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Mutual‑information based 
optimal experimental design 
for hyperpolarized 13C‑pyruvate 
MRI
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Dawid Schellingerhout 2, James A. Bankson 2 & David T. Fuentes 2*

A key parameter of interest recovered from hyperpolarized (HP) MRI measurements is the apparent 
pyruvate‑to‑lactate exchange rate, k

PL
 , for measuring tumor metabolism. This manuscript presents 

an information‑theory‑based optimal experimental design approach that minimizes the uncertainty 
in the rate parameter, k

PL
 , recovered from HP‑MRI measurements. Mutual information is employed 

to measure the information content of the HP measurements with respect to the first‑order exchange 
kinetics of the pyruvate conversion to lactate. Flip angles of the pulse sequence acquisition are 
optimized with respect to the mutual information. A time‑varying flip angle scheme leads to a higher 
parameter optimization that can further improve the quantitative value of mutual information 
over a constant flip angle scheme. However, the constant flip angle scheme, 35 and 28 degrees for 
pyruvate and lactate measurements, leads to an accuracy and precision comparable to the variable 
flip angle schemes obtained from our method. Combining the comparable performance and practical 
implementation, optimized pyruvate and lactate flip angles of 35 and 28 degrees, respectively, are 
recommended.

The potential of hyperpolarized (HP) 13C-Pyruvate magnetic resonance imaging (MRI) to characterize cancer 
biology, predict progression, and monitor early responses to treatment is well known (e.g.,1–9). Ongoing studies 
in prostate, brain, breast, liver, cervical, and ovarian  cancer1, 3, 4 have shown that HP 13C-Pyruvate MRI is safe 
and effective. One of the central aspects of HP-MRI that make it appealing is the elevated chemical conversion 
of pyruvate to lactate, even in the presence of oxygen, via lactate dehydrogenase (LDH), also referred to as the 
Warburg  effect10, 11. The higher production of lactate has been shown to correlate with disease presence, the 
aggressiveness of the disease (e.g., cancer and inflation), and response to therapy. The rate of pyruvate-to-lactate 
exchange ( kPL ) is a crucial parameter of interest in locating aggressive disease and assessing the biological state 
of the tissue. HP-MRI presents a unique opportunity to observe tumor metabolism in vivo2, 3, 5, 6 and use this 
information to make inferences about tumor aggressiveness and response to therapy. However, a recent white 
 paper3 highlights the need for further development of spatial, temporal, and spectral encoding strategies that 
minimize uncertainty while maximizing the efficiency of HP-MRI. An example of uncertainty is the variability 
of the reported HP measurements in the  literature12–14. In the present work, we develop an information-theory-
based approach to determine the optimal MRI design parameters, such as flip angles, with a goal of reducing 
the uncertainty in the recovered rate parameter, kPL.

The physics of the dynamic nuclear polarization (DNP) method that enables MR imaging of HP 13C-pyruvate 
is described  in3, 5. The time history of pyruvate and lactate magnetization within the imaging voxels constitutes 
the data of interest. Together with a pharmacokinetic HP-MRI model, pyruvate and lactate magnetization data are 
employed to recover the pyruvate-to-lactate apparent exchange rate, kPL ; e.g.,2, 15, 16. Accuracy and uncertainty in 
the recovered rate parameter depend on the data’s information content and the pharmacokinetic model’s fidelity. 
This work aims to determine the MRI design parameters that increase the information content in the data and 
reduce the uncertainty in the rate parameter. The mutual information (MI) between the data and critical model 
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parameters is utilized toward this goal. Information theory and, specifically, mutual information provides a 
rigorous mathematical framework for optimizing acquisition protocols to improve reproducibility.

In this work, data to verify the reduction in uncertainty of recovered rate parameter kPL when using optimal 
design parameters is generated synthetically from the pharmacokinetic model. Different signal-to-noise ratios 
are considered in generated noisy data to analyze the uncertainty in the recovered kPL for various signal-to-
noise ratios. The optimal design parameters is shown to reduce uncertainty in the pyruvate-to-lactate apparent 
exchange rate, kPL . The codes and relevant files to reproduce the results will be publicly available in the following 
GitHub repository: https:// github. com/ prash jha/ Hyper polar izedM RI.

Related works
Semi-quantitative metrics such as the ratio of the integrals of the lactate-to-pyruvate signals (area under the 
curve, AUC) are often preferred due to their simplicity. However, the lactate-to-pyruvate ratio is biased by HP 
pyruvate in blood vessels that are inaccessible to enzymes that mediate conversion from HP pyruvate to lactate. 
For example, if the vascular blood volume decreases by 10 percent in a region of a tumor, the lactate-to-pyruvate 
ratio could increase even if the true metabolic state of cells does not change. The lactate-to-pyruvate ratio is also 
affected by the excitation scheme. Small flip angles consume less pyruvate magnetization and permit the signal 
pool to remain longer for the conversion to lactate. The potential for variability is realized in the literature. In 
applications to brain cancer (glioma)  Grist12 reports a lactate to pyruvate ratio of .25 ± .08 and .22 ± .06 in white 
matter and gray matter, respectively. Lactate-to-pyruvate ratios greater than 1.0 are reported  in13 in gray matter. 
Lactate-to-pyruvate ratios in white matter of 0.43 ± 0.14 were reported  in14.

