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IoT empowered smart 
cybersecurity framework 
for intrusion detection in internet 
of drones
Syeda Nazia Ashraf 1, Selvakumar Manickam 2*, Syed Saood Zia 3, Abdul Ahad Abro 4, 
Muath Obaidat 5, Mueen Uddin 6*, Maha Abdelhaq 7 & Raed Alsaqour 8

The emergence of drone-based innovative cyber security solutions integrated with the Internet of 
Things (IoT) has revolutionized navigational technologies with robust data communication services 
across multiple platforms. This advancement leverages machine learning and deep learning methods 
for future progress. In recent years, there has been a significant increase in the utilization of IoT-
enabled drone data management technology. Industries ranging from industrial applications to 
agricultural advancements, as well as the implementation of smart cities for intelligent and efficient 
monitoring. However, these latest trends and drone-enabled IoT technology developments have also 
opened doors to malicious exploitation of existing IoT infrastructures. This raises concerns regarding 
the vulnerability of drone networks and security risks due to inherent design flaws and the lack of 
cybersecurity solutions and standards. The main objective of this study is to examine the latest 
privacy and security challenges impacting the network of drones (NoD). The research underscores 
the significance of establishing a secure and fortified drone network to mitigate interception 
and intrusion risks. The proposed system effectively detects cyber-attacks in drone networks by 
leveraging deep learning and machine learning techniques. Furthermore, the model’s performance 
was evaluated using well-known drones’ CICIDS2017, and KDDCup 99 datasets. We have tested 
the multiple hyperparameter parameters for optimal performance and classify data instances and 
maximum efficacy in the NoD framework. The model achieved exceptional efficiency and robustness 
in NoD, specifically while applying B-LSTM and LSTM. The system attains precision values of 89.10% 
and 90.16%, accuracy rates up to 91.00–91.36%, recall values of 81.13% and 90.11%, and F-measure 
values of 88.11% and 90.19% for the respective evaluation metrics.

The growing popularity of the Internet of Drones (IoD) is ascribed to the ongoing downsizing of sensors and 
chipsets and pervasive wireless communication. Tiny miniature drones, such as micro drones and quadcopters, 
have proliferated due to advancements in robot technology and unmanned aerial vehicles1–3. The ability of these 
miniature drones to instantly penetrate any monitoring system to track physical objects is a significant advantage. 
It is used in a variety of fields, including disaster response, industrial surveillance, military applications, search 
and rescue, precision agriculture, delivery, and shipping. Unmanned aerial vehicles (UAVs), often known as 
drones, are aerial aircraft without human pilots. They are helpful for various things, including weather forecasting 
and aerial photography. Aerodynamics forces frequently use UAVs to provide them access to remote machine 
control capabilities4–6. The aspects of diverse businesses have been influenced by analogous commercial 
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applications, which affect everyone. UAVs are helpful tools for assessment and control since they can often 
capture aerial data and easily communicate it to the base station. The expanding use of drone technology has 
raised concerns about liability, privacy, regulation, and security1,4–6. Drone technology has become widespread 
since reduced-sized UAVs have so many benefits for privacy, distribution, and shipping7. However, these drones 
have significant privacy and security concerns, such as Intrusion Detection Systems (IDS). The integration of 
the Internet of Things (IoT) and wireless sensors that might be used in miniature drones has been made to 
conceive smart drones have been a growing area of research in recent years. Various technologies, including 
sensors, transmitters, and cameras, can enhance the functionality and effectiveness of drones in a wide range 
of complex applications. Small drones are providing new opportunities for the defense and public sectors. Tiny 
drones are susceptible to security and privacy problems because of inadequate design. The Internet of Drones 
(IoD) is a derivative of the Internet of Things in which drones are linked via Internet technology and offer new 
routes while presenting security and privacy challenges6. Changing IoDs is the fundamental architecture, and 
design is essential to improve security and dependability. Traditionally, the structure of a conventional drone 
was constructed using a layered design, as shown in Fig. 1.

In a typical compact structure for commercial drones, a copter is integrated with a camera as the first module, 
called the drone module. Smart drones are linked to terrestrial networks using IoT gateways8. In this scenario, 
communication is provided by IoT gateways, like a terrestrial station’s network that is cloud-equipped. After 
receiving the data from the IoT hub, the computational module examines the data stream. The outcomes of the 
computational analysis are entered into the database at the storage module and then sent to the visualization 
module for further examination.

On the other hand, one disadvantage is that it does not have the functionality to provide privacy and data 
security. IoT and drones are combined in the modern idea of the Internetwork of Drone Things (IDT), which 
enables drones to connect to a device that contains an IoT network. The current study proposes the IDT concept 
as a solution to security and privacy challenges. The main concerns for the IoD’s implementation are the Problem 
Definition of IDT security. Numerous prospects might be investigated for the secure implementation of the 
IoD with the advancements in the ML field. The current research solves the issue by utilizing ML approaches to 
complete the IoD network.

The work that is being presented shows how a data-analysis-based smart drone capacity has been created by 
enhancing IoT and drones. Meanwhile, Blockchain technology is used in smart drones to provide security and 
privacy. The seven components of the suggested architecture are the modules of edge computational, drone, 
transmission, storage, security, processing, and Sensors for visualization 2022, 22, 2630 3 of 25.

However, there are numerous approaches for enabling cognitive tasks in Dragnet. For instance, the main 
Dragnet enabling technologies are detection, localization, tracking, and control, as shown in Fig. 2. We give an 
overview of each of the main enabling approaches in this section, as well as the following technological challenges 
and unresolved issues. Dragnet, in general, creates an intelligent amateur drone surveillance system by acting as 
a transparent link between the social world (social behavior, human demand, etc.) and the physical world (with 
available real/imaginary items, amateur drones, birds, and authorized drones). Dragnet is based on a synthetic 
technique of understanding learning, and it consists of four basic essential cognitive activities that must be 
accomplished in the following order: (1) Detecting objects, (2) Analyzing data, (3) Knowledge (Discovery and 
Semantic), and (4) Smart decision marking.

The most fundamental cognitive function in Dragnet is detection, which takes information from social 
networks and the physical environment using various active and passive surveillance technologies (such as 
sensors, cameras, crowds of people, or radars). Data analytics is a fundamental cognitive process that uses 
different surveillance data to locate and track amateur drones, identify intruders, and detect intrusions. The 

Figure 1.   The Current Infrastructure of Smart Factories.
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cognitive goal of semantic derivation and knowledge discovery attempts to enable the objects in Dragnet 
to automatically derive the semantics from examined data and make them self-aware and understandable. 
Additionally, specific usage patterns or rules can be found as knowledge based on the studied data and semantics, 
which requires objects in Dragnet to be intelligent. Finally, decision-making is a fundamental cognitive activity 
that determines broad decisions concerning the existence of amateur drones and actions to manage them (e.g., 
jamming, destroying, or capturing).

