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Identifying influential nodes 
in complex networks using 
a gravity model based 
on the H‑index method
Siqi Zhu *, Jie Zhan * & Xing Li 

Identifying influential spreaders in complex networks is a widely discussed topic in the field of 
network science. Numerous methods have been proposed to rank key nodes in the network, and while 
gravity-based models often perform well, most existing gravity-based methods either rely on node 
degree, k-shell values, or a combination of both to differentiate node importance without considering 
the overall impact of neighboring nodes. Relying solely on a node’s individual characteristics to 
identify influential spreaders has proven to be insufficient. To address this issue, we propose a new 
gravity centrality method called HVGC, based on the H-index. Our approach considers the impact of 
neighboring nodes, path information between nodes, and the positional information of nodes within 
the network. Additionally, it is better able to identify nodes with smaller k-shell values that act as 
bridges between different parts of the network, making it a more reasonable measure compared 
to previous gravity centrality methods. We conducted several experiments on 10 real networks and 
observed that our method outperformed previously proposed methods in evaluating the importance 
of nodes in complex networks.

Complex networks are a pervasive presence in various domains of both human society and the natural world. 
In each system, individuals and their relationships can be represented as networks consisting of nodes and 
edges1,2. Recently, the identification of significant nodes in complex networks has gained significant attention 
from researchers, providing a new perspective for understanding the objective world and facilitating a bet-
ter comprehension of the spread of diseases3–5, power grid protection6, information dissemination7–9, protein 
discovery10, and immunization strategies11,12, among other fields13–15.

To date, numerous centrality methods have been proposed to detect key nodes in complex networks. Cen-
trality measurement methods can be primarily categorised into three types: local indices, global indices, and 
hybrid indices16. Local-index-based centrality methods include classical measures such as degree centrality17 
(DC) and H-index18. Local-index-based methods have low computational complexity and are suitable for large-
scale networks as they only consider the local neighbourhood information of nodes. However, their ability to 
identify influential nodes that are not central but have high impact is limited. To address this limitation, many 
researchers have proposed improvements, such as extended H-index centrality19 (EHC) and local clustering 
H-index centrality20 (LCH) methods. Global-index-based centrality methods assess individuals’ influence by 
considering the global structural information of the network, such as closeness centrality21 (CC) and betweenness 
centrality22 (BC). The main drawbacks of these measurement methods are their high computational complexity 
and inapplicability to large-scale networks23. Among them, the K-shell decomposition method24 (KS), as a global 
approach, determines the influence of nodes by differentiating their core levels and operates at a faster speed. 
However, the main limitation of k-shell is that it assigns the same k-shell value to many nodes, resulting in low 
differentiation in node influence ranking. Many efforts have been made to address this issue, such as extended 
neighbourhood coreness25 (CNC+), classifying neighbourhood26 (CN), k-shell iteration factor27 (KSIF), and 
Mixed Degree Decomposition28 (MDD). The primary limitations of these global methods are their typically 
high computational costs as they consider the entire topological structure of the network. Hybrid-index-based 
centrality methods, such as local and global influence29 (LGI), local and global centrality30 (LGC) and global and 
local information31 (GLI) integrate both local and global information about nodes, aiming to strike a balance 
between algorithm accuracy and computational complexity.
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The gravity model not only considers the attributes held by two nodes but also takes into account the shortest 
path information between nodes, which represents their mutual interactions and provides a basis for integrating 
local and global information. Inspired by this formula, Ma et al.32 proposed two models (G and G+) based on 
the gravity formula. These models adopt the k-shell value of a node as its mass and use the shortest path distance 
between two nodes as the distance. Building upon this, Wang et al.33 improved the model by considering the 
degree values of neighbouring nodes, resulting in the improved gravity centrality (IGC). Li et al.34 introduced 
the gravity model (GM), which employs the degree of nodes as their mass, and developed the local gravity 
model (LGM), which only considers node pairs within a truncated radius. Furthermore, Li et al.35 combined the 
local clustering coefficient and degree value as the mass of nodes, proposing the generalized gravity centrality 
(GGC). In addition, Yang et al.36 introduced a gravity centrality (KSGC) based on the K-shell value of nodes, 
considering the variations in interactions when nodes are located in different shell layers. Li et al.37 combined the 
k-shell value and k-shell iteration factor as the mass of nodes, presenting the DK-based gravity model (DKGM) 
to enhance the model’s performance. Subsequently, they considered multiple features of nodes and proposed 
the multi-characteristics gravity model38 (MCGM). Liu et al.39 introduced the spreading entropy gravity Model 
(SEGM), incorporating the spreading information entropy of nodes into consideration.