Various strategies have been proposed to optimize the HP acquisition in terms of the variability and accuracy 
of the pyruvate to lactate conversion rate measurements, kPL . Walker et al.15 utilized a two-species kinetic model 
and compared variable excitation angle acquisitions and conventional constant excitation angle acquisitions. The 
variable excitation scheme was obtained from a recursive relation that depletes the signal at the final  acquisition17. 
Optimization strategies included maximization of the lactate signal or maintaining a constant signal. Either 
constant excitation angle or variable excitation angles that attempt to maximize total signal of the acquisition, as 
opposed to maintaining a constant signal level, were seen to produce the best recovery in terms of accuracy and 
repeatability. Larson et al.18 developed a novel kinetic modeling approach that did not require a manual input 
forcing function for the governing two-species kinetic model equations. The ‘inputless’ method required no 
assumptions regarding the input function and was compared to a tradition kinetic model that manually identified 
the known input signal. Assuming time-varying excitation angles, the ‘inputless’ method was seen to provide no 
loss in accuracy and precision over the classical method. Maidens et al.19 develop a Fisher information approach 
for determining the optimal time varying pulse sequence and demonstrate a decrease in kPL uncertainty when 
compared with strategies that maximize the signal SNR (Signal-to-noise ratio).  In20, the OED formulation for 
magnetic resonance fingerprinting based on the Cramér-Rao bound is presented. Cramér-Rao bound was used 
for optimal estimation of parameters in Bloch equation  in21.

The information theoretic approach developed in this work is an extension of optimal experimental design 
approaches that use the Fisher information matrix and the Cramér-Rao bound as a lower bound on the variance 
of unbiased  estimators16, 19–28. Indeed, the de Bruijn  identity29 provides a direct connection between derivatives of 
our entropy calculations and the Fisher information matrix. However, optimizing the Fisher information matrix 
requires estimates of the unknown tissue parameters, such as T1 relaxation losses and pyruvate-to-lactate conver-
sion rate (parameter to be recovered from the data), to calculate the Fisher information. The Fisher information 
must be iteratively re-optimized as more accurate estimates of the tissue properties are obtained. In contrast, the 
present approach provides a mathematical framework to directly include the tissue parameter uncertainty in the 
mutual information and considers a range of tissue parameters (determined by the input probability distribu-
tions) to calculate and optimize the mutual information.

Methods
Hyperpolarized (HP) MRI model
Consider a tissue domain within which different constituents evolve depending on the local environment which 
includes, for example, extravascular (interstitial) and vascular. In this work, two spatial compartments, namely, 
extravascular and vascular, each containing HP pyruvate and lactate and complement of these two constituents, 
are considered. The model employed is based  on2, 15 and accounts for T1 relaxation loss, signal loss due to excita-
tion at each scan, and pyruvate-to-lactate and lactate-to-pyruvate exchanges. We expect a dynamic, spatially, and 
spectrally localized data from the HP MR data acquisition such that the spatially invariant model may represent 
the data collection on a voxel-by-voxel basis.

Consider a tissue domain �cell of volume |�cell| in units of cm3 . Assuming �cell is small enough that the 
spatial variation of hyperpolarized agents in � can be ignored, we let c̄P(t) and c̄L(t) denote the relative density 
of HP pyruvate and lactate, respectively, at time t (in units of s). Here, the relative density of species A ∈ {P, L} 
is defined as the ratio of the density of species ρA and the total density ρ , i.e., c̄A = ρA/ρ . Then the total mass 
of HP pyruvate and lactate are ρ|�cell|c̄P(t), ρ|�cell|c̄L(t) , respectively, ρ being the mass density (g/cm3 ) of the 
continuum mixture. Discrete times at N scans are denoted by tk , 1 ≤ k ≤ N ; θkP and θkL are flip angles in kth scan 
whereas TRk = tk − tk−1 , k > 1 , are repetition times and TR1 = 0 . With c̄ = (c̄P, c̄L)

T , the HP pyruvate and 
lactate available for measurement at the (k + 1)th scan, k ≥ 1 , are given  by15

(1)c̄(tk+1) = exp [TRk+1A]C
k
c̄(tk)+

kve

νe

∫ tk+1

tk

exp [(tk+1 − τ)A]VIF(τ )dτ ,

https://github.com/prashjha/HyperpolarizedMRI
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where the matrix A accounts for T1 relaxation losses and pyruvate-lactate exchanges