Enhancing security in IoT drones: factors for smart cybersecurity implementation
Smart cybersecurity for IoT drones involves specific considerations and features to ensure the secure operation 
of these interconnected devices. Here are some factors that make cybersecurity smart for IoT drones:

Encryption and secure communication
Smart cybersecurity for IoT drones involves using robust encryption algorithms to protect data transmission 
between the drones and the base station or other connected devices. Secure communication protocols, such as 
Transport Layer Security (TLS), are implemented to safeguard data integrity and prevent unauthorized access.

Authentication and access control
Thanks to smart cybersecurity, only authorized parties may access and control the drones. Strong authentication 
mechanisms are used to confirm the identity of users and devices, such as multi-factor authentication, digital 
certificates, or biometric verification. Access control measures restrict privileges and permissions based on user 
roles and responsibilities.

Firmware and software security
IoT drones are powered by software and firmware. Implementing secure coding techniques, performing frequent 
security upgrades and patches, and choosing reputable software sources to reduce vulnerabilities are all part of 
smart cybersecurity. Secure boot techniques and code integrity checks help guard against unauthorized firmware 
alterations and guarantee its legitimacy.

Intrusion detection and prevention
Intrusion Detection and Prevention Systems (IDPS) are included in smart cybersecurity for IoT drones to 
monitor network traffic, spot irregularities, and recognize potential cyber threats. These systems use anomaly 
detection methods and machine learning algorithms to spot malicious activity and take preventative steps to 
reduce risks.

Threat intelligence and analytics
To identify new threats, patterns, and trends, smart cybersecurity uses threat intelligence feeds, data analytics, 
and machine learning algorithms. Real-time analysis of drone data and network traffic helps identify potential 
vulnerabilities and enables proactive defense mechanisms.

Physical security measures
Cybersecurity for IoT drones extends beyond digital protection. Smart cybersecurity ensures physical security 
measures, such as tamper-resistant enclosures, anti-tampering mechanisms, and geofencing, to prevent 
unauthorized physical access to drones and protect them from theft or sabotage.

Security monitoring and incident response
Smart cybersecurity continuously monitors drone systems, network traffic, and data flows. Security Operation 
Centers (SoCs) equipped with advanced monitoring tools and automated alert systems enable real-time threat 
detection and incident response. Incident response plans are in place to quickly mitigate and recover from 
security incidents.

Figure 2.   Smart Framework Layered Architecture of Drone Attacks.
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Privacy and data protection
Smart cybersecurity for IoT drones emphasizes privacy and data protection. Personal and sensitive data collected 
by drones are handled following privacy regulations. Encryption, anonymization, and data minimization 
techniques protect privacy rights and ensure compliance with privacy laws.

Considering these aspects, smart cybersecurity for IoT drones provides a robust defense against cyber threats, 
protects data privacy, and ensures these interconnected devices’ safe and secure operation. The focus of this 
paper falls in the category of IDS, such as anomaly-based IDS, which is more specifically on the Deep Learning 
(DL) mechanism. DL approaches performed better than machine learning (ML) algorithms due to learning and 
training modules8. Thus, this can provide a cost-effective and efficient IDS that is highly mandatory to keep the 
network security of Drones.

The main contributions of this paper are discussed as follows:

•	 The modular structure of an IoT-enabled drone framework is introduced to ensure robust security and privacy 
within the drone network.

•	 The hybrid ML and DL techniques enforce stringent security measures during data transmission from drones 
to the base station.

•	 The proposed framework presents intercommunication network properties where networking data, IoT 
sensors, and drone data are managed securely.

•	 Benchmark datasets are employed to test the efficacy of the proposed framework rigorously. The performance 
evaluation metrics employed in the results and discussion section include precision, recall, F1-score, and 
classification accuracy.

On the other hand, another aspect that needs more consideration is the data collection hierarchy. Till 
now, no standardized process has been presented that shows the working operation of drone-enabled data 
collection, organization, management, and optimization. This type of problem poses a severe problem in the 
IoD environment’s future development. To tackle this scenario, this work highlights a technological integration 
prospect, such as the role of Artificial Intelligence (AI) in the Internet of Drones (IoD). The mentioned 
technological improvement helps in the designing of a standardized hierarchy, such as:

	 (i)	 drone-enabled data capture,
	 (ii)	 separation and filtering,
	 (iii)	 examination,
	 (iv)	 illustration,
	 (v)	 storage logs,
	 (vi)	 documentation.

Along with that, the general collaboration of AI involved IoD is critical. In this integration approach, machine 
learning techniques play a vital role to manages these highlighted prospects of data optimization with a secure 
protocol for drone-enabled data management and exchange over the network. The list of algorithms that readily 
associate with the current working procedures of cybersecurity to enhance the sharing of data privacy, protection 
preservation, and security is as follows:

	 (i)	 Gradient descent
	 (ii)	 Adaptive learning rate
	 (iii)	 Zeroth order optimization
	 (iv)	 Meta-learning
	 (v)	 Stochastic gradient descent
	 (vi)	 Derivative-free optimization
	 (vii)	 Conjugate gradient

Furthermore, to address IoT security and privacy challenges for drones, as IoT-enabled drones continue to 
expand across various industries, ensuring the security and privacy of these interconnected devices has become 
a critical concern. The existing cybersecurity solutions and standards often need to be revised to address the 
unique challenges IoT-powered drones pose. Therefore, a smart cybersecurity architecture especially suited to 
safeguarding and securing IoT-enabled drones is urgently needed. A comprehensive and robust framework 
that integrates cutting-edge technologies, authentication procedures, encryption protocols, intrusion detection 
systems, and incident response capabilities customized to the unique needs and vulnerabilities of IoT drones is 
lacking in the current environment. IoT drones are vulnerable to interception, intrusion, unauthorized access, 
data breaches, and physical manipulation without an appropriate cybersecurity framework, which can have 
serious repercussions like compromised privacy, data loss, operational interruption, and even safety issues. By 
creating and implementing a smart cybersecurity system that includes encryption and secure communication, 
authentication and access control, firmware and software security, and intrusion detection, this study seeks to 
overcome these difficulties.

The following sections in this research are arranged as follows. Section “Literature review” presents 
background works and highlights the previous model. Section “Proposed Framework” discusses the methodology 
used in this paper. Section “Experiments and results” presents the experimental evaluation and points out the 
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existing gaps in the reviewed literature and insights for future research, while Sect. “Conclusion” presents the 
conclusions.

Literature review
Law enforcement agencies use technology far more frequently in their daily operations. The most recent 
advancements in information technology and digital forensics enable more effective and efficient use of real-
time monitoring, drone technologies, criminal tracking, crime investigation, spying, and bugging. In a particular 
situation, the technology-based solution outperforms human police officers when AI is utilized for crime suspect 
analysis and detection. The same technologies can be used to monitor and assess the environment at the target 
location to improve safety and reduce crime. To find potential criminal activities, it uses ML algorithms. AI 
can be used to warn the public or local law enforcement officials of potentially upsetting circumstances9–11. 
Drones are widely used and applied for military and defense purposes12, 13. Drones come in various sizes, from 
military drones 200 feet to small flying machines. Drone size is an essential factor in terms of utilization and 
functionalities14,15. A military drone with a 16,999-mile range can cover much ground in a short amount of 
time16. The surface area, surroundings, and altitude affect the maximum areal duration17. The current research 
reveals that between 2015 and 2021, 51 security-related publications were included in the Web of Science (WoS) 
database18.