From the above, we can observe that many of the gravity models mentioned are either based on node degree, 
related to the k-shell value, or a combination of both. However, It is not enough to evaluate the importance of 
a node solely on the basis of its single attributes; it is also necessary to consider the location of the node and 
the overall influence of neighbouring nodes on it. For instance, some nodes may have a relatively small k-shell 
index but possess significant influence since they act as bridges connecting different communities within the 
network. Similarly, there are nodes with lower degree or k-shell values compared to others but are closer to the 
most important nodes in the network, surrounded by highly influential nodes, as a result, their importance will 
also be enhanced. To address this issue, we propose the H-index-based gravity centrality method (HVGC), which 
not only considers the path information of nodes but also incorporates the overall influence of neighbouring 
nodes, structural hole position information of nodes, and the differential gravitational impact of nodes posi-
tioned at different locations. Experimental results demonstrate that our proposed method exhibits significant 
competitiveness compared to other advanced gravity models, Particularly in networks with evident community 
structures, it exhibits outstanding accuracy, unlike other algorithms that are prone to identifying false core nodes.

Preliminaries
Centrality measures
In the context of an undirected and unweighted simple network G =< V , E >,V  and E respectively represent 
the sets of nodes and links. The cardinality of V  and E can be expressed as |V | = N and |E| = M , indicating the 
presence of N nodes and M links within the network. The network’s connectivity structure is typically captured 
by its adjacency matrix A = (aij)N×N , where aij = 1 if node i and node j are linked, and 0 otherwise.

Degree centrality17 of node i is defined as

where k(i) =
N
∑

j=1

aij .

The maximum integer fulfilling that there are at least H(i) neighbors of node i whose degrees are all at least 
H(i) , represented by H(i) , is known as the H-index18 of the node i.

The k-shell decomposition method24(KS), operates through an iterative process of decomposing the network 
into distinct shells. Initially, KS removes nodes with a degree of 1 from the network, resulting in a decrease in 
the degree values of the remaining nodes. This process is repeated by removing nodes with residual degrees less 
than or equal to 1 until all remaining nodes have residual degrees greater than 1. The nodes removed in the first 
step constitute the 1-shell, and their k-shell values are assigned as 1. This process is then iteratively applied to 
obtain the 2-shell, 3-shell, and so on. The decomposition process continues until all nodes in the network have 
been accounted for.

Gravity centrality32 (G) of node i is defined as

where ks(i) is the k-shell value of node i , d(i, j) is the shortest path distance from node i to node j , and ψi is the 
set of nodes whose distance from node i does not exceed 3.

Extended gravity centrality32 (G+) of node i is described as

�i is the nearest neighborhood of node i.
The improved gravity centrality33 (IGC) of node i is measured by

where R is the truncation radius, and the optimal truncation radius R∗ can be estimated by

(1)DC(i) = k(i),

(2)G(i) =
∑

j∈ψi

ks(i)ks(j)

d2(i, j)
,

(3)G+(i) =
∑

j∈�i

G(j),

(4)IGC(i) =
∑

d(i,j)≤R,j �=i

ks(i)k(j)

d2(i, j)
,
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where 〈d〉 is the average distance of the network.
Extended improved gravity centrality33 (IGG+) of node i is described as

�i is the nearest neighborhood of node i.
The local gravity model34 (LGM) of node i is determined by

The generalized gravity centrality35 (GGC) of node i is defined as

where Ci is the local clustering coefficient of node i , ni denotes the number of edges between neighbors of node 
i , and α = 2.