Here T1,P, T1,L denote the T1 relaxation times (s), kPL, kLP pyruvate-to-lactate and lactate-to-pyruvate exchange 
rates (s−1 ), kve vascular-tissue exchange rate (s−1 ), and νe the extravascular volume fraction. In (1), Ck denotes 
the matrix that takes into account the loss of signal due to excitation at kth scan:

Lastly, VIF = VIF(t) is the vascular input function (dimensionless). Empirically determined blood flow through 
nonbranching vessels have been shown to correspond to a gamma variate input  function30. Thus, VIF is taken 
to be

where σP,αP,βP are constants, and γ denotes a gamma probability density function given by

The constant t̄0 is associated with bolus arrival time and is treated as one of the uncertain model parameters. 
Constants σP and αP are dimensionless while βP is in units of seconds.

In (1), the parameters can be gathered in two different classes: 1) model parameters that depend on the tissue 
domain and specific voxel and includes  P = (T1,P, T1,L, kPL, kLP, kve, νe, t̄0) , and 2) HP-MRI design param-
eters such as repetition times and flip angles K = ({TRi}Ni=2, {θ iP}Ni=1, {θ iL}Ni=1) . For simplicity, the parameters 
T1,P, T1,L, νe, kLP are assumed to be known and fixed so that P = (kPL, kve, t̄0) . The default values of model and 
design parameters are provided in Tables 1and 2, respectively.

The total signal
The magnetization intensity of constituent A , A ∈ {P, L} , at kth scan is assumed to be proportional to the mass 
of the constituent in �cell , i.e., there is a constant C such that Cρc̄P(tk)|�cell| and Cρc̄L(tk)|�cell| are the total 
magnetization of pyruvate and lactate, respectively. Without loss of generality, C is such that Cρ|�cell| = 1 . In 
this case, c̄P(tk), c̄L(tk) are the total magnetizations, sin(θkP)c̄P(tk) and sin(θkL )c̄L(tk) are the measured signal, and 
cos(θkP)c̄P(tk) and cos(θkL )c̄L(tk) are the signals remaining for the next measurements, respectively.

The signals measured at the kth scan are,  see15,

(2)A =

[

− 1
T1,P

− kPL − kve
νe

kLP

kPL − 1
T1,L

− kLP

]

.

(3)C
k =

[

cos(θkP) 0

0 cos(θkL )

]

.

(4)VIF(t) =
[

σPγ (t − t̄0,αP,βP)
0

]

,

(5)γ (t, a, b) =
1

baŴ(a)
ta−1 exp

[

−
t

b

]

.

Table 1.  Default model parameters, P , and remaining fixed model parameters used in initialization, 
optimization, and verification steps.

Parameter Default value Description

T1,P, T1,L 30 s, 25 s Relaxation  times31

kPL 0.15 s −1 Pyruvate-to-lactate apparent exchange rate

kLP 0 s −1 Lactate-to-pyruvate apparent exchange rate

t̄0 4 s Bolus arrival time for HP pyruvate

σP,αP,βP 100, 2.5, 4.5 s Parameters in the gamma function (4)

kve 0.05 s −1 Vascular-extravascular exchange rate

νe 0.95 Extravascular volume fraction

Table 2.  Default design parameters, K , used in initialization, optimization, and verification steps.

Parameter Default value Range Description

N 30 – Number of HP-MRI scans

TRk 3 s [1.5, 4.5] Repetition times (for k > 1)

θkP 20 degrees [0, 35] Flip angles for HP pyruvate (for all k)

θkL 30 degrees [0, 35] Flip angles for HP lactate (for all k)
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i.e., one only measures the sin(θkP) and sin(θkL ) fractions of the magnetization leaving the cos(θkP) and cos(θkL ) 
fractions for the next measurement. The total signal is the sum of the individual signals at different scans and 
is given by

where the dependence of G on the design parameters K and model parameters P is clear from (1) and (6). Note 
that the total signal depends on the entire history of the magnetization time evolution. The magnetization at the 
current acquisition depends on the HP signal available from the previous acquisition and the total signal is the 
sum over each time point. In general, the total signal is also proportional to the magnetization weighted by B1 
sensitivity maps of the receive coils used for the acquisitions. Here, we are considering the HP data fits on a per 
pixel basis and assume that B1 variations are small across a given pixel.

Synthetic data
To verify the uncertainty reduction in kPL using the optimal design parameters, HP-MRI experiment is syntheti-
cally simulated using the model in (1) with the optimal design parameters and the control design parameters 
(default values listed in Table 2). Suppose KS is the design parameter associated with some scenario S ; S = default 
correspond to the default design parameters, S = OEDSNR correspond to the optimized design parameters for 
the specific SNR value.