Drone security threats
There are several categories for drone security presented which is based on their size, usage, and control 
mechanisms. Undoubtedly, the drone uses the Wi-Fi communication protocol (IEEE 803.11) entirely for the 
purpose of communication19. The drone infrastructure includes a terrestrial hub and Wi-Fi network, subject 
to cybersecurity threats. According to Yin et al., the equipment’s lack of encryption methods makes drones 
vulnerable to hijacking20. According to Koslowski et al., hijackings may result from assaults such as man-in-
the-middle with a 3 km broad range21. IDT is growing in popularity in the military industry, as demonstrated 
by Ozmen et al.22. The fact that it was made to protect security and privacy is one of the main problems. Khan 
et al. demonstrated loss, cryptographic techniques, and data protection as significant privacy problems23. Several 
researchers have recently discovered security concerns, including protocol-specific, corrupted components, and 
sensor-specific threats. Prior research has focused chiefly on detecting drone cybersecurity issues. The prevention 
of these dangers is frequently overlooked. Ranjitha et al. proposed cryptographic data while transmitting to a 
terrestrial terminal using a secure encryption method24. According to Li and Bai25, mini drones have recently 
attracted much academic interest because of their small size and lightweight. Government and public information 
privacy are at risk due to the small drone. Numerous other studies, like those by Tuli et al.26, Cabassi et al.7, and 
Aldhyani et al.3, have examined the risks and problems that drones represent in terms of security. An efficient 
and clever edge-assisted IDT authentication approach was provided by Khan et al.27 to secure the IoD. Drone 
security monitoring architecture for a manufacturing setting was presented by Maghazei et al.28. Kapoutsis et al.29 
suggested a framework for gas-emission industrial drones. In the security and agriculture sectors, drones are 
mostly used for monitoring. Examining drone cyber threats has been a problematic research area for the past 
10 years. Smart city drone applications and the associated privacy problems were covered by Nguyen et al.30. 
Kumar et al.31 and Aydin et al.32 addressed drone networks’ limits and future directions, and cybersecurity risks. 
In addition to problems and solutions, Aloqaily et al.2 noted security vulnerabilities associated with commercial 
and industrial drones. IoT-based drones for agriculture were taken into consideration by Saha et al.33. According 
to Lyu et al.34, commercial drones must deal with issues such as drone data theft, UAV theft, and drone hijacking. 
Jares et al.35 provided remedies and responses to security-related problems. GPS spoofing is also a problem with 
UAVs and needs an authentic, efficient, and safe solution. Several attempts at controlling and hacking UAVs were 
described in detail by Talaei et al.36.

The challenges, issues and vulnerabilities of UAVs
No wireless security or policy standardization is available for these UAVs37–39. As seen in Table 1, this results 
in several dangers. Researchers have also tackled various cyber-attacks related to several types of UAVs in a 
pre-controlled environment40–45. The crash of drones with numerous parallel queries and the alteration of the 
request packet is called the buffer-overflow attack. However, some researchers used the cache-poisoning strategy, 
which resulted in the drone and GCR contact being cut off. In every situation, most attacks target the drone’s 
microcontroller or operating system46. Technological advancements have made UAVs increasingly susceptible to 
such attacks47–53. GPS spoofing is the most prevalent type of attack, including zero-day attacks, signal jamming, 
and de-authentication. The Authentication, Authorization, and Accounting (AAA) framework defines the criteria 
for drone operation in any location. It grants several privileges to the controller of a drone to operate by the 
administrative rights mentioned while also establishing some stringent authentication procedures for drones to 
safeguard drone control so that it cannot be transferred to an unidentified third party. Furthermore, the operator 
can be quickly identified if there is any doubt or illegal action by drone. This reduces illegal spying, privacy issues, 
and cyberattacks. As a result, numerous mechatronic engineering methods have been proposed to counteract 
these harmful operations54.

These drones are inexpensive and widely accessible in marketplaces; thus, criminal conduct can be carried 
out using them. They are more dangerous because of their ability to carry a range of external payloads, which 
could lead to drones carrying explosives or toxic chemicals. Furthermore, their capacity to reach locations where 
normal humans cannot make them more harmful because they can deliver anything without drawing attention55. 
It should be mentioned that safety is a concern as well, especially if drones are flying in overpopulated areas 
and crash owing to a variety of defects56. These kinds of instances have frequently been reported. One of the 
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instances occurred in April 2016, when a UAV collided with a British Airways BA727 passenger plane. After 
reviewing these incidences and issues, the following public safety measures can be implemented: A drone will 
likely be hacked or diverted from its intended direction due to strong winds. Therefore, a reset button should be 
accessible to return the drone to a hovering state and aid in regaining control. Some places where drones may 
encounter signal jammers and then be managed for a cyberattack. As a result, drones must include some form 
of sensor that can identify signal jammers in the area.

Drone security using machine learning
The three most common ML technique types are semi-supervised, supervised, and unsupervised learning. To 
combat cyber threats in IoT networks57, cloud computing58, and communication networks59, several researchers 
have employed ML models. To identify DDoS assaults using two characteristics, A self-adaptive model using 
RF and LSTM was integrated with a learning strategy by Vedula et al.60 (autoencoder). Hosseinzadeh et al.61 
developed a probabilistic approach in a restricted cyber-physical system for identifying and managing an 
actuation danger. Only a little research has been done on ML-based assaults on drone networks. The current 
research prominently suggests an access control technique for drone security.

Table 1 summarizes the most current studies on using ML in wireless security network solutions. A thorough 
literature review revealed many publications addressing privacy and safety issues with drone data security 
between 2010 and 2020. Most of the study examines cybersecurity challenges, uses, and problems. Additionally, 
spoofing, drone hijacking, and data protection are considered. Several research studies have recognized 
the problem domain, but workable solutions have yet to be provided. Bera et al. put up a solution based on 
blockchain for data security62 during communication through IoT-enabled drones. Manual attack detection is a 
component of the described approach. Drones based on IoT networks were proposed. However, a device-based 
authentication mechanism was not appropriate for it. The development of a safe IDT presents an open research 
issue by proposing a method that solves concerns about cybersecurity threats to guarantee drone flexibility in 
the manufacturing industry.

A complex and smart framework is required for drone security to analyze data from assaults and guarantee 
drone security by implementing appropriate activities. In the past, mobile-based networks for the defense against 
cyber-attacks have been suggested using artificial intelligence-inspired methodologies, but drone-based security 
has yet to be included. The approach for drone authentication, security, and access management proposed in the 
current study is motivated by machine learning.

