62 115 188 243

AEWMA-I 69.65 46.95 10 17 35 61 94 132 159

15
EWMA 46.73 39.49 8 11 19 35 62 97 126

AEWMA-I 42.16 27.39 8 11 21 37 57 79 94

1.30
EWMA 16.04 10.69 5 6 9 13 21 30 37

AEWMA-I 16.06 10.03 4 6 9 14 21 30 36

1.75
EWMA 5.25 2.34 2 3 4 5 6 8 10

AEWMA-I 5.03 2.43 2 2 3 5 6 8 10

3.50
EWMA 2.21 0.47 2 2 2 2 2 3 3

AEWMA-I 2.10 0.36 2 2 2 2 2 2 3
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In future research, it would be valuable to develop new AEWMA charts that monitor shifts in the process 
mean vector or jointly monitor both the mean vector and covariance matrix. Additionally, extending the cur-
rent research to design AEWMA control charts for non-normally distributed processes would be an interesting 
avenue to explore. Another important area of investigation could involve understanding the causes behind signals 
generated by control charts for multivariate data, particularly when monitoring a process covariance matrix. 
The theoretical contribution behind the proposed dispersion control chart is the target to provide a sensitive 
control chart with not only gives quick detection of dispersion shift but also improves the SDRL characteristic 
in comparison with the existing AEWMA-II dispersion control chart. The respective suggested design with 
controlled SDRL and improved ARL would open new practical implications to utilize the design and may give 
manufacturing process defect free environment. The SPC literature is not as much enriched with multivariate 
dispersion adaptive designs to practically suggest designs to real life industries. So, the proposed AEWMA-I 
multivariate dispersion control chart would be a remarkable effort in this regard as the manufacturer is more 
comfortable utilizing multiple variables monitoring through a single plotting statistic rather than a univariate.

Figure 1.   Comparison of the AEWMA-I, AEWMA-II, EWMA charts for p = 2.

Figure 2.   Comparison of the AEWMA-I, AEWMA-II, EWMA charts for p = 3.
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Figure 3.   Comparison of the AEWMA-I, AEWMA-II, EWMA charts for p = 4.

Figure 4.   Comparison of the AEWMA-I, AEWMA-II, EWMA charts for p = 5.
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Table 7.   Comparative analysis based on run length profile. Significant values are in bold.

δ ARL SDRL P5th P10th P25th P50th P75th P90th P95th

0.25
AEWMA-II 2.30 0.77 2 2 2 2 2 3 4

AEWMA-I 3.98 1.15 2 2 3 4 5 5 6

0.50
AEWMA-II 6.99 6.03 2 2 2 5 9 15 19

AEWMA-I 9.33 4.69 4 4 6 8 12 16 18

0.75
AEWMA-II 45.53 49.31 2 2 9 30 65 110 145

AEWMA-I 34.43 21.57 6 9 18 31 47 64 75

0.80
AEWMA-II 74.84 82.11 2 2 14 49 107 182 239

AEWMA-I 48.14 30.73 8 12 25 44 66 90 105

0.85
AEWMA-II 126.63 140.00 2 3 23 83 181 309 408

AEWMA-I 71.97 48.03 10 18 37 64 97 136 163

0.92
AEWMA-II 289.50 326.00 2 4 52 187 413 716 944

AEWMA-I 151.91 121.29 15 31 66 122 205 311 390

0.95
AEWMA-II 377.24 423.62 2 5 68 241 540 933 1226

AEWMA-I 237.34 213.39 18 38 88 177 322 515 658

0.97
AEWMA-II 408.78 458.50 2 5 74 263 587 1004 1326

AEWMA-I 317.89 302.00 19 43 106 228 434 709 921

1.00
AEWMA-II 370.21 414.71 2 5 68 238 529 917 1210

AEWMA-I 370.25 352.14 21 48 121 265 510 829 1073

1.03
AEWMA-II 274.75 306.19 2 5 53 177 390 676 886

AEWMA-I 273.53 246.38 19 42 100 205 373 592 759

1.05
AEWMA-II 215.76 236.20 2 5 45 142 307 527 688

AEWMA-I 207.36 177.60 17 36 82 160 281 438 558

1.08
AEWMA-II 147.00 159.79 2 5 31 97 209 355 467

AEWMA-I 140.57 111.18 14 28 61 115 190 284 358

1.10
AEWMA-II 115.53 124.38 2 4 25 77 163 281 367

AEWMA-I 112.37 85.06 12 24 51 94 153 223 276

1.15
AEWMA-II 68.86 71.47 2 3 16 47 98 163 211

AEWMA-I 72.92 52.63 9 16 34 62 99 143 173

1.30
AEWMA-II 24.25 23.58 2 2 7 17 34 55 71

AEWMA-I 30.44 21.22 5 8 14 26 42 60 71

1.75
AEWMA-II 6.47 5.26 2 2 2 5 9 13 17

AEWMA-I 9.04 5.90 2 3 5 8 12 17 21

3.50
AEWMA-II 2.36 0.87 2 2 2 2 2 3 4

AEWMA-I 2.81 1.25 2 2 2 2 3 5 5
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Table 8.   Comparative analysis based on run length profile for p = 3. Significant values are in bold.