The k-shell based on gravity centrality36 (KSGC) is defined as

where cij is the coefficient of attraction exerted by node i on node j , ks(i) and ks(j) denote the k-shell values of 
node i  and node j , respectively. ksmax and ksmin refer to the largest and smallest k-shell values present in the 
network. d(i, j) is the shortest path distance from node i to node j.

The DK-based gravity model37 (DKGM) is measured by

assume that the value of the k-shell of node i is ks(i). For the process of the k-degree iteration, the total iteration 
number is q(k) , and node i is removed in the p(i) iteration of the k-degree process. k∗s (i) is called the improved 
k-shell index of node i.

The multi-characteristics gravity model38 (MCGM) is measured by

(5)R∗ ≈
1

2
�d�,

(6)IGC+(i) =
∑

j∈�i

IGC(j),

(7)LGM(i) =
∑

d(i,j)≤R,j �=i

k(i)k(j)

d2(i, j)
,

(8)GGC(i) =
∑

d(i,j)≤R,j �=i

Sp(i)Sp(j)

d2(i, j)
,

(9)Sp(i) = e−αCi × k(i)

(10)Ci =
2ni

k(i)(k(i)− 1)

(11)KSGC(i) =
∑

d(i,j)≤R,j �=i

F(i, j),

(12)F(i, j) = cij
k(i)k(j)

d2(i, j)
,

(13)cij = e
ks(i)−ks(j)

ksmax−ksmin

(14)DKGM(i) =
∑

d(i,j)≤R,j �=i

DK(i)DK(j)

d2(i, j)
,

(15)DK(i) = k(i)+ k∗s (i),

(16)k∗s (i) = ks(i)+
p(i)

q(k)+ 1
,

(17)MCGM(i) =
∑

d(i,j)≤R,j �=i

(

k(i)
kmax

+ αks(i)
ksmax

+ x(i)
xmax

)(

k(j)
kmax

+
αks(j)
ksmax

+
x(j)
xmax

)

d2(i, j)
,

(18)α =
max{

kmid
kmax

,
xmid
xmax

}

ksmid
ksmax

,
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where kmid , ksmid and xmid denote the median of degree value, k-shell value and eigenvector centrality value, 
respectively. kmax , ksmax and xmax denote the maximum values of degree value, k-shell value, and eigenvector 
centrality value.

The entropy-based gravity model39 (SEGM) is defined as

where E(i) is the information entropy of node i , Ŵ(i) represents the set of neighboring nodes of node i,and I(i) 
is the importance of node i.

The SIR model used in this paper
To evaluate the ranking of impact generated by the algorithm and the simulation, we employed the widely used 
SIR model40. In the beginning, a single node in the network, referred to as the "source node," is in the infected 
state (I), while the remaining nodes are in the susceptible state (S). An infected node has the potential to infect 
its susceptible neighbors with a probability of β , and the probability of each infected node entering the recovery 
(R) state is � , after which it ceases to participate in the dynamics. This propagation process continues until no 
infected nodes remain in the network. The impact of any given node i can be estimated by

the number of nodes that recover after the diffusion process has stabilized is represented by Nr . For the sake of 
simplicity,� has been set to 1. Subsequently, the corresponding epidemic threshold41 can be computed by

where 〈k〉 and 〈k2〉 are the degree distribution’s average degree and second-order moments.

Measures
Kendall’s tau coefficient
Kendall’s tau coefficient42 is a measure of correlation between two sequences, with a larger value indicating 
a greater similarity between the sequences. The definition of Kendall’s tau coefficient is as follows: given two 
sequences X and Y  of the same length, where the i th values are represented by xi and yi , respectively. Let each 
pair of elements xi and yi form a set, denoted by (xi , yi) . If xi > xj and yi > yj , or xi < xj and yi < yj , the pairs 
(xi , yi) and (xj , yj) are considered concordant. They are considered discordant if xi > xj and yi < yj , or xi < xj 
and yi > yj . If xi = xj and yi = yj , the pair is neither concordant nor discordant. Therefore, the Kendall’s tau 
coefficient τ is defined as

where n+ is the number of concordant pairs, and n− is the number of discordant pairs.