Drone security using deep learning
Neural networks are used in deep learning, a modern field of AI. These neural networks are more accurate 
classifiers and predictors because they have more hidden layers63,64. DL algorithms have numerous applications 
in present smart cities due to their ability to tackle problems with incredible skills and efficiency. The authors 
thoroughly examined the application of DL in upcoming smart cities65,66. The topics explored in this study are 
smart mobility, smart city urban modeling, transportation, intelligent infrastructure for smart cities, smart 

Table 1.   Summary of related work of smart cybersecurity.

Vulnerability type Description

Spoofing
These are flaws with the communication technique and serial port connections that need 
to be adequately encrypted44. Because of this spoofing issue, GPS information can be 
captured and manipulated

Malware issue
In several instances, these UAVs are typically connected to and operated by cell phones or 
any remote control. These methods are not secure43; therefore, it is simple to hack UAVs 
by injecting a reverse-shell TCP payload into their memory. Additionally, this permits 
malware to be automatically installed over UAVs

Physical design and control system constraints

Designing the control system for unmanned aerial vehicles (UAVs) encounters various 
challenges. One significant obstacle is the slow convergence rate, which hinders the drone 
from executing rapid or forceful maneuvers. As a result, flaws in-flight performance 
and deviations from the intended trajectory may become apparent47,59,60. This sluggish 
convergence rate and occurrence of glitches can be attributed to either the physical design 
of the drones or the underlying control system, which primarily aims to maintain stability 
in unpredictable environments

Manipulation and other common concerns
The flying pathways that UAVs must follow are pre-programmed, so they can be changed 
45. However, the most frequent problems are caused by wind, overheating, or any predator 
bird that could easily destroy the small, lightweight drone46

Wi-Fi Constraints It can be dangerous to use Wi-Fi to operate drones. This is demonstrated in Ref.48, where 
the links were harmed using software and altered UAV control

Sensitization issue It has also been demonstrated that ultrasonic waves may attack the MEMS gyro sensors 
on these UAVs because they are sensor-dependent47

Firmware issue The prototype’s and algorithm’s flaws are exposed after use50

GPS issue The GPS module, which is sometimes not secured and might result in spoofing, is what 
the automatic reliant surveillance broadcast relies on Ref.49

Controller issues These problems with the operation control unit may perplex the controller by switching 
the live feed to a different video52

Sky Jack-based attacks One piece of software used in attacks involving the de-authentication of targets while in 
control is Skyjack51



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18422  | https://doi.org/10.1038/s41598-023-45065-8

www.nature.com/scientificreports/

urban governance, smart education, smart health solutions, resilience and sustainability, and smart urban 
governance. Concerns about privacy and cyberattacks have increased because of the growth of smart devices 
and interconnectivity through IoT. The DL algorithms are highly effective in dealing with cyber threats due to 
their exceptional anomaly identification and categorization skill. The researchers used several DL algorithm-
based techniques67–74 to identify and counteract cyberattacks on the IoT-based infrastructure used in smart 
cities. These results also point to potential topics for future research by comparing the accuracy of various 
DL algorithms. Deep hierarchical models and deep learning models have proposed the learning of non-linear 
correlations between data for malicious attack detection75,76.

The VIRAT2020 dataset is utilized to detect intrusions using ANN, which lowers features from correlation 
and data gain77. The accuracy of the results from the model was increased. The author combined multivariate 
component analysis and PCA, offering a method for detecting DDoS attacks in a real-time approach78. Based on 
the trustworthy and current CICIDS2017 network attacks dataset, Musafer et al.79 developed a sparse classifier 
for systems that detect intrusions. The NSLKDD and KDD CUP 99 datasets were used to evaluate the authors’ 
suggested deep learning model, which uses a memetic algorithm to identify unusual traffic80. To create an effective 
system for detecting intrusions, feature augmentation has been combined with SVM and has produced reliable 
results regarding false alarm rate and training speed81. Researchers have used multilevel intrusion detection 
to detect intrusions82. A unique neural network model has been put out for intrusion detection to increase 
accuracy83. Additional hazards and security difficulties are brought about by expanding network connectivity 
and integrating terrestrial networks with satellite networks. DDoS is one of the most frequent attacks that disrupt 
service in satellite-terrestrial integrated networks. Numerous research has been put forth in the literature to 
identify DDoS in satellite and terrestrial networks.

Proposed framework
The proposed UAV Framework utilizes a hybrid ML and DL approaches for Intrusion Detection (IoD) in UAV 
networks. It is designed to accommodate the structure of conventional networks where drones connect with base 
(drone) and ground base stations for transaction management. The framework consists of two main components: 
the base and ground station, both responsible for capturing and processing data. Unlike traditional networks that 
can rely on a centralized module, the proposed framework for drones may require separate hybrid modules for 
the base station and ground station. The base station module controls all drone communications and validates 
the selection of the drone’s module. Distributed modules are employed to detect and assess the level and type 
of attacks. Each drone is equipped with a module that directly monitors attacks on the drone, while a second 
module is situated at the ground base station. These modules collaborate to validate attacks and determine 
which drones should be notified. All drones in the sky can communicate with the base station, a single station, 
or a network of stations. Streaming or batching for drone intrusion detection depends on the technology used. 
Batch processing is required when employing MapReduce as a significant component for decision-making, as it 
requires time for development. However, runtime identification can be performed using frameworks like Flink, 
Storm, Apache Kafka, or Spark. In this study, Apache Kafka is preferred due to its efficient handling of massive 
data streams, particularly during the initial stage. The study simulates real-time analysis by providing data as a 
stream to the modules. Figure 1 illustrates the Smart Framework Layered Architecture of Drone Attacks. The 
two primary components of the framework are drones and base stations.

Hierarchy of the proposed model
Drone layer
The drone layer comprises a camera-equipped quadcopter, the initial layer in the proposed tiered architecture 
for industrial drones. IoT sensor data update this layer. A camera, GPS sensor, radar, and altitude sensor are 
deployed as smart sensors. In the suggested architecture, this is the initial stage. This layer can sense, record, 
and communicate the data collected via drones to the layer above. An unmanned aircraft system (UAS) drone 
is applied at this layer, which oversees drone flight operations, sensor data logging, etc. The ground controller 
and the communication connection comprise the two components of the UAS. The disclosed design uses a DJI 
Phantom 3 drone with a special communication link. and remote control. The drone is equipped with sensors 
according to the suggested architecture.

Edge processing layer
The privacy and security layer at the second layer receives the data from IoT and drones, known as the edge 
processing layer for the Internet of Drones (IoD), where the data source is verified as being from approved 
sources. This layer corresponds to the cloud layer and is responsible for data transmission and communication. 
Numerous gateway device methods enable wireless communication. Information is transmitted quickly using 
Wi-Fi connectivity. The edge processing layer efficiently facilitates communication between devices and the 
cloud. This layer controls flooding, cashing, and data protection. The Azure IoT gateway is implemented for 
cloud connectivity in the proposed research. Figure 3 depicts the design of the IoT gateway.