Using the pharmacokinetic model (1), “ground truth” (signals at N scans) is generated using KS design 
parameters and default model parameters listed in Table 1. The data (simulation results) is denoted by YS and 
takes the form:

where, siP, s
i
L denote the pyruvate and lactate signals at ith scan, see (6). A total of 25 samples of noisy data for 

different values of SNR are considered. Noisy samples are computed as follows:

where σs(SNRdata) , given in (21), is the amount of noise in measured signals that depends on the assumed SNR, 
SNRdata , and aj , bj ∼ N (0, 1) for each j = 1, 2, .., N . Since SNR in the data, SNRdata , is expected to vary with 
pixelwise location, a range of SNRdata for different optimal design parameters is considered to comprehensively 
evaluate the accuracy and precision of the kPL parameter recovery. The noise values correspond to the previous 
SNR range considered: σs(SNRdata) for SNRdata ∈ {2, 5, 10, 15, 20}.

Mutual information based optimization of MR scan parameters
A major goal of this study is to formulate an optimization problem to determine the design parameters 
K = ({TRi}Ni=2, {θ iP}Ni=1, {θ iL}Ni=1) such that the MRI measurements reduce uncertainty in the rate parameter, 
kPL . Treating total signal, G defined in (7), as the data, and model parameters, P = (kPL, kve, t̄0) , and data as 
random variables, an optimization problem of maximizing the mutual information (MI) between the data and 
model parameters is proposed. It is shown that uncertainty in recovered kPL from synthetic noisy data is reduced 
when optimal design parameters are considered; see section "Results".

In what follows, after defining some preliminary quantities, the mutual information between data and the 
model parameters is defined. Let z ∈ Z = R , P ∈ � ⊂ R

3 , and K ∈ D ⊂ R
3N−1 , where Z,�, D are data, model 

parameter, and design parameter spaces, respectively. It is remarked that mutual information are intractable 
and suffer from the curse of dimensionality as the model complexity is increased to consider more variables. 
The curse of dimensionality appears from the nested integrals inherent to the mutual information calculation. 
Further, mutual information calculations in this work utilizes the spatially invariant model while incorporating 
spatial variations in the mutual information through the parameter variance. For example, spatial variations in 
the T1 relaxation times among biological compartments are expected and are represented by the variance in 
the T1 parameters of our model. Our Bayesian approach explicitly accounts for modeling uncertainty including 
differences among biological compartments through the parameter variance.

Prior, likelihood, and evidence
Suppose p0(P) is the prior probability distribution function (PDF) of model parameters P and p(z) is the PDF 
of the data z . Then the joint PDF p(z,P) must satisfy

(6)s
k =

[

sin(θkP) 0

0 sin(θkL )

]

(νec̄(tk)+ (1− νe)VIF(tk)) =
[

sin(θkP)(νec̄P(tk)+ (1− νe)VIF1(tk))

sin(θkL )(νec̄L(tk)+ (1− νe)VIF2(tk))

]

,

(7)G = G(K,P) =
N
∑

k=1

(

skP + skL

)

,

YS =









s1P s1L
s2P s2L
· ·
sNP sNL









,

(8)Ynoisy,S,SNRdata
= YS + σs(SNRdata)







a1 b1
a2 b2
· ·
aN bN






,
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where p(z|P) is the conditional PDF of data conditioned on model parameters P (also referred to as the likeli-
hood function) and p(P|z) the conditional PDF of model parameters P conditioned on data z (posterior of P ). 
The prior is taken as multi-variate Gaussian with mean µP and covariance matrix �P:

Here �µP − P�2
�−1

P

= (µP − P) ·�−1
P

(µP − P) . Within this Bayesian setting, �P , is representative of biologi-
cal variability. Within the scope of this manuscript, biological variability refers to potential patient specific dif-
ferences in the pyruvate to lactate exchange rates, vascular tissue exchange rates, and bolus timing of the injected 
pyruvate.

To derive the expression for the likelihood function, first suppose that G = G(K,P) is the model prediction 
of data. Data and the model prediction are assumed to be related as follows:

where an additive model of noise is assumed and the noise, ε , is taken as Gaussian with a zero mean and standard 
deviation σz , i.e., ε ∼ N (0, σ 2

z ) . Here, we assume that the the phase of the real and imaginary MR data acquisition 
is constant over time such that the signal may be phase corrected. The MR data acquisition is, in general, complex 
valued with real and imaginary components that are independent and Gaussian. However, within our phase 
corrected approach, only the real component is non-zero and Gaussian noise for the real channel is appropriate.

Therefore, the likelihood function p(z|P) takes the Gaussian form:

Here || · || denotes the Euclidean norm. Technically, p(z|P) is also conditioned on K , but, for simplicity in nota-
tion, the dependence on K is suppressed.