Jaccard similarity coefficient
In some applications, concentrating on the top-rank nodes rather than all nodes may be appropriate. In contrast 
to the Kendall correlation coefficient, the Jaccard similarity coefficient is utilized to assess the similarity between 
the top-k nodes in two ranking lists25,43. The Jaccard similarity is calculated by dividing the number of common 
nodes by the number of unique nodes in the two lists, and its expression is

where X and  Y  represent the top-k nodes with the highest influence as determined by two different methods. In 
the context of our experiments, X represents the top-k nodes identified by HvGC and other baseline methods, 
while  Y  represents the top-k nodes obtained through the SIR simulation. We use the Jaccard similarity coefficient 
to measure the similarity between these two sets of top-k nodes. The Jaccard similarity coefficient ranges from 
0 to 1, where a higher value indicates a greater degree of similarity between the two ranking results. A Jaccard 
similarity coefficient of 0 indicates completely distinct results, while a value of 1 indicates that the two sets of 
top-k nodes are identical.

(19)SEGM(i) =
∑

d(i,j)≤R,j �=i

SE(i)SE(j)

d2(i, j)
,

(20)SE(i) = eE(i)k(i),

(21)E(i) = −
∑

j∈Ŵ(i)

I(j) ln I(j),

(22)I(i) =
k(i)

∑

j∈Ŵ(i)

k(j)
,

(23)F(i) = Nr/N

(24)βc ≈
�k�

�k2� − �k�

(25)τ =
2(n+ − n−)

N(N − 1)

(26)Jaccard(X,Y) =
|X ∩ Y |

|X ∪ Y |
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The monotonicity index
The monotonicity25 M is used to quantitatively measure the resolution of different indices in ranking list X , and 
can be calculated by

where N is the size of network, and Nc is the number of nodes with the same index value c.

Results
Algorithms
Previous research has utilized the gravity model approach to analyze node importance in complex networks. 
Degree and k-shell values are commonly used metrics to consider the number of neighbors a node has and its 
position within the network, respectively. However, these metrics alone do not capture the overall influence 
of a node’s neighbors. While the H-index considers the importance of a node’s neighbors, it may overlook 
certain information from neighboring nodes, failing to account for the collective impact of all neighbors. We 
take the toy network shown in Fig. 1 to illustrate the problem for H-index, where the node spreading capac-
ity derived from 1000 independent runs of the SIR model has been numerically labeled in Fig. 1. Obviously, 
H(1) = H(2) = H(3) = H(4) = H(10) = 1 , H(5) = H(7) = H(8) = 3,H(6) = H(9) = 2 , where H(i) represents 
the H-index of node i . The H-index always assigns the same value to different nodes, which leads to a lack of 
excellence in the ability to differentiate the influence of nodes.

The same issue exists in DC17 and KS24. Additionally, from Fig. 1, it can be observed that Node 3 has a higher 
propagation capability compared to Node 9, but Node 3 has a lower H-index than Node 9. This indicates that 
the H-index overlooks some information from the neighbors of a node. From this, we take out all neighboring 
nodes in the set of neighbors of node i with degree values greater than or equal to H(i) and add up the degree 
values of these nodes to measure the overall influence of the neighboring nodes on node i . The value obtained 
is denoted as HV(i) , and the expression is

where �i is the nearest neighborhood of node i,H(i) represents the H-index of node i.
By incorporating the overall influence of node neighbors into the definition, it enhances the discriminative 

power of node identification compared to the H-index. However, it is still insufficient to accurately distinguish 
cluster-like nodes, due to their close connections, these nodes can more easily achieve greater HV values, but, 
their actual influence may not be greater than that of nodes with lower HV values, As shown in Fig. 1. HV(6) = 8

,HV(9) = 7,HV(3) = 4 , and the actual propagation capacity from high to low is nodes 3, 9, and 6, a similar 
problem with the k-shell approach was noted by Liu et al.44 In other words, removing node 3 from the network 
would result in nodes 1, 2, and 4 losing their interactions with the core nodes, while removing node 6 has a 
minimal impact on information transmission in the network. This finding demonstrates the higher importance 
of nodes that serve as bridges between different clusters compared to those within individual clusters.