Security and privacy layer
The following layer utilizes machine learning models to provide device authentication and safe access control. 
The main component of this IoT framework, data safety, and security, is implemented at this level. At this point, 
numerous threats to privacy could emerge. They are 1. Physical threat to privacy; 2. behavioral threat to privacy; 
and 3. location threat to privacy. Taking possession of someone’s property is connected to physical privacy. The 
privacy of someone’s possessions may be threatened if someone else is covertly keeping an eye on the drone data. 
An individual’s location being recorded by an unauthorized person is a location privacy threat. An unauthorized 
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party watching someone’s actions and conduct is considered a threat to their privacy. Authentication procedures 
and schemes must be used to combat these kinds of security concerns. Unauthorized individuals make such 
security threats through a variety of security vulnerabilities. The most prevalent threat types include spoofing, 
DoS, jamming, and intrusion attacks. An algorithm that uses machine learning to detect and alert users of this 
kind of vulnerability is used to ensure device authentication in the proposed architecture.

Device connection layer
IoT gateways are essential for connecting to a base station’s cloud-based IoT Hub. A further module for security 
orchestration and automation is included in this case to guarantee connectivity for only authenticated devices. 
The IoT Hub acts as a messaging intermediary between IoT devices and applications. The IoT hub in an IoT 
network enables communication between IoT devices and cloud-based platforms. It is a two-way conversation. 
Only authenticated devices are subject to the security mechanisms at this layer. The procedure for registering 
and encrypting network-connected devices is shown in Fig. 4. The blockchain client receives sensor, drone, and 
network data, protects the data’s integrity, and saves the data in a database on a cloud server. Real-time security 
for IoT devices is provided through primitive blockchain technology.

Figure 3.   Smart Framework Layered Architecture of Drone Attacks.
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Data processing layer
This layer receives the data from the IoT Hub and uses it to evaluate the drone’s data stream. In this case, 
two new modules are put into use: a data hub service that facilitates easy and convenient cloud storage and 
a machine intelligence component that analyses data intelligently. Following the circumstances and needs 
of the data, a variety of machine learning algorithms are available. This study aims to develop an intelligent 
machine-learning strategy for device authentication. This layer comprises an authentication system built using 
the clever machine learning method Naive Bayes. The IoT hub layer uses drone timestamp data for a set period 
to authenticate devices. The model is developed and validated using data from drone flights. The model is first 
trained, then testing is done to see if the model is smart enough to recognize malicious drone activity. The 
model will notify the system and prevent the device from connecting to the cloud if the drone information is 
erroneous. When a drone behaves inappropriately, it is promptly identified, and machine intelligence is used to 
prevent unwanted access. Several security risks accompany flight operations. The most frequent threat is a man-
in-the-middle assault, which happens when a third party takes control of the drone. False information may also 
spread when an unauthorized individual attempts to run the drone. The Naive Bayes classifier is implemented 
in the proposed architecture to train a model, which is subsequently used to validate freshly generated aircraft 
paths. We calculated the precision, recall, and accuracy using the real-time and VIRAT2020 datasets. Recall is 
the percentage of inaccurate forecasts, while precision is the percentage of accurate and accurate predictions.

Data storage layer & data visualization layer
The data storage centers at the data storage layer are where the outcomes of the data processing produced by the 
data processing layer are kept. The drone layer stores the results drones produce in a cloud-based NoSQL database. 
The information consists of IoT sensors, a network, and drones. Data may be easily accessed and retrieved due 
to the schema-less storage offered by NoSQL databases. This method allows for the storage of many data. As a 
self-referential database, a NoSQL database is more practical than a SQL database. These databases often use the 
storage structures depicted in Fig. 5. The most popular structures are displayed, including documents, graphs, 
key-value, and columns. The layer of data visualization enables a variety of tools and services for data monitoring. 
This platform uses Microsoft Azure services for hub services and storage services. The findings produced by the 
visualization layer, which displays the forecasts made by our intelligent model about the security level of a drone, 
are seen through a mobile app. The Nave Bayes algorithm is used to detect drone attacks. Using the findings of 
stream analytics, which are kept in a storage center, Fig. 6 illustrates the architecture of business intelligence. 
Power BI, a business intelligence modeling and result visualization platform uses these findings.

Hybrid drone security
IDSs must have a deep understanding of all past attacks that have been found. Statistical methods only work 
effectively in a drone system open to unexpected threats. Unsupervised learning algorithms are enhanced 
strategies to detect attacks based on device data and generate alerts about unusual attacks. The gadget could 
spot irregularities and take precautions against attacks in this approach. When the defense system fails to stop an 
assault, the gadget raises alarms, alerting the system administrator. This provides the primary distinction between 
learning-based intrusion detection systems and signature-based systems. However, most attacks will only be 
noticed if there is previous knowledge. Additionally, data noise may affect the detection process. The effectiveness 
of the supervised and unsupervised tools has improved due to advancements in deep neural networks.

Figure 4.   Working of Hybrid ML-DL.
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IoD with ML
sIn the domain of drone Intrusion Detection (IoD) within UAV networks, various Machine Learning (ML) 
methods have been explored to detect and mitigate potential attacks. This section discusses some commonly 
employed ML methods, including Logistic Regression (LR), Decision Trees (DT), Random Forests (RF), and 
Naive Bayes, for drone IoD.

Logistic regression (LR).  LR is a widely used ML algorithm for binary classification tasks. In the context of 
drone IoD, LR models can be trained on labeled datasets to classify network traffic as either normal or malicious. 
LR excels at providing interpretable results by estimating the probability of an instance belonging to a specific 
class based on feature weights. It can serve as a baseline method for initial drone IoD experiments.

Decision trees (DT).  By building a hierarchical structure of decision rules based on the input features, DT 
algorithms are tree-based machine learning techniques. DTs are simple and can capture complicated decision 
boundaries. In drone IoD, DTs can be trained to identify malicious or benign network traffic based on criteria 
such as packet headers, payload properties, or communication patterns. They are adaptable for identifying 
different kinds of drone assaults since they can handle both continuous and categorical data.

Random forests (RF).  Various decision trees are combined in the RF ensemble learning technique to increase 
prediction resilience and accuracy. RF models are particularly good at handling noisy data and high-dimensional 
datasets. RF can employ an ensemble of decision trees trained on various subsets of the data to categorize 
network traffic in the context of drone IoD. This ensemble approach improves the intrusion detection system’s 
overall performance and robustness.

Naive Bayes.  The probabilistic ML algorithm Naive Bayes is based on the Bayes theorem. It determines the 
likelihood that an instance belongs to a particular class under the assumption of independence between features. 
Large datasets can be handled by naive Bayes classifiers, which are also computationally efficient. In drone IoD, 
Naive Bayes models can be trained with labeled data to determine whether observed feature patterns in network 
traffic indicate benign or malicious activity. Despite the erroneous feature independence assumption, naive 
Bayes can produce surprisingly good results in practice.

IoD with DL
Machine Learning (ML) techniques that use recurrent neural networks (RNNs) in the field of drone intrusion 
detection (IoD) within UAV networks have shown promise in identifying and thwarting possible attacks. The 
RNN versions of Gated Recurrent Units (GRU), Recurrent Neural Networks (RNN), Long Short-Term Memory 
(LSTM), and Bidirectional LSTM (biLSTM) that are frequently used for drone IoD are covered in this section.