With p0(P) and p(z|P) defined as above, the joint PDF p(z,P) can be computed using (9). Further, using (9), 
the PDF of data z ∈ R (evidence), p(z) , can be computed by marginalizing p(z,P) with respect to P:

where � is the parameter space.

Mutual information
Next, the statistical mutual information is defined and the optimization problem for design parameters K is 
posed. Given HP-MRI data, the accurate inference of pyruvate-to-lactate exchange rate parameters (and other 
parameters in P ) depends on the specific choice of control (design) parameters K as selection of K affects the 
information content in the measured data. The notion of mutual  information29 provides a way to quantify the 
information content about the model parameters P in the data z . The mutual information between the two 
random variables z and P with PDFs p(z) and p0(P) and the joint PDF p(z,P) is defined as

Here, the mutual information I depends only on design parameters K and the forward model (1).
Using Bayes theorem, p(z,P) = p(z|P)p0(P) , it can easily be shown that

or,

where the second term in the above equation is identified as information entropy H(z;K) and the first term as 
negative of the cross-information entropy, H(z|P;K) . That is

Optimization problem In order to maximize the reduction in the uncertainty in the model parameters (i.e. to 
have the most confident estimates of the parameters P ), we propose to maximize the mutual information between 
the observation data and parameters of interest:

(9)p(z,P) = p(z|P)p0(P) = p(P|z)p(z),

(10)P ∼ p0(P) = N (µP ,�P ) =
1

2π det�P

exp

(

−
1

2
�µP − P�2

�−1
P

)

.

(11)z = G(K,P)+ ε ⇒ z − G(K,P) ∼ N (0, σz),

(12)p(z|P) = N (G(K,P), σz) =
1

2πσz
exp

(

−
1

2σ 2
z

�G(K,P)− z�2
)

.

(13)p(z) =
∫

�

p(z,P)dP =
∫

�

p(z|P)p0(P)dP ,

(14)I = I(K) =
∫

Z

∫

�

p(z,P) ln

(

p(z,P)

p0(P)p(z)

)

dPdz.

(15)I(K) =
∫

Z

∫

�

p(z|P)p0(P) ln

(

p(z|P)p0(P)

p0(P)p(z)

)

dPdz,

(16)I(K) =
∫

Z

∫

�

p(z|P)p0(P) ln
[

p(z|P)
]

dPdz −
∫

Z
p(z) ln p(z)dzH(z;K)−H(z|P;K),

(17)
H(z;K) = −

∫

Z
p(z) ln p(z)dz,

H(z|P;K) = −
∫

Z

∫

�

p(z|P)p0(P) ln
[

p(z|P)
]

dPdz.
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where K∗ is the design parameter for which I is maximum (assuming K∗ exist).
Given a Gaussian prior and conditional probability of the data with respect to the parameters, the entropy 

of the data conditioned on the model parameter, i.e., H(z|P) , is constant. Therefore, the optimization problem 
simplifies to

Approximation of mutual information and information entropy
Mutual information calculations are computationally demanding due to high-dimensional integration over the 
parameter and data spaces. Combinations of both quadrature and sampling methods have been employed for 
mutual information calculations, each of which is well-suited to certain function  classes32–44. These methods 
include Monte Carlo and Quasi-Monte Carlo  methods33–35, lattice  rules36, adaptive  subdivision37, 38, neural net-
work  approximations39 and numerical  quadrature40. Here the problem structure is used to accelerate computa-
tions and facilitate tractable numerical integration.  Following45, Gauss-Hermite quadrature is applied in each 
dimension of mutual information integrals defined in (16) to numerically integrate multi-variate Gaussian 
random variables. Quadrature order is increased until convergence is observed. Finite difference time stepping 
is used to solve the ODE-based model presented in Sect. “The total signal”.

Automatic differentiation accelerated optimization for OED calculations.  For constant TR optimization, the 
auto-differentiation functions of MATLAB were used to calculate gradients of (16). In particular, design param-
eters K and state variables c̄ were considered as optimization variables to minimize the objective function (16) 
with respect to the model constraints (1). Auto-differentiation provides the derivatives of the objective function 
and constraints with respect to this full space formulation. Given the derivatives in the full space formulation, 
the reduced space gradient of the objective function (16) with respect to the design parameters K may be calcu-
lated using an adjoint solve. For varying TR optimization, adjoint gradients were calculated by hand.

Inverse problem to recover rate parameter.  A MATLAB routine fmincon is used to solve the inverse prob-
lem of recovering model parameters P in the model (1) from the data generated in Sect. “Synthetic data” As 
an objective function for the inverse problem, square of the difference between data and model prediction of 
signals is used. Similarly, derivatives from the automatic differentiation feature in the MATLAB are utilized for 
numerical optimization.

The Cramér-Rao bound is computed to provide a reference for the uncertainty observed in the recovered kPL.