Based on this, we considered the structural hole position of nodes to enhance the algorithm’s ability to identify 
nodes within community networks. This allows us to identify those bridge nodes that may not have high HV 
values but play a crucial role in facilitating information flow across different parts of the network. The network 
constraint coefficient measures the level of constraints imposed on nodes forming a structural hole (SH) in a 
network45, and it can be calculated as follows:

(27)M(X) =



1−

�

c∈V
Nc(Nc − 1)

N(N − 1)





2

(28)HV(i) =
∑

j∈�i

[

k(j)|k(j) ≥ H(i)
]

,

Figure 1.   A toy network. The red node is ranked first in terms of H-index, while green and yellow represent 
second and third, respectively.
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where Ŵ(i) represents the set of neighboring nodes of node i , and w ∈ Ŵ(i) ∩ Ŵ(j) indicates the nodes that are 
common neighbors of both node i  and node j . pij represents the proportion of energy invested by node i  to 
maintain its relationship with node j . where zij = 1 (i �= j) if there is a link between nodes i and j , otherwise 
zij = 0 . Based on the above discussions, the gravity centrality based on the H-index (HVGC) measure proposed 
in this paper is defined as follows:

where c(i) represents the structural hole constraint coefficient in Eq. (29). A smaller value of c(i) indicates that the 
node occupies more structural holes and has a stronger ability to bridge different parts of the network. Finally, 
the metrics, including HVGC, H-index, HV, DC, and KS, were computed for each node in the toy network and 
compared with the node’s spreading capability (SC). The results are presented in Table 1, revealing that HVGC 
achieves a nearly identical ranking to SC, indicating excellent performance. The algorithmic description of the 
HVGC is provided in Algorithm 1.

In addition, Fig. 2 depicts a network with a clear community structure, where the four nodes with the strong-
est propagation capabilities are marked in green. The propagation capabilities of these nodes were determined 

(29)c(i) =
�

j∈Ŵ(i)



pij +
�

w∈Ŵ(j)∩Ŵ(i)

piw · pwj





2

,

(30)
pij =

zij
∑

w∈Ŵ(i)

ziw
,

(31)HVGC(i) =
∑

d(i,j)≤R,j �=i

e−c(i)Hv(i)Hv(j)

d2(i, j)
,

Table 1.   The ranking results of SIR, DC, KS, H-index, HV, and HVGC on the toy network.

Node SC DC KS H-index HV HVGC

5 3.28 4 2 3 11 248.02

7 3.10 4 2 3 10 208.09

8 2.83 3 2 3 11 164.73

3 2.80 4 1 1 7 125.38

9 2.65 3 2 2 7 103.72

6 2.34 2 2 2 8 76.91

2 1.80 1 1 1 4 10.30

1 1.78 1 1 1 4 10.30

4 1.75 1 1 1 4 10.30

10 1.73 1 1 1 3 7.72

Figure 2.   A sample network with an obvious community structure, where the four nodes with the strongest 
propagation capabilities are marked in green.
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through 1000 independent experiments using the SIR model. We compared HVGC with other gravity model-
based methods in identifying the top 5 nodes in this network, and the results are presented in Table 2. 

Data description
This paper evaluates the efficacy of HVGC by analyzing ten real networks from six distinct domains, including 
a transportation network(USAir46), an infrastructure network (Power47), a communication network (Email48), 
a technology network (Router49), two collaborative networks (Jazz50and NS51), and four social networks 
(Facebook52, PB53, WV54, and Sex55). Table 3 presents the fundamental topological properties of these net-
works. N represents the number of nodes in the network, and M represents the number of links. The average 
degree of nodes is denoted as 〈k〉 , and the average distance between pairs of nodes is denoted as 〈d〉 . The clus-
tering coefficient47 of the network is denoted by C , while r represents the assortative coefficient56. The degree 
heterogeneity57 of the network is denoted by H . Additionally, βc represents the epidemic threshold58 of the SIR 
model40 used to simulate the diffusion process.