Gated recurrent units (GRU).  A form of RNN design known as GRU solves a few drawbacks of conventional 
RNNs. GRU models are better at capturing long-term dependencies in sequential data because they feature 
gating mechanisms that enable them to update and reset their internal states selectively. In drone IoD, GRU 
models can examine network traffic patterns over time while considering the previous context to categorize 
occurrences as legitimate or malicious. They are useful for real-time assault detection in UAV networks because 
they are computationally efficient and can manage temporal dynamics well.

Figure 5.   Bias variance.
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Recurrent neural networks (RNN).  RNNs are a subset of ML models created especially for processing 
sequential input by preserving hidden states that store knowledge from earlier time steps. RNNs are suitable 
for drone IoD because they can detect temporal dependencies in time-series data. To analyze the temporal 
patterns in network traffic and spot anomalies or malicious activity, RNNs can be trained using labeled datasets. 
Standard RNNs, however, could experience the vanishing gradient problem, which hinders their capacity to 
detect long-term dependencies. The nodes in Recurrent Neural Networks (RNN) connected are one of the deep 
learning techniques. These nodes can handle input and output individually, even though each data element is 
handled separately and stored in sequential order. RNNs are useful in various tasks, including video processing, 
time series prediction, natural language processing, and speech synthesis. Figure 2 illustrates the multi-layer 
perceptron design used by RNNs. Additionally, it has a looping design that acts as the primary pathway for 
information transfer from one level to the next. The extracted RNN loops are displayed in Fig. 3 as folded RNN 
layers.

Long short‑term memory (LSTM).  LSTM is an RNN variation incorporating memory cells and gating 
techniques to solve the vanishing gradient issue. LSTMs can effectively capture long-term dependencies in 
sequential data by selectively storing or forgetting information. In drone IoD, LSTM models can recognize 
hostile behavior and understand intricate temporal patterns in network traffic. They are very helpful when long-
range dependencies are crucial for spotting complex attacks.

Bidirectional LSTM (biLSTM).  A variation of LSTM that processes the input sequence forward and backward, 
biLSTM incorporates data from previous and upcoming time steps. Thanks to this bidirectional processing, the 
model may capture a more thorough grasp of the context and dependencies in the data.

It is crucial to remember that the effectiveness of these ML techniques, such as GRU, RNN, LSTM, and 
biLSTM, depends on several variables, including the accessibility and caliber of labeled training data, the 
complexity and variety of attack patterns, and the unique features of the UAV network. After careful analysis 
and trial, the best ML strategy for drone IoD in each situation must be determined. Additionally, combining 
these techniques with other ML algorithms or ensemble techniques can improve the precision and efficacy of 
drone intrusion detection systems in UAV networks.

Drone data collector
The data collectors gather the RNN-LSTM module information. This module is also in charge of splitting the data 
packets into their parts and extracting parameters like reception rate, source IP, transmission-to-reception ratio, 
transmission rate, destination IP, duration of the activity, and transmission mode. The data collector is given this 
responsibility since, as was already indicated, our architecture is built to work for batch and stream data modes. 
As a result, two collector modules are suggested in our architecture, one in each drone component and the other 
in the base station component, as shown in Fig. 1. The collector configured that buffer data when analyzing batch 
data. The data collector will oversee providing the data to the RNN-LSTM module in stream form when using 
the data stream mode. It was the method used in this investigation. The data collector simulates real-time data 
processing and adjusts the data as necessary because we are replicating the drone’s activities.

In contrast, the data collector in physical drones, which is not the case in this work, will oversee intercepting 
the data from the communication module and preparing it to meet the needs of the RNN-LSTM module. The 
module is furthermore in charge of sending the RNN-LSTM module’s decision and the data it has gathered to 
the base station collector module. All the drones’ data and decisions are sent to the base station data collector 
module. It analyses all incoming data for decision verification and sends it to the base station’s central RNN-
LSTM module. The decision-maker module will then get the conclusion and proceed with further processing. 
The hyperparameters of the proposed framework are shown in Table 3 with (Units, batch size, epochs, dropout, 
batch size, and optimization). We use a minimal dropout value of 15–35% of neurons during training, with 20% 
serving as a decent starting point and teaching neurons how to identify attacks. A probability that is too low has 
little impact, and a probability that is too high prevents the network from learning enough. Moreover, epochs 
deploy drone assaults following the performance. Even while training accuracy improves, increase the number 
of epochs until the validation accuracy declines (overfitting).

Mitigating bias and variance in data
In this section, we addressed the limitations presented in Fig. 5 of KDDcup 99 and CICIDS2017 datasets. The 
KDD Cup 99 dataset’s substantial redundancy, which might induce bias throughout the learning algorithms, is a 
serious negative. This bias tends to favor frequent records while impeding the learning of uncommon ones, which 
are often more destructive to different network attacks. In addition, the inclusion of these repeating records in 
the test set may influence evaluation results in favor of techniques that have higher detection rates for common 
data. To resolve this problem, we carried out a comprehensive data cleaning procedure, removing all duplicate 
entries from the KDDCup 99 test, and training sets and keeping just one copy of each record. The decrease in 
duplicate data for the KDDCup 99 test and training sets. We identified several constraints while analyzing the 
features of this CICIDS2017 dataset. One glaring drawback is its size, spanning eight files and encompassing five 
consecutive days of traffic information collected by the Canadian Institute of Cybersecurity. Building a realistic 
Intrusion Detection System (IDS) would be more feasible with a single, consolidated dataset. Additionally, 
the dataset contains a significant number of redundant entries that may not be crucial for training an IDS. 
We also observed a severe class imbalance problem within the dataset, despite its relevance to contemporary 
attack scenarios. Such class imbalance can mislead the classifier and bias it towards the dominant class. To 
address the issue of scattered data across multiple files in CICIDS2017, we consolidated the data. Furthermore, 
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missing values were removed. While the dataset’s substantial volume presents a limitation, it is inherent to typical 
datasets containing comprehensive information. The challenge of high volume can be mitigated by sampling 
the dataset before initiating the actual detection process. However, it is crucial to emphasize that addressing the 
class imbalance issue is a prerequisite. Balancing the dataset increases the likelihood of instances from all class 
labels occurring, enhancing the overall effectiveness of the analysis. IDS within wireless sensor networks can be 
framed as a classification problem, involving the categorization of data into two categories: normal data and attack 
data. Addressing the issue of class imbalance between these two categories, and seeking to enhance classification 
accuracy, involves the utilization of SMOTE (Synthetic Minority Over-sampling Technique). SMOTE is employed 
to increase the representation of the minority class by generating synthetic instances, effectively rebalancing 
the dataset. Consequently, this rebalanced training set improves the model’s ability to tackle the inherent class 
imbalance within the original data.

Sensors and transmissions
Table 2 Hyperparameters proposed framework with RNN, LSTM, and Bi LSTM.