Here, J is the Fisher information matrix. Each time point of the HP signal evolution, Eq. (1), may be considered 
as an independent random variable, thus  following46, the Cramér-Rao bound may be computed analytically with 
the Fisher information matrix given as follows.

Results
In this section, the main results of our analysis are presented. First, the optimal design parameters for different 
signal-to-noise ratios (SNRs) are shown. Optimal design parameters for both temporally constant and varying 
flip angles at each data acquisition are considered. Next, the reduction in uncertainty of kPL when using optimal 
design parameters generated synthetic data is shown.

Optimized design parameters
As mentioned in Sect. “Mutual information based optimization of MR scan parameters”, multi-variate Gauss-
ian is taken as a prior for uncertain model parameters, P = (kPL, kve, t̄0) . The mean and diagonal covariance 
matrix are fixed to

For this choice of mean and variance, all quadrature points for a fifth order Gauss-Hermite quadrature approxi-
mation of numerical integration were positive. The remaining model parameters are fixed according to Table 1. 
Next, to fix the likelihood function, the Gaussian noise distribution, i.e., ε ∼ N (0, σz) , is needed to be fixed. To 
consider reasonable values of σz , first the reference peak pyruvate signal sPref  is calculated using the solution of 
the model with the default model and design parameters in Tables 1 and 2; it is found to be sPref = 0.6173 . Then 
for different signal-to-noise ratios ( SNR ), the noise (standard deviation) in the individual signals, σs , and the 
standard deviation of the total signal, σz , are computed as follows, for SNR ∈ {2, 5, 10, 15, 20},

(18)max
K∈D

I(K) = I(K∗),

(19)K
∗ = argmax

K∈D
I(K) = argmax

K∈D
H(z;K).

var{kPL} ≥ J−1(P)

J =
∂m

∂P

⊤
�−1
P

∂m

∂P
m = [c̄(t1) . . . c̄(tN)]

(20)µP = (0.15, 0.05, 4), �P = diag(0.03, 0.01, 1.3).

(21)σs(SNR) = sPref /SNR, σz(SNR) = σs
√
2N,
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where N is the total number of scans. For each SNR and corresponding σz(SNR) in the above list, optimal design 
parameters are obtained by solving the optimization problem (19). For simplicity, let KOEDSNR denote the opti-
mized design parameter corresponding to SNR and σz(SNR) . The rationale behind considering different SNR 
is that, in reality, data is expected to have varied signal-to-noise ratios and this is shown to impact the choice of 
optimal design parameters. The initial values of the design parameter K are listed in Table 2.

Two cases of optimization as described below are considered:

• Constant flip angle optimization. In this case, TRk is fixed to 3 seconds for all k, and the flip angles are assumed 
to be same for all scans. As a result, the optimization problem involved only two variables, θP and θL.

• Variable flip angle and TR optimization. In this case, flip angles and TR values at all scans are optimized.

For the case of constant flip angle optimization, the optimized design parameters, KOEDSNR , corresponding to the 
five SNRs are tabulated in Table 3. Figs. 1 and 2 represent the optimal design parameters, KOEDSNR , for SNR = 2 , 
SNR = 10 , and SNR = 20 for the two cases of optimization problems, respectively. Fig. 1 presents the optimal 
solution when considering a fixed repetition time of 3s and optimizing for pyruvate and lactate flip angles that 
are constant in time. Fig. 2 presents the optimal solution when allowing the repetition time and flip angles to 
vary at each acquisition for a fixed number of data acquisitions, N . The optimal values of design parameters are 
shown in Fig. 1(a-c) and Fig. 2(a-c). The time varying optimized design parameters are significantly different 

Table 3.  Optimized design parameters considering constant flip angles throughout the scan. Repetition time 
is fixed to TRk = 3 s, for all k.

SNR θP (degrees) θL (degrees) TR (s) SNR θP (degrees) θL (degrees) TR (s)

2 35 28 3 5 35 28 3

10 14 28 3 15 4 28 3

20 3 28 3

Figure 1.  Optimized design parameters along with the signals of pyruvate and lactate obtained from the 
solution of the forward model using optimal design parameters. In (a), for noise σz(2) , i.e., σz(SNR) for 
SNR = 2 , the optimized flip angle scheme is shown for constant flip angles throughout the acquisition (optimal 
angles are θkP = 35 degrees and θkL = 28 degrees, for all 1 ≤ k ≤ N ). The corresponding signal evolution of the 
transverse magnetizations () are shown in (d) for the constant flip angle case. Similarly, (b) and (c) present the 
optimized flip angles for SNR = 10 and SNR = 20 ; respectively. The corresponding signal evolution of the 
transverse magnetizations are shown in (e) and (f).
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from the constant value flip angle scheme. Fig. 1(d-f) and Fig. 2(d-f) show the transverse magnetizations for 
skP, s

k
L . For the case of variable design parameters, optimized TR values are shown in Fig. 3.