Empirical results
Based on the aforementioned real network, we conducted simulations and compared the influence rankings of 
various algorithms utilizing the SIR model. In order to ensure the credibility of our findings and the standard 
ranking of nodes’ influence, we conducted 1000 independent experiments for each given network and transmis-
sion probability β , with any one node being chosen as the seed node once during each run. The processor and 
runtime environment used for the calculations are i7-12700H and Python 3. The development platform used 
for this paper is Anaconda 3, and the code was executed in Jupyter Notebook. Kendall’s tau ( τ ) was utilized 
to evaluate the accuracy of the algorithms, with a higher value indicating a greater correlation between the 
observed sequences and an improved algorithm performance. Table 4 provides a comparison of the accuracy 
of the proposed algorithm (HVGC) and ten benchmark algorithms, which include degree centrality17 (DC), 
k-shell decomposition method24 (KS), the extended version of gravity centrality32 (G+), extended version of 
improved gravity centrality33 (IGC+), local gravity model34 (LGM), generalized gravity centrality35 (GGC), the 
improved gravitational centrality based on k-shell values36 (KSGC), the DK-based gravity model37 (DKGM), 
multi-characteristics gravity model38 (MCGM), and entropy-based gravity model39 (SEGM).Additionally, Fig. 3 
displays the accuracy of the different algorithms for varying values of β , within the range of 0.5βc to 1.5βc.

Table 2.   Comparison of the rankings of the top-5 nodes identified by different methods and the rankings 
based on the SIR propagation ability in the sample network.

Rank SIR G+  IGC+  LGM GGC​ KSGC DKGM MCGM SEGM HVGC

1 10 11 11 10 10 11 11 11 10 10

2 11 14 14 8 8 8 14 16 11 11

3 8 16 16 11 5 10 16 14 14 8

4 5 15 10 14 11 14 10 10 16 5

5 16 10 15 16 2 16 8 15 8 16
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According to Table 4, the methods that utilise the gravitational formula (G+, IGC+, LGM, GGC, KSGC, 
DKGM, MCGM, SEGM, and HVGC) exhibit significant advantages over classical methods (DC and KS). These 
advantages are especially prominent in the Power, Router, NS, and Sex networks. Furthermore, it is noteworthy 
that among all gravity-based algorithms tested on the ten networks, HVGC exhibited the best overall perfor-
mance. Its Kendall coefficient ranked first in six out of ten networks, with a remarkable 70% proportion being in 
the top two ranks. Specifically, HVGC ranked first in the Jazz, email, Facebook, PB, WV, and USAir networks and 
second in the Router network. Additionally, as shown in Fig. 3, when β = βc , although HVGC did not perform 
best in the NS, Power, and Sex networks, as β increases, its performance becomes very close to or even surpasses 
the previous best-performing algorithm. Taking into account HVGC’s superior performance in community-type 
networks discussed earlier, it demonstrates a stronger overall performance, affirming the robustness of our find-
ings. Furthermore, Fig. 4 displays the optimal truncation radius of HVGC in the ten real networks, revealing 
that the majority of networks concentrate their optimal truncation radius at R = 1 . This indicates that HVGC 
achieves remarkably high accuracy by considering only the influence of the first-order neighbouring nodes of 
a node, while most other gravity model methods require considering information from second- or third-order 
neighbouring nodes. In other words, HVGC achieves a high level of accuracy while incurring lower time costs.

Discussion
This paper introduces a novel method called HVGC for identifying influential nodes in a network. While the 
original gravity model considered both neighbourhood and path information, this new method enhances the 
existing gravity centrality approaches by taking into account the overall influence of a node’s neighbourhood, 
considering the structural hole position of nodes, and incorporating the differences in interactions between 
nodes. This method addresses the limitations of existing gravity centrality methods and strengthens the ability 
to identify important nodes in networks with clear community structures. Therefore, this approach demonstrates 
a high level of comprehensive performance. We conducted an analysis of the SIR dynamic propagation process 
in 10 real networks to compare the performance of HVGC with previous state-of-the-art methods. The results, 
as shown in Table 4, indicate the strong competitiveness of our method.