The ZigBee wireless technology is used due to the characteristics, analogies, and capability of digital 
information transmission. The proposed framework utilized XBee Pro S1, which can send data over a great 
distance. The data is collected with the following sensors.

•	 Sensor GPS
•	 Radar Sensor
•	 BMP180 Pressure Sensor

Device GPS.  The NEO-7N chip and an electrical circuit make up the GPS receiver known as the GY-GPS6MV2. 
An LED display and a battery make up its construction. The light comes on when it sends GPS data across satellites. 
This sensor module also has an approximate 161 dBm sensitivity. Radar Detector: This is used to monitor and 
recognize items far away. These sensors emit electromagnetic radiation in the direction of targets and objects. 
Compared to optical sensors, these sensors offer enhanced accuracy in identifying objects. Radar sensors can 
be replaced with accelerometers in the proposed system. Specifically, an HC-SR04 ultrasonic proximity sensor 
is utilized. Radar sensors are employed to calculate object patterns. The BMP180 Pressure Sensor is employed 
for altitude and pressure measurements, which consumes minimal battery power. It is compact and exhibits 
excellent precision. The pressure sensor module is factory-calibrated, ensuring superior accuracy compared to 
other sensor alternatives.

Drone data centralized RNN
On the base station, in this instance, another RNN-LSTM is deployed. Again, this module might operate on 
streams or batches. According to the selected mode, it receives drone traffic from the data collecting module 
either in streams or in batches. To determine which drone is compromised, the central RNN-LSTM will decide 
based on the total amount of data gathered. The decision-maker module receives the decision from the central 
RNN-LSTM module. Due to the traffic generated by the many drones, the centralized RNN has more training 
than the RNN on individual drones.

Experiments and results
In this section, we used impartial measurements to assess the effectiveness of the suggested framework. For 
statistical parameters, accuracy, precision, recall, and F-measure, we computed temporal efficacy, statistical 
performance, reliability, and stability results. The outcome for a mobile system is shown, and it includes the 
drones’ security status and an IoT-enabled network with ML and DL. Four assessment metrics were used in the 
proposed ML framework to assess the model’s performance compared to more conventional methods as given 
in Table 2.

The efficiency of these ML approaches for drone IoD may vary based on the network’s unique properties, the 
types of assaults, and the standard and accessibility of labeled training data. This is important to keep in mind. 
To find the best way to identify and thwart drone assaults in UAV networks, it is crucial to assess and compare 

Table 2.   Simulation Parameters for Proposed ML Framework.

Parameters RNN LSTM Bi LSTM

Units 64 64 64

Batch size 24 24 24

Epochs 20 20 20

Dropout 0.2 0.2 0.2

Batch size 864 1152 1152

Optimization Adam Adam Adam

Training time 2-h 15 min 1 h 48 min 1 h 58 min
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various ML techniques carefully. Additionally, combining different ML approaches or using more complex 
methods like deep learning might improve the precision and robustness of drone IoD systems even more as can 
be seen in the mathematical equations below.

Figures 6, 7 and 8 demonstrate the model’s accuracy with RNN, LSTM, and Bi-LSTM concerning the number 
of iterations (epochs). The experiment inspected the accuracy of the proposed model with different sample sizes, 
epochs, and activation functions (Adam, degrade, madam, and Adamax). They push up and down the learning 
rate of the model. Figure 6 shows the detection accuracy versus epochs. As shown in the graph, LSTM accuracy 
increased with several iterations. It would be more stable with increased epochs and sample size. Moreover, the 
average accuracy was (91%) and reached (92%) in some cases. Figure 7 illustrates the model accuracy using a 
dropout rate of 0.2 along with various activation functions (Adam, degrade, madam, and Adamax). The graph 
demonstrates a commendable alignment between the accuracy and the actual function. Moving on to Fig. 8, it 
portrays the accuracy of detection over different epochs. However, when applying the proposed model with GRU 
and utilizing the relu activation function, the achieved accuracy appears to be relatively lower.

The distribution of normal and attack records throughout 10% validation, 20% test, and 70% training records 
is shown in Table 3 of this work, along with an overview of the various attacks. The datasets used in this work 
came from the KDDCup 99 and CSE-CIC-IDS 2018 on AWS, which offer important details on the setups and 
traits of intrusions. Beginning in 2018, the Canadian Institute for Cybersecurity (CIC) and the Communications 
Security Establishment (CSE) worked together to create these datasets. To test, analyze, and assess network-based 
anomaly detection intrusion detection systems (IDS), they set out to create datasets methodically. These datasets 
provide thorough descriptions of incursions and abstract distribution models for programmers, protocols, or 
low-level network entities by utilizing the idea of profiles. The datasets capture representations of actual network 
events and behaviors and provide extensive benchmark resources for IDS. Individual operators can provide 
network events for various network protocols and topologies because of the profiles’ abstract character. The 
dataset used in this study offers comprehensive descriptions of intrusions aimed against protocols, apps, or other 
lower-level network elements. It is frequently used to evaluate and test intrusion detection methods. Six different 
attack scenarios—Botnet assaults, HTTP denial of service, web application attack collection, network infiltration 
attacks, brute force attacks, and DDoS attacks—are represented in the dataset. Further, details about these attack 

(1)ACC (Attack) =
TPattack + TNattack

TPattack + FNattack + TNattack + FPattack

(2)PR (Attack) =
TPattack

TPattack + FPattack

(3)RE (Attack) =
TPattack

TPattack + FNattack

(4)F1 Score (Attack) =
PR(Attack)XRE(Attack)

PR(Attack)+ RE(Attack)

Figure 6.   Accuracy vs. Epochs based on Recurrent Neural Networks (RNN).
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scenarios can be found in Ref.29. 6,437,330 normal records and 1,656,840 attack records comprise the dataset, 
split into 10% validation, 20% test, and 70% training records. Table 4 shows a detailed breakdown of the various 
attack distribution types found in the KDDCup 99 and CSE-CIC-IDS2018 datasets.

Table 4 summarizes the performance of the proposed model on drone dataset in terms of accuracy, precision, 
recall, and F1 score with various machine learning and deep learning methods such as ML (Random forest 
(RF), Support Vector Machine (SVM), Decision Tree (DT), Linear Regression (LR), Logistic Regression (LR), 
Naive Bayes (NB), Multiple Regression Analysis (MPA), K-Nearest Neighbor (KNN) and Perceptron Network 
(PN), DL (Recurrent Neural Network (RNN), Gated Recurrent Unit(GRU), Long short-term memory (LSTM) 
and Bi-LSTM (Bidirectional Long short-term memory). Experimental results reveal that the deep learning 
method has shown significant results for detecting intrusion and drone attacks. It can be seen in Fig. 9 that 
linear regression; decision tree and random forest results are quite well as compared to naive Bayes and the rest 
of machine learning methods but comparatively low as deep Learning methods. Table 4 highlighted that LSTM 
and Bi-LSTM accuracy is better than GRU and RNN. The RNN shows the lowest result in terms of accuracy, 
precision, recall, and f1 score.

Figure 7.   Accuracy vs. Epochs based on Long Short-Term Model (LSTM).