Validation of the uncertainty reduction using optimal design parameters
The basic workflow in verification includes generating the samples of noisy data associated with different design 
parameters following Sect. “Synthetic data” and then solving the inverse problem to recover uncertain model 
parameters for each sample of noisy data. From the recovered kPL for different samples of data, the mean and 
the standard deviation is computed. Specifically, the standard deviation is used as a measure of the uncertainty 
in the recovered kPL.

Figure 2.  Optimized design parameters along with the solution of the forward model. In (a), for noise σz(2) , 
i.e., σz(SNR) for SNR = 2 , the optimizer considers jointly varying the flip angle and repetition time at each 
acquisition. The corresponding signal evolution of the transverse magnetizations () are shown in (d). Similarly, 
(b) and (c) present the optimized flip angles and repetition time for SNR = 10 and SNR = 20 , respectively. The 
corresponding signal evolution of the transverse magnetizations are shown in (e) and (f). Note here that x-axis 
in all plots is for time and therefore the plots implicitly include the values of optimized TRk , 1 ≤ k ≤ N.

Figure 3.  Plot of optimal repetition times for three cases of SNR ∈ {2, 10, 20}.
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First using the model in (1), data YOEDSNR (for SNR = 2, 5, 10, 15, 20 ), corresponding to KOEDSNR , is obtained. 
Then the uncertain parameters P = (kPL, kve, t̄0) in the model are recovered from the 25 samples of noisy data. 
The remaining model parameters are drawn from the Table 1. In Fig. 4, the statistics (mean and standard devia-
tion) of recovered kPL corresponding to optimal design parameters shown in Figs. 1and 2 is presented. The SNR 
(SNR to generate noisy data) along the x-axis corresponds to the value of σs(SNRdata) added to the data YOEDSNR 
to generate noisy data; see (8) for the definition of noisy data. The y-axis represents the mean and standard devia-
tion of the kPL recovered from the inference. The known value of kPL used to generate the noise corrupted data is 
shown as a horizontal line at y = 0.15 for a reference. Fig. 4(a) and Fig. 4(d) correspond to KOED2 for a constant 

Figure 4.  Plot of inferred kPL from 25 samples of noisy data based on the synthetic data from the solutions of 
the model in (1). The x-axis is the value of SNRdata employed in computing noisy data. (a) and (d) correspond to 
KOED2

 for a constant and varying flip angle and TR scheme, respectively. (b) and (e) correspond to KOED10
 for a 

constant and varying flip angle and TR scheme, respectively. (c) and (f) correspond to KOED20
 for a constant and 

varying flip angle and TR scheme, respectively.

Figure 5.  Plot of inferred kPL from 25 samples of noisy data based on the synthetic data from the solutions of 
the model in (1). The x-axis is the value of SNRdata employed in computing noisy data. Here, the accuracy and 
precision obtained for flip angles are similar to values currently used in our human studies, θkP = 20 and θkL = 30 
is shown as a control for Fig. 4.
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and varying flip angle scheme; respectively. Fig. 4(b) and Fig. 4(e) correspond to KOED10 for a constant and vary-
ing flip angle scheme; respectively. And finally Fig. 4(c) and Fig. 4(f) correspond to KOED20 for a constant and 
varying flip angle scheme; respectively. The Cramér-Rao bound is provided as a reference for the lower bound 
of the variance in each. Fig. 5 provides a control for the accuracy and precision obtained for flip angles similar 
to those currently in use in our  clinic47, 48, θkP = 20 and θkL = 30 . Similarly, the Cramér-Rao bound is provided as 
a reference for the lower bound of the variance. The results show that the uncertainties in recovered parameter 
using KOED2 are comparable to the current clinical pulse sequence implementation. In fact, KOED2 demonstrates 
improved performance for all SNRdata except SNRdata = 20.

Generally, an improvement in the accuracy and precision of the recovered parameter is seen with increasing 
SNRdata . A time-varying flip angle scheme leads to a higher parameter optimization that can further improve 
the quantitative value of mutual information over a constant flip angle scheme. However, the constant flip angle 
scheme, 35 and 28 degrees for pyruvate and lactate measurements, leads to the accuracy and precision comparable 
to the variable flip angle schemes obtained from our method.