In certain scenarios, it is necessary to identify the top-k influential nodes for controlling information propa-
gation. Therefore, in addition to evaluating the different ranking methods for individual nodes, we also assessed 
their performance in identifying the top-k influential spreaders. In other words, we compared the ranked lists 
of node influence obtained from the ranking methods with the ranked lists of node influence obtained from the 
SIR simulation, both sorted in descending order. Subsequently, we analysed the similarity between the two lists 

Table 3.   The topological features of ten real networks.

Networks N M 〈k〉 〈d〉 C r H βc

Jazz 198 2742 27.6970 2.2350 0.6334 0.0202 1.3951 0.0266

NS 379 914 4.8232 6.0419 0.7981 0.0817 1.6630 0.1424

Email 1133 5451 9.6222 3.6060 0.2540 0.0782 1.9421 0.0565

PB 1222 16,714 27.3552 2.7375 0.3600 0.2213 2.9707 0.0125

Facebook 4039 88,234 43.6910 3.6925 0.6170 0.0636 2.4392 0.0095

WV 7066 100,736 28.5129 3.2475 0.2090 0.0833 5.0992 0.0069

Sex 15,810 38,540 4.8754 5.7846 0.0000 0.1145 5.8276 0.0365

USAir 332 2126 12.8072 2.7381 0.7494 0.2079 3.4639 0.0231

Power 4941 6594 2.6691 18.9892 0.1065 0.0035 1.4504 0.3483

Router 5022 6258 2.4922 6.4488 0.0329 0.1384 5.5031 0.0786

Table 4.   The algorithms’ accuracies for β = βc , measured by the Kendall’s Tau (τ). The top-ranked value in 
each row of the table is marked in italics, the second in bold.

Networks DC KS G+  IGC+  LGM GGC​ KSGC DKGM MCGM SEGM HVGC

Jazz 0.8218 0.7536 0.8994 0.9077 0.8725 0.8301 0.8592 0.8843 0.9142 0.9084 0.9184

NS 0.6235 0.5327 0.8168 0.8316 0.8604 0.6604 0.8217 0.8653 0.8671 0.8938 0.8600

Email 0.7747 0.7730 0.9026 0.9038 0.8581 0.8189 0.8387 0.8579 0.9046 0.8997 0.9088

PB 0.8520 0.8563 0.9060 0.9050 0.8975 0.8529 0.8924 0.8990 0.8993 0.9016 0.9063

Facebook 0.7127 0.7369 0.8410 0.8400 0.7926 0.7428 0.7608 0.7994 0.8479 0.8387 0.8494

WV 0.7568 0.7604 0.8203 0.8206 0.8189 0.8031 0.8145 0.8180 0.8263 0.8232 0.8268

Sex 0.4919 0.5133 0.7738 0.7783 0.7782 0.7782 0.7514 0.7890 0.8359 0.8136 0.7980

USAir 0.7488 0.7657 0.8874 0.8901 0.8914 0.8055 0.8505 0.8918 0.8984 0.8971 0.9001

Power 0.5542 0.3786 0.8652 0.8705 0.7953 0.6467 0.7831 0.7938 0.8126 0.8665 0.8590

Router 0.3357 0.1919 0.7479 0.7342 0.7739 0.7694 0.7587 0.7808 0.8035 0.7894 0.7895
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by considering the top-k nodes. Figure 5 illustrates the results of the Jaccard coefficient for identifying the top-k 
influential spreaders, ranging from 5 to 100 with a step size of 5. The X -axis shows the number of top influential 
spreaders, and the Y -axis shows the Jaccard similarity coefficients.

We can observe that, except for the Sex, Power, PB, and Router networks, HVGC exhibits the best and most 
stable overall performance in identifying the top-k influential spreaders in other networks. Specifically, across 
all networks, as the number of selected top-k nodes increases, HVGC consistently maintains a high-level or 

Figure 3.   Kendall’s Tau was utilized to measure the accuracy of the algorithms at various β values. The different 
colour symbols represent different methods, and the red symbol represents HVGC algorithms.
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steadily increasing Jaccard coefficient, while other methods display varying degrees of fluctuations. Furthermore, 
we provide detailed plots for the top-25 nodes, revealing that HVGC consistently ranks among the top three 
in identifying the top-25 influential spreaders and, in some cases, even secures the first position, except for the 
Sex network. Therefore, we can conclude that HVGC not only accurately ranks the influence of all nodes in the 
network but also successfully identifies the top-k nodes with the highest impact.