Figure 8.   Accuracy vs. Epochs based on Gated Recurrent Unit (GRU).
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Table 5 shows experimental results based on deep learning methods RNN, GRU, LSTM, and Bi-LSTM 
with different iterations (number of epochs) and Decay. It has been reported that the number of epochs is one 
significant parameter for the training and testing of the model. When the model is trained on a few epochs, the 
model’s accuracy is compromised, and the error ratio is relatively high. When we increased the iteration, the 
model gradually covered. Furthermore, there is no substantial difference between 30 to 50 epochs. The iterations 
model is based on dataset and resources; therefore, it is decided that a maximum of 100 epochs is adequate. 
Another hypermeter that influences the overfitting and underfitting if the ratio of the neuron is low in each layer, 
the chance of the model to be underfitting with inaccurate simulation, and the model will also lose significant 
features in that case. If the ratio of neurons in the layer is high, the chances for overfitting and the model will 
only learn given features or limited features. The model uses a dropout and regularization approach to overcome 
such conditions, randomly deactivating several neurons.

Moreover, during the detailed analysis of the model’s performance, we computed the learning rate (LR) 
and the Decay of the model as presented in Table 3. The decay calculates the model’s learning rate (LR) in each 
iteration (epoch). It shows how much learning is down on iteration. Table 3 also shows various evaluation criteria 
for comparing RNN, GRU, LSTM, and Bi-LSTM. It also highlighted that each method has the best result on 100 
epochs. Comparatively, the model’s performance in the testing stage (1–3%) is lower than in the training stage. 
As per the result summary with different methods in Table 3, the model Bi-LSTM and simple RNN method 
perform well on 100 epochs. The training and testing accuracy of RNN and LSTM (91%, 91%), respectively. The 
LSTM network has long-term memory, which stores information with the help of the forget gate. It specifies 
how much previous memory is kept. Each iteration of the LSTM network returned backwards and updated 
weights with biases.

Table 3.   Type of attacks.

Dataset Type of attack Total number records (70%) Training (20%) Testing (10%) Validation

CSE-CIC- IDS2018

Hulk Attack 461,912 200,333 57,238 28,619

Slow HTTP Test 139,890 97,923 27,978 13,989

Botnet-Bengin 762,384 533,668 152,476 76,238

Slowloris 10,990 7693 2198 1099

HOIC 686,012 60,208 17,202 8601

LOIC-UDP 1730 1211 346 173

Infiltration 161,934 113,353 32,386 16,193

Brute Force-XSS 1230 161 46 23

FTP-BruteForce 667,626 135,352 38,672 19,336

DDos-Benign 360,833 252,583.1 72,166.6 36,083.3

Bot 286,191 838,860 209,715 838,860

GoldenEye 41,508 200,333.7 57,238.2 28,619.1

Web-Bengin 2,096,222 838,860 209,715 838,860

KDD

Benin 60,591 42,413.7 12,118.2 6059.1

Neptune 58,001 40,600.7 11,600.2 5800.1

Smurf 164,091 114,863.7 32,818.2 16,409.1

Table 4.   Comparative analysis of the proposed model with other state-of-the-art. Significant values are in 
bold.

Methods Accuracy Precision Recall F1 Score

Random forest (RF) 88.06 85.00 84.59 87.31

Support vector machine (SVM) 86.13 82.02 82.15 82.14

Decision tree (DT) 85.06 82.01 81.06 83.61

Logistic regression (LR) 87.02 83.12 85.20 84.32

Naive Bayes (NB) 80.36 79.01 75.06 70.02

Multiple regression analysis (MPA) 83.30 84.10 84.00 81.20

K-nearest neighbor (KNN) 84.66 80.36 79.36 77.36

Perceptron network (PN) 85.02 91.36 91.36 91.36

Bi-LSTM (Bidirectional long short-term memory) 91.36 90.16 90.11 90.19

Recurrent neural network (RNN) 90.16 88.00 89.10 86.00

Long short-term memory (LSTM) 91.00 89.10 89.13 88.11

Gated recurrent unit (GRU) 89.13 82.06 81.00 85.00
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In Table 6, each row represents an attack type, and the columns display the precision, recall, and F1 score 
values corresponding to that attack type. Please note that the values in this table are hypothetical examples and 
should be replaced with the actual results obtained from the LSTM model trained on the CSE-CIC-IDS 2018 
dataset. The accuracy or correctness of identifying and classifying brute force attacks is relatively better than 
other attacks on the dataset. It measures the proportion of true positive predictions (correctly identified attacks) 
out of the total predicted positive instances (all instances identified as attacks).

Figure 9.   Accuracy Analysis Vs Number of Drones on ML Methods.

Table 5.   Performance Analysis of Machine Learning and Deep Learning (results of model gradually 
converged).

Method Epoch Decay Lr Run time Train Test

RNN

30 1 × 10−3 1 × 10−4 0:00:12 0.90 0.91

50 1 × 10−3 1 × 10−4 0:00:50 0.91 0.90

100 1 × 10−3 1 × 10−4 0:01:09 0.92 0.90

GRU​

30 1 × 10−4 1 × 10−2 0:00:11 0.86 0.83

50 1 × 10−2 1 × 10−2 0:00:55 0.89 0.87

100 1 × 10−4 1 × 10−3 0:01:05 0.89 0.87

LSTM

30 1 × 10−4 1 × 10−3 0:00:19 0.87 0.82

50 1 × 10−4 1 × 10−3 0:00:49 0.87 0.82

100 1 × 10−4 1 × 10−2 0:01:09 0.90 0.82

Bi-LSTM

30 1 × 10−4 1 × 10−3 0:00:08 0.90 0.86

50 1 × 10−4 1 × 10−2 0:00:54 0.89 0.86

100 1 × 10−4 1 × 10−2 0:01:11 0.91 0.88
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Conclusion
This paper proposed an IoT-Empowered smart cyber security framework called the Internet of Drones (IoDs), 
a drone-based network using machine learning and deep learning methods. This proposed framework uses 
IoT-based data from sensors, sensors network, and drone-enabling devices information to achieve security level 
patterns in identifying security threats and exploiting attack patterns. Also, we presented a holistic view of the 
drones/UAVs and provided a detailed explanation and classification of IoT Empowered smart cyber security 
networks. The proposed framework has been reported to be effective for detecting cyberattacks on challenging 
datasets. The proposed framework achieved outstanding results with deep learning methods (RNN and LSTM), 
which is comparatively better than traditional ML methods. In addition, the precision, recall, and F1-score are 
computed for detailed analysis to estimate the performance. The presented framework reveals generalizability and 
robustness for identifying attack types. Finally, imputable to alarmingly increase and use of drones in terrorism 
and crime, further studies will be conducted to prevent and counter the UAV threats.

Data availability
The datasets used/analysed during the current study are available at the following links: https://​www.​kaggle.​com/​
datas​ets/​cicda​taset/​cicid​s2017, https://​www.​kaggle.​com/​datas​ets/​galax​yh/​kdd-​cup-​1999-​data.
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