δ ARL SDRL P5th P10th P25th P50th P75th P90th P95th

0.25
AEWMA-II 2.01 0.13 2 2 2 2 2 2 2

AEWMA-I 2.82 0.82 2 2 2 3 3 4 4

0.50
AEWMA-II 3.84 2.82 2 2 2 2 5 8 10

AEWMA-I 6.16 2.69 2 3 4 6 7 10 11

0.75
AEWMA-II 24.18 26.83 2 2 4 15 35 60 78

AEWMA-I 23.19 14.94 5 7 11 20 32 44 51

0.80
AEWMA-II 41.77 47.15 2 2 7 26 60 103 136

AEWMA-I 33.40 21.89 6 8 16 30 46 63 75

0.85
AEWMA-II 75.84 87.21 2 2 11 48 108 188 249

AEWMA-I 50.82 34.21 7 11 25 45 70 97 115

0.92
AEWMA-II 206.90 241.65 2 2 30 128 295 519 688

AEWMA-I 113.31 87.33 10 21 50 94 155 228 282

0.95
AEWMA-II 315.57 364.54 2 3 48 198 453 791 1041

AEWMA-I 188.16 163.58 14 31 73 144 255 399 513

0.97
AEWMA-II 377.05 432.48 2 3 60 237 545 941 1238

AEWMA-I 276.88 260.64 16 38 94 200 379 618 795

1.00
AEWMA-II 369.24 420.27 2 4 63 235 527 918 1208

AEWMA-I 370.37 358.69 19 46 117 262 511 838 1084

1.03
AEWMA-II 261.05 291.31 2 4 48 170 374 644 838

AEWMA-I 252.80 222.24 18 40 95 193 346 541 689

1.05
AEWMA-II 192.61 212.98 2 4 38 125 273 470 619

AEWMA-I 179.51 146.03 16 33 75 144 243 371 467

1.08
AEWMA-II 121.26 130.09 2 4 27 82 171 292 381

AEWMA-I 116.82 86.65 13 25 54 98 159 232 284

1.10
AEWMA-II 93.54 98.67 2 4 22 64 132 221 289

AEWMA-I 92.22 66.20 11 21 44 79 126 180 219

1.15
AEWMA-II 52.80 52.95 2 3 14 38 74 122 159

AEWMA-I 57.17 39.31 8 14 28 50 78 110 132

1.30
AEWMA-II 17.78 16.17 2 2 6 13 25 39 50

AEWMA-I 22.94 15.24 5 7 11 20 31 44 52

1.75
AEWMA-II 4.91 3.58 2 2 2 4 6 10 12

AEWMA-I 6.87 3.96 2 3 4 6 9 12 15

3.50
AEWMA-II 2.13 0.47 2 2 2 2 2 2 3

AEWMA-I 2.39 0.78 2 2 2 2 3 3 4
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Table 9.   Comparative analysis based on run length profile for p = 5. Significant values are in bold.

δ ARL SDRL P5th P10th P25th P50th P75th P90th P95th

0.25
AEWMA-II 2.00 0.00 2 2 2 2 2 2 2

AEWMA-I 2.04 0.21 2 2 2 2 2 2 2

0.50
AEWMA-II 2.32 0.90 2 2 2 2 2 3 4

AEWMA-I 3.81 1.56 2 2 2 4 5 6 6

0.75
AEWMA-II 10.73 12.25 2 2 2 6 15 27 36

AEWMA-I 13.50 8.92 2 4 7 11 18 26 31

0.80
AEWMA-II 19.11 22.68 2 2 2 10 27 49 65

AEWMA-I 20.05 13.80 3 5 9 17 28 39 46

0.85
AEWMA-II 37.41 45.52 2 2 4 21 54 97 130

AEWMA-I 32.09 22.47 4 7 14 28 45 63 74

0.92
AEWMA-II 127.07 154.70 2 2 11 74 183 329 442

AEWMA-I 76.24 57.90 6 13 34 65 105 152 186

0.95
AEWMA-II 232.96 280.30 2 2 23 139 338 597 800

AEWMA-I 134.43 114.47 8 19 52 106 184 285 360

0.97
AEWMA-II 328.84 390.18 2 2 36 200 474 840 1121

AEWMA-I 219.94 206.33 10 27 75 162 302 487 625

1.00
AEWMA-II 369.19 430.74 2 2 50 227 532 939 1237

AEWMA-I 370.21 363.32 14 40 112 261 514 843 1084

1.03
AEWMA-II 238.93 270.50 2 3 41 151 344 594 780

AEWMA-I 222.06 187.51 15 38 90 174 303 466 589

1.05
AEWMA-II 160.94 176.94 2 3 33 106 229 388 510

AEWMA-I 147.86 112.34 14 30 67 123 201 296 364

1.08
AEWMA-II 93.57 98.81 2 3 22 64 132 222 290

AEWMA-I 90.42 62.92 12 21 45 78 122 173 209

1.10
AEWMA-II 68.66 69.90 2 3 17 49 97 159 207

AEWMA-I 69.65 46.95 10 17 35 61 94 132 159

1.15
AEWMA-II 36.65 35.06 2 3 11 27 51 82 106

AEWMA-I 42.16 27.39 8 11 21 37 57 79 94

1.30
AEWMA-II 12.25 10.19 2 2 5 10 17 26 32

AEWMA-I 16.14 10.03 4 6 9 14 21 30 36

1.75
AEWMA-II 3.56 2.15 2 2 2 3 5 7 8

AEWMA-I 5.03 2.48 2 2 3 5 6 8 10

3.50
AEWMA-II 2.02 0.16 2 2 2 2 2 2 2

AEWMA-I 2.10 0.36 2 2 2 2 2 2 3
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Figure 5.   The EWMA chart for bimetal thermostat data.

Figure 6.   The AEWMA-II chart for bimetal thermostat data.
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Data availability
The datasets used for this study can be requested from the corresponding author on reasonable request. No 
experiments involving human subjects or the utilization of human tissue samples were conducted in this study.
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