Discussion
The evaluation of accuracy and precision as a function of pulse sequence design is effectively a bi-level optimi-
zation problem where the goal is to solve two nested optimization problems: (1) find the pulse sequence that 
produces the best accuracy and precision for the (2) best curve fit to the data. Direct numerical optimization of 
the bi-level cost functions(s) is  challenging49. The mutual information objective function of this study as well as 
signal maximization and Fisher information in the  literature15, 18, 19 are effectively proposing a surrogate objec-
tive function as a numerically tractable approximation to the bi-level optimization problem of interest. Within 
the mutual information based optimal experimental design formulation, a time varying flip angle and repeti-
tion time scheme is seen to provide significant differences in the pulse sequence as compared to the case when 
excitation angles are fixed to a constant value over time with a fixed repetition time of 3 s. Indeed, the varying 
flip angle and repetition time scheme leads to a higher dimensional parameter optimization that provides more 
degrees of freedom to further improve the quantitative value of mutual information over the constant flip angle 
scheme. However, as seen in Fig. 4, the constant flip angle scheme leads to comparable accuracy and precision 
when considering the inference from noise-corrupted data. The time varying scheme is seen to be more sensi-
tive to noise corruption of the expected signal and is generally seen to have the higher variance in the parameter 
recovery at lower SNRdata . The mutual information calculations are generally seen to achieve the Cramér-Rao 
bound with higher SNR.

The purely theoretical nature of these results is a limitation of the study. However, the two-compartment 
model analyzed in this work is utilized in numerous  studies50–56 and, when parameterized with physically mean-
ingful values of the parameters, good data agreement is shown within these studies. Results of this manuscript 
are thus relevant towards guiding future data collection.

The reduction in the recovered variance is seen to be correlated with the assumed noise value added to the 
data. Intuitively, less noise resulted in less variance in the parameter recovery. Less intuitively, the optimal MI 
solutions for flip angles are seen to vary with the noise value of the signal conditional probability model p(z|P) . 
The greatest reduction in measurement uncertainty is seen for the MI optimal solution corresponding to low 
SNR of the signal conditional probability model. Here, the lower flip angle is applied to the non-injected sec-
ondary substrate and higher pyruvate signal is maintained throughout the acquisition. This could be due to the 
system being so signal limited for the low SNR case that it is forced to leverage the pyruvate signal to extract any 
additional information about the metabolic exchange rate. The excitation angles optimized for the higher SNR 
condition reduce the pyruvate excitation angle to save magnetization for subsequent conversion while simulta-
neously increasing the lactate flip angle. Within the time varying optimization, the pyruvate excitation angle is 
reduced to zero after 20 s. For high SNR this suggests that the lactate signal is sufficient to accurately determine 
the metabolic exchange rate and measuring a large pyruvate signal after the initial bolus is less important.

This work considers uncertainty in the vascular-tissue exchange parameter, bolus arrival time, and rate con-
stants modeled through a Gaussian prior. However, a more comprehensive evaluation of additional uncertain 
parameters would further evaluate the stability of our results. Additionally, the effect of alternative prior formula-
tions such as uniform distributions for the prior parameters may also be investigated. The numerical computa-
tion in this work is also limited by the quadrature scheme for numerical integration of the mutual information 
integrals. Adding additional sources of uncertainty suffers from the well-known curse of  dimensionality57 and 
alternative integration schemes such as Markov chain Monte Carlo may be more effective.

Further, the current approach considers the real component of the readout and assumes SNR such that 
Gaussian statistics is an appropriate noise model for the signal acquisition. Rician  statistics58 is known to be more 
appropriate as the noise model for low SNR and the low SNR range is expected to be more important toward 
the end of the HP data acquisition as the signal decays. Rician statistics will be considered in future efforts to 
optimize acquisition parameters at low SNR or when considering both the real and imaginary components of 
the signal magnitude.

Alternative to the spatial-invariant model, high-fidelity models may also be considered to determine optimal 
design parameters and to recover model parameters from the data. However, for such an approach to work, a 
realistic high-fidelity model is needed keeping in mind the major factors in HP-MRI physics. Additional model 
fidelity may include permutations of lactate and pyruvate that are endogenous as well as hyperpolarized. Intra-
vascular, extracellular, and intracellular species may also be considered. Nonlinear pyruvate-to-lactate conver-
sion parameters such as from a Michaelis-Menten relationship may also be considered. Additional formulations 
may also consider the impact of blood flow in the simulations directly though Dirichlet boundary conditions, 
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as convective transport through porous  media59, or as a sophisticated 3D-1D coupling with vasculature treated 
as 1D curvilinear  segments60, 61.

In summary, our results suggest that the constant flip angle scheme corresponding to KOED2 is the best 
choice in terms of accuracy and precision of the parameter recovery. Results at KOED2 , θkP = 35 and θkL = 28 , are 
comparable to the current clinical pulse sequence implementations, θkP = 20 and θkL = 30 , and demonstrate an 
improved performance at low SNRdata . Further, the constant flip angle scheme may represent a practical choice 
for implementation on the pulse sequence hardware.

Data availability
The codes and relevant data files to reproduce the results will be publicly available in the following GitHub 
repository: https:// github. com/ prash jha/ Hyper polar izedM RI.
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