After applying monotonicity25, we assessed the resolution of various algorithms. Table 5 illustrates that HVGC 
and MCGM demonstrate similar performance in terms of monotonicity. However, HVGC excels in the majority 
of networks by solely considering the first-order neighbour information of nodes, whereas MCGM, even with 
the inclusion of second-order neighbour information, does not necessarily outperform HVGC and incurs higher 
computational complexity. Furthermore, HVGC demonstrates significantly better performance in identifying 
important nodes in networks with community structure compared to MCGM. Therefore, overall, HVGC sur-
passes other gravity model algorithms. Based on the results presented in Table 5, HVGC consistently ranks either 
at the top or very close to the best-performing algorithm in terms of monotonicity.

Based on the above discussion, it is evident that centrality based on the gravitational model is more accurate 
than classical centrality. However, many of these models tend to identify false core nodes in the network and 
do not take into account the influence of neighbouring nodes. In our proposed HVGC (H-index-based Gravity 
Centrality), we address this limitation by comprehensively considering the overall impact of a node’s neighbours 
and its position within the network’s structural holes. This approach effectively overcomes the drawbacks of 
gravity-based methods and demonstrates superior performance compared to other algorithms.

Figure 3.   (continued)

Figure 4.   The optimal truncation radius R∗ of HVGC at β = βc is presented in the graph. Each pentagram 
in the graph corresponds to a network, with a total of ten networks represented. The blue line corresponds to 
R∗ = 1 . Specifically, for HVGC, the value of R∗ is 1 in Email, Facebook, Jazz, PB, USAir, NS and WV networks, 
2 in Router and Sex networks, and 4 in Power network. The majority of the networks have an optimal truncation 
radius of 1, with the next most common radius being 2. This outcome aligns with the characteristics of 
domain centrality, which typically considers first-order and second-order neighbor nodes. HVGC represents a 
significant advancement over the H-index in domain centrality to obtain centrality, which is consistent with this 
characteristic. However, this does not impede its competitiveness relative to other algorithms, as it manages to 
achieve both simplicity and accuracy.
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Despite the excellent performance exhibited by HVGC, it shares a common limitation with other gravity-
based methods, namely the need to determine the optimal truncation radius R . However, this disadvantage is 
mitigated by the fact that most real networks exhibit small-world characteristics47,59, and the optimal truncation 
radius is approximately linearly related to the average distance34. Furthermore, since HVGC is derived from the 
domain centrality method, even considering only the first-order neighbor nodes in the ten real networks studied 
can lead to very high performance and accurate results.

Figure 5.   The Jaccard similarity coefficients on the top-k influential spreaders.
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In conclusion, while HVGC demonstrates better overall performance compared to other gravity-based meth-
ods and introduces improvements to existing gravity models, there are still areas that require further refinement. 
For example, the current approach does not consider the influence of weight factors associated with different 
indicators. Instead, it directly operates on the indicator values of the nodes. The weights of HV and the structural 
hole constraint coefficient c(i) in the computation process may affect the accuracy of the algorithm. In networks 
with clear community structures, a higher weight for c(i) may lead to better performance, while in other types of 
networks, a lower weight may yield better results. Therefore, future work may involve incorporating adjustable 
parameters to balance the weights of different indicators, which is a direction for further exploration. Addition-
ally, these algorithms have not been evaluated in weighted networks, where the impact of the path from node i to 
node j may differ from that of the path from node j to node i , and the link heterogeneity60 in a weighted network 
may result in varying node impact. Lastly, future research may involve incorporating adjustable parameters to 
modify the interplay of gravitational forces among nodes and balance the weights of different metrics in order 
to improve the performance of the algorithm.

Data availability
All relevant data are available at https://​github.​com/​MLIF/​Netwo​rk-​Data.
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